A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts
Abstract
:1. Introduction
Beverage | GWP | System Boundary/Origin | Method | Reference |
---|---|---|---|---|
Oat drink | 0.21 kg CO2 eq/L drink | up to supermarket | study | [31] |
0.45–0.48 kg CO2 eq/kg drink | up to supermarket | study | [32] | |
Soy drink | 0.22 kg CO2 eq/L drink | up to consumer | study | [33] |
0.66–1.40 kg CO2 eq/kg drink | varying system boundaries | meta-analysis | [9] | |
Almond drink | 0.50 kg CO2 eq/L drink | up to factory gate | study | [34] |
0.39–0.44 kg CO2 eq/kg drink | varying system boundaries | meta-analysis | [9] | |
Cow milk | 1.20–1.35 kg CO2 eq/L milk | up to grave | study | [35] |
1.77–2.40 kg CO2 eq/kg FPCM | up to grave | study | [36] | |
0.54–7.50 kg CO2 eq/L milk | worldwide | meta-analysis | [9] | |
0.54–2.39 kg CO2 eq/L milk | average Europe | meta-analysis | [9] | |
1.7 kg CO2 eq/kg FPCM | OECD countries | study | [37] |
2. Materials and Methods
2.1. Databases
- Soy drinks: although the term ‘soy milk’ is widely used, it is not a milked drink, so the term ‘soy drink’ is used here instead. The original soy drink data set was based on chilled drinks, as well as cooling during the transport and in the supermarket. For the present analyses, cooling was replaced by a non-refrigerated storage and transport, as for the other PBMAs.
- Milk: In the present study, the term ‘milk’ refers to cow milk only. The functional unit of 1 kg of milk refers to fat and protein corrected milk (FPCM), with 3.5% fat and 3.3% protein. The original milk data included only a system boundary until dairy. Therefore, a typical transport route for milk was added. From farm to dairy, there was a non-refrigerated transport of 150 km, and from dairy to supermarket a transportation route of 200 km was assumed. For an in-depth analysis of different milk products, data sets from conventional and organic milk production were included. In addition, milk processing was considered by creating two new datasets for ultra-high temperature (UHT) conventional and organic milk based on the respective datasets. For UHT milk products, the refrigerated transport from dairy to supermarket was converted to a non-refrigerated transport, saving 1.01 MJ/kg energy. On the other hand, UHT milk is processed by heating to at least 135 °C for a few seconds, corresponding to a higher energy demand of 0.29 MJ/kg compared to fresh milk. The absence of a cold chain allows for a better comparison of UHT results with those from unrefrigerated PBMAs.
2.2. Life Cycle Inventories and Impact Assessment
2.3. Water Scarcity Index (WSI)
2.4. Ecosystem Damage Potential (EDP)
2.5. Life Cycle Assessment Nutritional Value—Index
3. Results and Discussion
3.1. Global Warming Potential (GWP)
3.2. Land Use
3.3. Acidification
3.4. Eutrophication
3.5. Ecotoxicity
3.6. Terrestrial Ozone Formation
3.7. Water Consumption and Water Scarcity Index
3.8. Ecosystem Damage Potential (EDP)
3.9. Life Cycle Assessment Nutritional Value—Index
3.10. Comparison between Beverages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, art32. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food´s Environmental Impact through Producers and Consumers. 2018, 360, 987–992. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachauri, R.K.; Meyer, L.A. IPCC 2014a. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland; p. 151.
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales M., M.; Haan, C. de Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Lindeman, R.L. The Trophic-Dynamic Aspect of Ecology. Ecology 1942, 23, 399–417. [Google Scholar] [CrossRef]
- Bick, H. Ökologie: Grundlagen-Terrestrische Und Aquatische Ökosysteme-Angewandte Aspekte, 2nd ed.; G. Fischer: Stuttgart, Germany; Jena, Germany; New York, NY, USA, 1993. [Google Scholar]
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrade, Y.O.; Genova, R.C.; et al. IPCC 2014b. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA; p. 688.
- Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [Green Version]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental Impact of Dietary Change: A Systematic Review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. Int. Rev. J. 2016, 7, 1005–1025. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and Valuation of the Health and Climate Change Cobenefits of Dietary Change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.A.; Malone, T.; McFadden, B.R. Beverage Milk Consumption Patterns in the United States: Who Is Substituting from Dairy to Plant-Based Beverages? J. Dairy Sci. 2020, 103, 11209–11217. [Google Scholar] [CrossRef] [PubMed]
- Project, S.P. Plant-Based Foods in Europe: How Big Is the Market? Available online: https://smartproteinproject.eu/plant-based-food-sector-report/ (accessed on 4 May 2022).
- POSpulse Milchersatzprodukte im LEH. Available online: https://www.pospulse.com/milchersatzprodukte2021 (accessed on 3 December 2021).
- TÜV Süd and YouGov Deutschland GmbH Umfrage Kuhmilch. Available online: https://www.tuvsud.com/de-de/presse-und-medien/2020/juni/tuev-sued-umfrage-kuhmilch-ist-weiterhin-beliebt-bei-verbrauchern (accessed on 2 December 2021).
- Biopinio Studie Zur Verwendung von Milchalternativen, Research & Results 26./27.10.2016, Mobile, Schnelle Marktforschung: Veganer, Vegetarier Und Omnivore Zu Pflanzlichen Milchalternativen. Available online: https://biopinio.de/studie-milchalternativen/ (accessed on 20 April 2022).
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability Labels on Food Products: Consumer Motivation, Understanding and Use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Nijdam, D.; Rood, T.; Westhoek, H. The Price of Protein: Review of Land Use and Carbon Footprints from Life Cycle Assessments of Animal Food Products and Their Substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Dyer, J.A.; Desjardins, R.L.; Worth, D. Greenhouse Gas Emissions from the Canadian Beef Industry. Agric. Syst. 2008, 98, 126–134. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing Intensive, Extensified and Organic Grassland Farming in Southern Germany by Process Life Cycle Assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Weiske, A.; Vabitsch, A.; Olesen, J.E.; Schelde, K.; Michel, J.; Friedrich, R.; Kaltschmitt, M. Mitigation of Greenhouse Gas Emissions in European Conventional and Organic Dairy Farming. Agric. Ecosyst. Environ. 2006, 112, 221–232. [Google Scholar] [CrossRef]
- Peters, G.M.; Rowley, H.V.; Wiedemann, S.; Tucker, R.; Short, M.D.; Schulz, M. Red Meat Production in Australia: Life Cycle Assessment and Comparison with Overseas Studies. Environ. Sci. Technol. 2010, 44, 1327–1332. [Google Scholar] [CrossRef]
- Röös, E.; Sundberg, C.; Tidåker, P.; Strid, I.; Hansson, P.-A. Can Carbon Footprint Serve as an Indicator of the Environmental Impact of Meat Production? Ecol. Indic. 2013, 24, 573–581. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe2016v1.1. \textbar RIVM A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Koellner, T.; Scholz, R. Assessment of Land Use Impact on the Natural Environment: Part 1: An Analytical Framework for Pure Land Occupation and Land Use Change. J. Life Cycle Assess. 2007, 12, 16–23. [Google Scholar]
- Koellner, T.; Scholz, R. Assessment of Land Use Impact on the Natural Environment: Part2: Generic Characterization Factors for Local Species Diversity in Central Europe. J. Life Cycle Assess. 2007, 13, 32–48. [Google Scholar]
- Smedman, A.; Lindmark-Månsson, H.; Drewnowski, A.; Edman, A.-K.M. Nutrient Density of Beverages in Relation to Climate Impact. Food Nutr. Res. 2010, 54, 5170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/search?q=Oat%20drink&gate=StoreShelf (accessed on 5 May 2022).
- Birgersson, S.; Karlsson, B.-S.; Söderlund, L. Soy Milk—An Attributional Life Cycle Assessment Examining the Potential Environmental Impact of Soy Milk; Stockholm University: Stockholm, Sweden, 2009. [Google Scholar]
- Winans, K.S.; Macadam-Somer, I.; Kendall, A.; Geyer, R.; Marvinney, E. Life Cycle Assessment of California Unsweetened Almond Milk. Int. J. Life Cycle Assess. 2020, 25, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Meneses, M.; Pasqualino, J.; Castells, F. Environmental Assessment of the Milk Life Cycle: The Effect of Packaging Selection and the Variability of Milk Production Data. J. Environ. Manag. 2012, 107, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al. Greenhouse Gas Emissions from Milk Production and Consumption in the United States: A Cradle-to-Grave Life Cycle Assessment circa 2008. Int. Dairy J. 2013, 31, S3–S14. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; Henderson, B.; Opio, C.; Falcucci, A.; Tempio, G.; Silvestri, S.; Chesterman, S.; Gerber, P.J. Climate Change Mitigation and Productivity Gains in Livestock Supply Chains: Insights from Regional Case Studies. Reg. Environ. Change 2017, 17, 129–141. [Google Scholar] [CrossRef]
- Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory and Nutritional Value. Sustainability 2022, 14, 7996. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. Overview and Methodology, Final Report Ecoinvent v2.0 No. 1; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods. Ecoinvent Report No. 3, v2.2; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2010. [Google Scholar]
- Röös, E.; Patel, M.; Spångberg, J. Producing Oat Drink or Cow’s Milk on a Swedish Farm—Environmental Impacts Considering the Service of Grazing, the Opportunity Cost of Land and the Demand for Beef and Protein. Agric. Syst. 2016, 142, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Schilling, G. Pflanzenernährung Und Düngung; UTB Eugen Ulmer: Stuttgart, Germany, 2000. [Google Scholar]
- UBA Carbon Footprint—Teilgutachten, Monitoring Für Den CO2-Ausstoß in Der Logistikkette. Available online: http://www.uba.de/uba-info-median/4306.html (accessed on 1 February 2022).
- Spielmann, M.; Bauer, C.; Dones, R.; Tuchschmid, M. Ecoinvent, Transport Services Data v2.0, Ecoinvent Report No. 14; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland; Villigen, Germany; Uster, Switzerland, 2007. [Google Scholar]
- Mc Geough, E.J.; Little, S.M.; Janzen, H.H.; McAllister, T.A.; McGinn, S.M.; Beauchemin, K.A. Life-Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in Eastern Canada: A Case Study. J. Dairy Sci. 2012, 95, 5164–5175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-Efficiency of Intensification Scenarios for Milk Production in New Zealand. Ecol. Econ. 2009, 68, 1615–1625. [Google Scholar] [CrossRef]
- Yan, M.-J.; Humphreys, J.; Holden, N.M. Life Cycle Assessment of Milk Production from Commercial Dairy Farms: The Influence of Management Tactics. J. Dairy Sci. 2013, 96, 4112–4124. [Google Scholar] [CrossRef] [PubMed]
- Rotz, C.A.; Montes, F.; Chianese, D.S. The Carbon Footprint of Dairy Production Systems through Partial Life Cycle Assessment. J. Dairy Sci. 2010, 93, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.J.M. Environmental Impact Assessment of Conventional and Organic Milk Production. Livest. Prod. Sci. 2003, 80, 69–77. [Google Scholar] [CrossRef]
- Frank, H.; Schmid, H.; Hülsbergen, K.J. Modelling Greenhouse Gas Emissions from Organic and Conventional Dairy Farms. J. Sustain. Org. Agric. Syst. 2019, 69, 37–46. [Google Scholar]
- Rutledge, S.; Wall, A.M.; Mudge, P.L.; Troughton, B.; Campbell, D.I.; Pronger, J.; Joshi, C.; Schipper, L.A. The Carbon Balance of Temperate Grasslands Part I: The Impact of Increased Species Diversity. Agric. Ecosyst. Environ. 2017, 239, 310–323. [Google Scholar] [CrossRef]
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idel, A. Die Kuh Ist Kein Klima-Killer! Agrarkultur Im 21. Jahrhundert, 6th ed.; Schweinsfurth Stiftung, Metropolis-Verlag: Marburg, Germany, 2016. [Google Scholar]
- Knudsen, M.T.; Dorca-Preda, T.; Djomo, S.N.; Pena, N.; Nadel, S.; Smith, L.G.; Zollitsch, W.; Hörtenhuber, S.; Hermansen, J.E. The Importance of Including Soil Carbon Changes, Ecotoxicity and Biodiversity Impacts in Environmental Life Cycle Assessments of Organic and Conventional Milk in Western Europe. J. Clean. Prod. 2019, 215, 433–443. [Google Scholar] [CrossRef]
- FiBL Merkblatt Biosoja. Available online: https://www.fibl.org/de/shop (accessed on 12 May 2022).
- Lesschen, J.P.; van den Berg, M.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse Gas Emission Profiles of European Livestock Sectors. Anim. Feed Sci. Technol. 2011, 166–167, 16–28. [Google Scholar] [CrossRef]
- Westhoek, H.; Rood, T.; Van den Berg, M.; Janse, J.; Nijdam, D.; Reudink, M.; Stehfest, E. The Protein Puzzle: The Consumption and Production of Meat, Dairy and Fish in the European Union; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2011; ISBN 978-90-78645-61-0. [Google Scholar]
- Garnett, T. Livestock-Related Greenhouse Gas Emissions: Impacts and Options for Policy Makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Scheffer, F.; Schachtschabel, P. Lehrbuch Der Bodenkunde, 12th ed.; Enke Verlag: Stuttgart, Germany, 1989. [Google Scholar]
- LFU. Handbuch Boden, Bodenversauerung Ursachen—Auswirkungen—Maßnahmen Literaturstudie; Landesanstalt für Umweltschutz Baden-Württemberg: Karlsruhe, Germany, 1997. [Google Scholar]
- Micke, W.C.; University of California (System); Division of Agriculture and Natural Resources. Almond Production Manual; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; ISBN 978-1-879906-22-8. [Google Scholar]
- LFU. UmweltWissen—Schadstoffe, Ammoniak Und Ammonium, Bayrisches Landesamt Für Umwelt; Bayrisches Landesamt für Umwelt: Augsburg, Germany, 2018. [Google Scholar]
- Cambridge University Press. The European Nitrogen Assessment: Sources, Effects, and Policy Perspectives; Sutton, M.A., Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011; ISBN 978-1-107-00612-6. [Google Scholar]
- Centre for Ecology & Hydrology. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution; [Global Overview on Nutrient Management; Sutton, M.A., UNEP, Eds.; Centre for Ecology & Hydrology: Edinburgh, Scotland, 2013; ISBN 978-1-906698-40-9. [Google Scholar]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Klaiss, M.; Schmid, N.; Betrix, C.-A.; Baux, A.; Charles, R.; Messmer, M.M. Organic Soybean Production in Switzerland. OCL 2020, 27, 64. [Google Scholar] [CrossRef]
- Berthoud, A.; Maupu, P.; Huet, C.; Poupart, A. Assessing Freshwater Ecotoxicity of Agricultural Products in Life Cycle Assessment (LCA): A Case Study of Wheat Using French Agricultural Practices Databases and USEtox Model. Int. J. Life Cycle Assess. 2011, 16, 841–847. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/1165 of 15. Juli 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists; Official Journal of the European Union; European Union: Maastricht, The Netherlands, 2021. [Google Scholar]
- Nordborg, M.; Davis, J.; Cederberg, C.; Woodhouse, A. Freshwater Ecotoxicity Impacts from Pesticide Use in Animal and Vegetable Foods Produced in Sweden. Sci. Total Environ. 2017, 581–582, 448–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LFU. UmweltWissen—Bodennahes Ozon Und Sommersmog; Bayrisches Landesamt Für Umwelt: Augsburg, Germany, 2020. [Google Scholar]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Fearnside, P.M. Soybean Cultivation as a Threat to the Environment in Brazil. Environ. Conserv. 2001, 28, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Blanco, H.; Lal, R. Principles of Soil Conservation and Management; Springer: New York, NY, USA, 2010; ISBN 978-1-4020-8709-7. [Google Scholar]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and health attributes of milk and milk imitations. Eur. J. Nutrrition 2020, 59, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Pérez-Domínguez, I.; Rueda-Cantuche, J.M. Environmental Impacts of Changes to Healthier Diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
Beverage | Origin of Main Ingredient | % of Main Ingredient |
---|---|---|
Oat drink | CH | 12.4% oat |
Soy drink BR/USA | 50% BR, 45% USA, 5% CH | 12.5% soy |
Soy drink CH (organic) | CH | 12.5% soy |
Almond drink | USA | 13.1% almond |
Cow milk conv. | CH | 3.5% fat |
Cow milk organic | CH | 3.5% fat |
Impact Category | Equivalence Unit | Included Compounds and Corresponding Factor | ||
---|---|---|---|---|
Global warming | CO2-e | CO2 (1) | CH4 (34) | N2O (298) |
Land use | m²a crop -e | |||
Terrestrial acidification | SO2-e | SO2 (1) | NOx (0.36) | NH3 (1.96) |
Freshwater eutrophication | P-e | P (1) | PO4³⁻ (0.33) | |
Marine eutrophication | N-e | N (1) | NH4⁺ (0.78) | NO2 (0.3) |
Terrestrial ecotoxicity | 1.4-DCB-e | 1.4-DCB (1) | Nickel (37) | |
Freshwater ecotoxicity | 1.4-DCB-e | 1.4-DCB (1) | Nickel (46) | |
Marine ecotoxicity | 1.4-DCB-e | 1.4-DCB (1) | Nickel (320) | |
Ozone formation | NOx-e | NOx (1) | NMVOC (0.29) | |
Water consumption | m3 |
Nutrient Composition/ | Oat | Soy | Almond | Cow Milk | Cow Milk | UHT Milk | UHT Milk |
---|---|---|---|---|---|---|---|
100 g Beverage | Drink | Drink | Drink | Conventional | Organic | Conventional | Organic |
Energy in kcal | 43.4 | 41.5 | 24.1 | 65.1 | 65.1 | 64.4 | 64.4 |
Protein in g | 0.6 | 3.4 | 0.6 | 3.3 | 3.3 | 3.3 | 3.3 |
Method | Impact Category | Unit | Oat Drink | Soy Drink BR/USA | Soy Drink CH | Almond Drink | Cow Milk Conv | Cow Milk Organic | UHT Milk Conv | UHT Milk Organic |
---|---|---|---|---|---|---|---|---|---|---|
ReCiPe | Global warming | kg CO2 eq | 0.46 | 0.46 | 0.40 | 0.61 | 1.41 | 1.45 | 1.30 | 1.33 |
2016 | Land use | m2a crop eq | 0.66 | 0.49 | 0.60 | 0.42 | 1.02 | 1.25 | 1.02 | 1.25 |
Terrestrial acid. | kg SO2 eq | 2.10 × 10−3 | 1.45 × 10−3 | 1.14 × 10−3 | 3.42 × 10−3 | 9.46 × 10−3 | 1.06 × 10−2 | 9.20 × 10−3 | 1.03 × 10−2 | |
Freshwater eutrophic. | kg P eq | 2.81 × 10−5 | 5.55 × 10−5 | 3.43 × 10−5 | 2.05 × 10−5 | 8.82 × 10−5 | 9.21 × 10−5 | 8.51 × 10−5 | 8.91 × 10−5 | |
Marine eutrophic. | kg N eq | 5.67 × 10−4 | 4.09 × 10−4 | 7.86 × 10−4 | 7.24 × 10−4 | 7.22 × 10−4 | 6.80 × 10−4 | 7.22 × 10−4 | 6.79 × 10−4 | |
Terrestrial ecotox. | kg 1,4-DCB | 0.74 | 0.46 | 0.35 | 1.09 | 1.86 | 1.81 | 1.75 | 1.70 | |
Freshwater ecotox. | kg 1,4-DCB | 7.50 × 10−4 | 4.45 × 10−3 | 4.50 × 10−4 | 1.19 × 10−3 | 2.11 × 10−3 | 1.03 × 10−3 | 2.09 × 10−3 | 1.02 × 10−3 | |
Marine ecotox. | kg 1,4-DCB | 1.15 × 10−3 | 2.06 × 10−3 | 8.89 × 10−4 | 1.42 × 10−3 | 2.61 × 10−3 | 2.40 × 10−3 | 2.52 × 10−3 | 2.31 × 10−3 | |
Ozone formation | kg NOx eq | 1.87 × 10−3 | 1.32 × 10−3 | 9.94 × 10−4 | 3.60 × 10−3 | 1.89 × 10−3 | 1.85 × 10−3 | 1.57 × 10−3 | 1.54 × 10−3 | |
Water consumption | m3 | 2.55 | 1.66 | 2.22 | 2.52 | 7.37 | 7.66 | 4.85 | 5.14 | |
WSI | Water scarcity index | m3 | 6.00 × 10−3 | 5.00 × 10−3 | 4.00 × 10−3 | 1.40 × 10−1 | 1.20 × 10−2 | 1.30 × 10−2 | 1.00 × 10−2 | 1.10 × 10−2 |
EDP | Ecosystem damage | points | 0.72 | 3.48 | 0.19 | 0.62 | 1.76 | 0.95 | 1.76 | 0.94 |
Method | Impact Category | Unit | Cow Milk Conv | Cow Milk Organic | UHT Milk Conv | UHT Milk Organic |
---|---|---|---|---|---|---|
ReCiPe 2016 | Global warming | kg CO2 eq | 1.41 | 2.3% | −8.2% | −5.9% |
Land use | m²a crop eq | 1.02 | 22.5% | −0.1% | 22.4% | |
Terrestrial acidification | kg SO2 eq | 9.46 × 10−3 | 11.7% | −2.8% | 8.9% | |
Freshwater eutrophication | kg P eq | 8.82 × 10−5 | 4.5% | −3.5% | 1.0% | |
Marine eutrophication | kg N eq | 7.22 × 10−4 | −5.8% | −0.1% | −5.9% | |
Terrestrial ecotoxicity | kg 1,4-DCB | 1.86 | −2.7% | −5.9% | −8.6% | |
Freshwater ecotoxicity | kg 1,4-DCB | 2.11 × 10−3 | −51.0% | −0.6% | −51.6% | |
Marine ecotoxicity | kg 1,4-DCB | 2.61 × 10−3 | −8.0% | −3.6% | −11.6% | |
Ozone formation, terr. | kg NOx eq | 1.89 × 10−3 | −1.8% | −16.8% | −18.6% | |
Water consumption | m³ | 7.37 | 3.8% | −34.2% | −30.3% | |
WSI | Water scarcity index | m³ | 1.20 × 10−2 | 8.3% | −16.7% | −8.3% |
EDP | Ecosystem damage potential | points | 1.76 | −46.0% | 0.0% | −46.6% |
Ecosystem Damage Potential | Unit | Oat Drink | Soy Drink BR/USA | Soy Drink CH | Almond Drink | Cow Milk Conv | Cow Milk Organic | UHT Milk Conv | UHT Milk Organic |
---|---|---|---|---|---|---|---|---|---|
Land occupation | points | 0.67 | 0.39 | 0.17 | 0.57 | 0.91 | 0.89 | 0.91 | 0.88 |
Land transform. | points | 0.05 | 3.09 | 0.02 | 0.05 | 0.85 | 0.06 | 0.85 | 0.06 |
Total EDP | points | 0.72 | 3.48 | 0.19 | 0.62 | 1.76 | 0.95 | 1.76 | 0.94 |
Index | Unit | Oat Drink | Soy Drink BR/USA | Soy Drink CH | Almond Drink | Cow Milk Conv | Cow Milk Organic | UHT Milk Conv | UHT Milk Organic |
---|---|---|---|---|---|---|---|---|---|
GW/Energy | g CO2 eq/kcal | 1.03 | 1.08 | 0.95 | 2.48 | 2.13 | 2.18 | 1.98 | 2.00 |
Land use/Energy | m²a crop eq/kcal | 1.48 × 10−3 | 1.16 × 10−3 | 1.42 × 10−3 | 1.70 × 10−3 | 1.54 × 10−3 | 1.89 × 10−3 | 1.55 × 10−3 | 1.91 × 10−3 |
Water cons./Energy | m³/kcal | 5.76 × 10−3 | 3.93 × 10−3 | 5.24 × 10−3 | 1.02 × 10−2 | 1.11 × 10−2 | 1.15 × 10−2 | 7.40 × 10−3 | 7.80 × 10−3 |
EDP/Energy | points / kcal | 1.67 × 10−3 | 8.42 × 10−3 | 4.58 × 10−4 | 2.54 × 10−3 | 2.70 × 10−3 | 1.44 × 10−3 | 2.70 × 10−3 | 1.46 × 10−3 |
Index | Unit | Oat Drink | Soy Drink BR/USA | Soy Drink CH | Almond Drink | Cow Milk Conv | Cow Milk Organic | UHT Milk Conv | UHT Milk Organic |
---|---|---|---|---|---|---|---|---|---|
GW/Protein | g CO2 eq/g | 75.91 | 13.05 | 11.59 | 101.54 | 41.59 | 42.54 | 38.58 | 39.14 |
Land use/Protein | m²a crop eq/g | 0.11 | 0.01 | 0.02 | 0.07 | 0.03 | 0.04 | 0.03 | 0.04 |
Water cons./Protein | m³/g | 0.43 | 0.05 | 0.06 | 0.42 | 0.22 | 0.23 | 0.14 | 0.15 |
EDP/Protein | points/g | 0.12 | 0.10 | 0.01 | 0.10 | 0.05 | 0.03 | 0.05 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geburt, K.; Albrecht, E.H.; Pointke, M.; Pawelzik, E.; Gerken, M.; Traulsen, I. A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts. Sustainability 2022, 14, 8424. https://doi.org/10.3390/su14148424
Geburt K, Albrecht EH, Pointke M, Pawelzik E, Gerken M, Traulsen I. A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts. Sustainability. 2022; 14(14):8424. https://doi.org/10.3390/su14148424
Chicago/Turabian StyleGeburt, Katrin, Elke Herta Albrecht, Marcel Pointke, Elke Pawelzik, Martina Gerken, and Imke Traulsen. 2022. "A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts" Sustainability 14, no. 14: 8424. https://doi.org/10.3390/su14148424