Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Runoff Plot Descriptions
2.3. Data Collection
2.4. Data Treatment and Statistical Analysis
3. Results
3.1. Rainfall Characteristics
3.2. Runoff Loss
3.3. Soil Loss
3.4. Relationship between Runoff Loss and Soil Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marzen, M.; Iserloh, T.; de Lima, J.L.M.P.; Fister, W.; Ries, J.B. Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Sci. Total Environ. 2017, 590, 502–513. [Google Scholar] [CrossRef]
- Li, Z.-G.; Gu, C.-M.; Zhang, R.-H.; Ibrahim, M.; Zhang, G.-S.; Wang, L.; Zhang, R.-Q.; Chen, F.; Liu, Y. The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China. Agric. Water Manag. 2017, 185, 145–150. [Google Scholar] [CrossRef]
- Rodrigo Comino, J.; Iserloh, T.; Lassu, T.; Cerda, A.; Keestra, S.D.; Prosdocimi, M.; Brings, C.; Marzen, M.; Ramos, M.C.; Senciales, J.M.; et al. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 2016, 565, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, J.M.; Begueria, S.; Nadal-Romero, E.; Gonzalez-Hidalgo, J.C.; Lana-Renault, N.; Sanjuan, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K.J.S. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Asadi, H.; Moussavi, A.; Ghadiri, H.; Rose, C.W. Flow-driven soil erosion processes and the size selectivity of sediment. J. Hydrol. 2011, 406, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Hernandez, C.; Rodrigo-Comino, J.; Romero-Diaz, A. Impact of lithology and soil properties on abandoned dryland terraces during the early stages of soil erosion by water in south-east Spain. Hydrol. Process. 2017, 31, 3095–3109. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Int. Soil Water Conserv. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Fernandez-Raga, M.; Palencia, C.; Keesstra, S.; Jordan, A.; Fraile, R.; Angulo-Martinez, M.; Cerda, A. Splash erosion: A review with unanswered questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Zhang, X.; Ding, G.; Cruse, R.M. Soil erosion control practices in Northeast China: A mini-review. Soil Tillage Res. 2011, 117, 44–48. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, B.Y.; Wang, X.Y.; Gao, X. Erosion effect on the productivity of black soil in Northeast China. Sci. ChinaEarth Sci. 2009, 52, 1005–1021. [Google Scholar]
- Shuxia, Y.U.; Shang, J.; Zhao, J.; Guo, H. Factor Analysis and Dynamics of Water Quality of the Songhua River, Northeast China. Water Air Soil Pollut. 2003, 144, 159–169. [Google Scholar]
- Fang, H.; Sun, L.; Qi, D.; Cai, Q. Using Cs-137 technique to quantify soil erosion and deposition rates in an agricultural catchment in the black soil region, Northeast China. Geomorphology 2012, 169, 142–150. [Google Scholar] [CrossRef]
- Fan, H.M.; Cai, Q.G.; Guo, C.J.; Wang, T.L.; Su, F.L.; Cui, M. Study on criterion of soil loss tolerance and soil and water conservation in black soil region of Northeast China. J. Soil Water Conserv. 2005, 20, 84. [Google Scholar]
- Zhang, Y.; Wu, Y.; Lin, B.; Zheng, Q.; Yin, J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Tillage Res. 2007, 96, 28–41. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lu, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Wei, X.; Li, X.; Wei, N. Reducing runoff and soil loss using corn stalk juice at plot scale. Soil Tillage Res. 2017, 168, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-J.; Jiao, J.-Y.; Rayburg, S.; Wang, Q.-L.; Su, Y. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena 2016, 141, 109–116. [Google Scholar] [CrossRef]
- Bryndal, T.; Franczak, P.; Kroczak, R.; Cabaj, W.; Kolodziej, A. The impact of extreme rainfall and flash floods on the flood risk management process and geomorphological changes in small Carpathian catchments: A case study of the Kasiniczanka river (Outer Carpathians, Poland). Nat. Hazards 2017, 88, 95–120. [Google Scholar] [CrossRef]
- Alavinia, M.; Saleh, F.N.; Asadi, H. Effects of rainfall patterns on runoff and rainfall-induced erosion. Int. J. Sediment Res. 2019, 34, 270–278. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Bai, Z.; Lv, C. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Barbera, G.G.; Navarro, J.A. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil 2007, 294, 169–183. [Google Scholar] [CrossRef]
- Cerda, A.; Lucas Borja, M.E.; Ubeda, X.; Francisco Martinez-Murillo, J.; Keesstra, S. Pinus halepensis M. versus Quercus ilex subsp. Rotundifolia L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. For. Ecol. Manag. 2017, 400, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Neves dos Santos, J.C.; de Andrade, E.M.; Augusto Medeiros, P.H.; Simas Guerreiro, M.J.; de Queiroz Palacio, H.A. Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region. Water Resour. Manag. 2017, 31, 173–185. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S.-j. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lu, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope Gradient Effects on Soil Loss for Steep Slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- Hu, S.X.; Jin, C.X. Theoretical analysis and experimental study on the critical slope of erosion. Acta Geogr. Sin. 1999, 54, 356–362. [Google Scholar]
- Tang, G.; Song, X.; Li, F.; Zhang, Y.; Xiong, L. Slope spectrum critical area and its spatial variation in the Loess Plateau of China. J. Geogr. Sci. 2015, 25, 1452–1466. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Li, D.; Zhuo, M.; Guo, T.; Liao, Y.; Xie, Z. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch. Environ. Res. Risk Assess. 2015, 29, 609–621. [Google Scholar] [CrossRef]
- Xu, P.; Fu, B. The runoff characteristics under simulated rainfall on purple soil sloping cropland. Chin. J. Geochem. 2011, 30, 317–322. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Wang, Y.; Deng, W.; Liu, Y. Effects of land use on slope runoff and soil loss in the Loess Plateau of China: A meta-analysis. Sci. Total Environ. 2021, 755, 142418. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Fang, H. Impacts of soil conservation measures on runoff and soil loss in a hilly region, Northern China. Agric. Water Manag. 2021, 247, 106740. [Google Scholar] [CrossRef]
- Maetens, W.; Poesen, J.; Vanmaercke, M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Sci. Rev. 2012, 115, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; USDA-ARS Agriculture Handbook No. 537; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation; US Department of Agriculture—USDA: Washington, DC, USA, 1991; Volume 46, pp. 30–33.
- Badaoui, K.E.; Ahmed, A.; Abdelah, A.; Essaadia, A. Erosion Potential Method (Gavrilovi Method): Methodological improvements and application in Toudgha River catchment, southeast of Morocco. Int. J. Water Sci. Environ. Technol. 2021, vi, 114–123. [Google Scholar]
- Stefanidis, S.; Stathis, D.J.W. Effect of Climate Change on Soil Erosion in a Mountainous Mediterranean Catchment (Central Pindus, Greece). Water 2018, 10, 1469. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Chatzichristaki, C.; Stefanidis, P. An ArcGIS toolbox for estimation and mapping soil erosion. J. Environ. Prot. Ecol. 2021, 22, 689–696. [Google Scholar]
- Chu, L.; Ishikawa, Y.; Shiraki, K.; Wakahara, T.; Uchiyama, Y. Relationship between Forest Floor Cover Percentage and Soil Erosion Rate on the Forest Floor with an Impoverished Understory Grazed by Deer (Cervus Nippon) at Doudaira, Tanzawa Mountains. J. Jpn. For. Soc. 2010, 92, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Raclot, D.; Le Bissonnais, Y.; Annabi, M.; Sabir, M.; Smetanova, A. Main issues for preserving mediterranean soil resources from water erosion under global change. Land Degrad. Dev. 2018, 29, 789–799. [Google Scholar] [CrossRef]
- Buttle, J.M.; Farnsworth, A.G. Measurement and modeling of canopy water partitioning in a reforested landscape: The Ganaraska Forest, southern Ontario, Canada. J. Hydrol. 2012, 466, 103–114. [Google Scholar] [CrossRef]
- Molina, A.; Vanacker, V.; Balthazar, V.; Mora, D.; Govers, G. Complex land cover change, water and sediment yield in a degraded Andean environment. J. Hydrol. 2012, 472, 25–35. [Google Scholar] [CrossRef]
- Xiao, P.; Yao, W.; Shen, Z.; Yang, C.; Lyu, X.; Jiao, P. Effects of shrub on runoff and soil loss at loess slopes under simulated rainfall. Chin. Geogr. Sci. 2017, 27, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R.; Lewis, S.A.; Wagenbrenner, J.W.; Ashmun, L.E.; Brown, R.E. Post-fire mulching for runoff and erosion mitigation Part I: Effectiveness at reducing hillslope erosion rates. Catena 2013, 105, 75–92. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.-h.; Liu, F.; Luan, L.-l. Effects of incorporated plant litter on soil resistance to flowing water erosion in the Loess Plateau of China. Biosyst. Eng. 2016, 147, 238–247. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Wang, D.; Wang, L.; Tang, C. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Wei, W.; Chen, L.; Rodrigo-Comino, J.; Die, C.; Feng, X.; Ren, K.; Brevik, E.C.; Yu, Y. Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surf. Process. Landf. 2018, 43, 1860–1870. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, H.-T.; Huang, Z.; Cui, Z.; He, H.; Zheng, J.; Han, F.; Chang, X.; Wu, G.-L. Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). For. Ecol. Manag. 2018, 417, 137–143. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, M.a.; Jia, X.; Zhu, Y. Factors Affecting Soil Desiccation Spatial Variability in the Loess Plateau of China. Soil Sci. Soc. Am. J. 2019, 83, 266–275. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.a.; Zhu, Y.; Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Feng, B.; Fenli, Z.; Ximeng, X.; Jia, L.; Chao, Q.; Hongyan, W. Comparison of Soil Erosion Process Between Longitudinal Ridge Slope and Non-ridge Slope in Mollisol Region of Northeast China. Bull. Soil Water Conserv. 2016, 36, 11–16. [Google Scholar] [CrossRef]
- Pengfei, W.; Zicheng, Z.; Xizhou, Z. Changes of Soil Surface Roughness and Its Effects on Rill Erosion in Slope of Cross Ridge at Seedling Stage of Maize. J. Soil Water Conserv. 2015, 29, 30–34. [Google Scholar] [CrossRef]
- Yuan, L.; Yue, K.; Gu, Z.; Chen, H.; Chi, Y. Analysis of Rainfall Factors and Soil Erosion in Different Soil and Water Conservation Measures in the Karst Plateau-Mountain. Pol. J. Environ. Stud. 2021, 30, 5343–5349. [Google Scholar] [CrossRef]
- Baiwen, J.; Saidong, Z.; Dan, W.; Liang, J.; Yumei, L.; Wenyi, G.; Meng, X.; Zhe, Z. Effect of Slope and Tillage Measures on Soil Erosion and Yield of Soybean. Soybean Sci. 2015, 34, 238–242. [Google Scholar]
- Hao, G.; Pingqi, L.; Mengxuan, Z.; Baixu, C.; Yingchun, W.; Ligang, W. Effects of Ridge Planting on Reducing Runoff and Soil Organic Carbon Loss in Black Soil Slope. J. Soil Water Conserv. 2022, 36, 300–304+311. [Google Scholar] [CrossRef]
- Moore, D.C.; Singer, M.J. Crust formation effects on soil erosion processes. Soil Sci. Soc. Am. J. 1990, 54, 1117–1123. [Google Scholar] [CrossRef]
- Chamizo, S.; Canton, Y.; Lazaro, R.; Sole-Benet, A.; Domingo, F. Crust Composition and Disturbance Drive Infiltration Through Biological Soil Crusts in Semiarid Ecosystems. Ecosystems 2012, 15, 148–161. [Google Scholar] [CrossRef]
- Agassi, M.; Morin, J.; Shainberg, I. Effect of Raindrop Impact Energy and Water Salinity on Infiltration Rates of Sodic Soils. Soil Sci. Soc. Am. J. 1985, 49, 186–190. [Google Scholar] [CrossRef]
- Yan, G.; Fenli, Z.; Bin, W.; Guifang, L.; Jiao, Z.; Yiliang, J. Effects of Soil Crust on Runoff and Sediment on Hillslope in Black Soil Region. Res. Soil Water Conserv. 2014, 21, 17–20. [Google Scholar] [CrossRef]
- Carmi, G.; Berliner, P. The effect of soil crust on the generation of runoff on small plots in an arid environment. Catena 2008, 74, 37–42. [Google Scholar] [CrossRef]
- Chongfeng, B.; Shufang, W.; Xingchang, Z.; Qiangguo, C. Development process of crust in black soil of Northeast China. Chin. J. Appl. Ecol. 2008, 19, 357–362. [Google Scholar]
- Wei, L.; Zhang, B.; Wang, M. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agric. Water Manag. 2007, 94, 54–62. [Google Scholar] [CrossRef]
- Schoener, G.; Stone, M.C. Impact of antecedent soil moisture on runoff from a semiarid catchment. J. Hydrol. 2019, 569, 627–636. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, J.; Tang, B.; Cao, B.; Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. J. Hydrol. 2020, 584, 124694. [Google Scholar] [CrossRef]
- Dominici, R.; Larosa, S.; Viscomi, A.; Mao, L.; Cianflone, G.J.G. Yield Erosion Sediment (YES): A PyQGIS Plug-In for the Sediments Production Calculation Based on the Erosion Potential Method. Geosciences 2020, 10, 324. [Google Scholar] [CrossRef]
Plot | Land Use | Slope (°) | Soil Conservation Measure | Vegetation |
---|---|---|---|---|
A1 | Cultivated | 3 | longitudinal ridge tillage (distance: 70 cm) | Glycine max (Linn.) Merr. (30 plants per row) |
A2 | Cultivated | 3 | cross ridge tillage (distance: 70 cm) | Glycine max (Linn.) Merr. (30 plants per row) |
A3 | Bare land | 3 | - | - |
B1 | Cultivated | 5 | longitudinal ridge tillage (distance: 70 cm) | Glycine max (Linn.) Merr. (30 plants per row) |
B2 | Cultivated | 5 | cross ridge tillage and plant hedge (distance: 70 cm) | Glycine max (Linn.) Merr. (30 plants per row) and Amorpha fruticosa Linn. |
B3 | Bare land | 5 | - | - |
C1 | Shrub | 8 | - | Amorpha fruticosa Linn. (coverage: 90~95%) |
C2 | Forest and Shrub | 8 | - | Ulmus pumila L. and Amorpha fruticosa Linn. (coverage: 90~95%) |
C3 | Bare land | 8 | - | - |
P (mm) | RD (min) | R (MJ mm hm−2 h−1) | Im (mm) | I30 (mm) | |
---|---|---|---|---|---|
Max. | 48.30 | 1459.00 | 728.37 | 45.60 | 54.00 |
Min. | 7.60 | 10.00 | 6.16 | 0.50 | 4.40 |
Mean | 19.78 | 580.35 | 132.04 | 8.27 | 19.96 |
Std. | 12.06 | 463.23 | 193.46 | 12.38 | 14.12 |
Rain Type | Aggregation Center (MJ mm hm−2 h−1) | Number of Occurrences | Proportion of Maternal Flow (%) |
---|---|---|---|
I | 2.31 | 38 | 5.26 |
Ⅱ | 20.94 | 11 | 63.63 |
Ⅲ | 59.77 | 2 | 100 |
Ⅳ | 132.19 | 1 | 100 |
Ⅴ | 213.64 | 3 | 100 |
Ⅵ | 445.61 | 1 | 100 |
VII | 728.37 | 1 | 100 |
Plot | Regression Function | R2 | Adjusted R2 | Sig. |
---|---|---|---|---|
A1 | 0.802 | 0.780 | 0.000 | |
A2 | 0.693 | 0.616 | 0.040 | |
A3 | 0.577 | 0.545 | 0.001 | |
B1 | 0.712 | 0.680 | 0.001 | |
B2 | 0.772 | 0.715 | 0.021 | |
B3 | 0.697 | 0.677 | 0.000 | |
C3 | 0.751 | 0.735 | 0.000 |
P | RD | R | Im | I30 | ||
---|---|---|---|---|---|---|
A1 | H | 0.902 ** | 0.045 | 0.896 ** | 0.336 | 0.744 ** |
SLR | 0.870 ** | −0.092 | 0.967 ** | 0.57 | 0.865 ** | |
A2 | H | 0.799 | −0.664 | 0.823 * | 0.768 | 0.61 |
SLR | 0.124 | −0.72 | 0.205 | 0.433 | −0.125 | |
A3 | H | 0.937 ** | −0.13 | 0.912 ** | 0.057 | 0.849 ** |
SLR | 0.662 ** | 0.02 | 0.580 * | −0.063 | 0.551 * | |
B1 | H | 0.954 ** | 0.121 | 0.906 ** | 0.215 | 0.760 ** |
SLR | 0.778 ** | −0.173 | 0.886 ** | 0.562 | 0.770 ** | |
B2 | H | 0.75 | −0.677 | 0.772 | 0.734 | 0.54 |
SLR | 0.122 | −0.747 | 0.202 | 0.427 | −0.127 | |
B3 | H | 0.565 * | −0.24 | 0.554 * | 0.145 | 0.682 ** |
SLR | 0.648 ** | −0.252 | 0.576 * | 0.174 | 0.704 ** | |
C3 | H | 0.856 ** | −0.334 | 0.942 ** | 0.276 | 0.855 ** |
SLR | 0.807 ** | −0.204 | 0.814 ** | 0.165 | 0.785 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Wang, L.; Li, T.; Qiu, P.; Wang, J. Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed. Sustainability 2022, 14, 8284. https://doi.org/10.3390/su14148284
Dai T, Wang L, Li T, Qiu P, Wang J. Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed. Sustainability. 2022; 14(14):8284. https://doi.org/10.3390/su14148284
Chicago/Turabian StyleDai, Taoyan, Liquan Wang, Tienan Li, Pengpeng Qiu, and Jun Wang. 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed" Sustainability 14, no. 14: 8284. https://doi.org/10.3390/su14148284