Input–Output Efficiency of the Beijing–Tianjin Sandstorm Source Control Project and Influencing Factors
Abstract
:1. Introduction
2. Research Design
2.1. Measurement Method of Input–Output Efficiency
2.2. Construction of Regression Model of Influencing Factors
2.3. Variable Setting and Data Source
2.3.1. Input and Output Indicators for Efficiency Measurement
2.3.2. Influencing Factor Variables
- (1)
- Fiscal pressure
- (2)
- Input in education
- (3)
- Regional economic conditions
- (4)
- Financial development
2.3.3. Data Sources
3. Empirical Analysis of Input–Output Efficiency
3.1. Calculation of Static Efficiency
3.2. Calculation of the Change Rate of Economic Efficiency
3.3. Analysis of Decomposition Efficiency Values
- (1)
- Static input–output efficiency decomposition analysis
- I.
- Technical efficiency analysis
- II.
- Scale efficiency analysis
- (2)
- Dynamic efficiency value decomposition analysis
4. Empirical Research on Influencing Factors
4.1. Description of Variables
4.2. Empirical Analysis
4.2.1. Unit Root Test and Cointegration Test
4.2.2. Regression Analysis
5. Policy Recommendations
- (1)
- Persisting in the control of sandstorm sources, and actively exploring different technologies and management models.
- (2)
- Rationally adjust the structure of investment and the amount of input, and establish an input mechanism with dynamic changes.
- (3)
- Increase investment in relevant education, and pay equal attention to theoretical and technical personnel.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.M.; Wang, J.; Yu, T.; Zhang, Q. An Empirical Analysis on the Forestry Ecological Engineering Construction Based on the Effect of Beijing and Tianjin Sandstorm Source Control Project. For. Econ. 2017, 39, 46–50, 83. [Google Scholar]
- Zhou, C.D. The Beijing and Tianjin Sandstorm Source Treatment Project Construction Strategy Research—Taking Shanxi Province as an Example. For. Econ. 2015, 37, 44–46. [Google Scholar]
- Zhang, Y.J. Achievements, Problems and Policy Recommendations of National Key Ecological Projects—A Case Study on Inner Mongolia Autonomous Region. Res. Agric. Mod. 2014, 35, 178–182. [Google Scholar]
- Yang, L.; Wang, J.L.; Wang, K. Benefit Cube: Establishment and Validation of a Model for Assessing the Benefits of Forestry Ecological Projects—A Case Study Based on the Beijing-Hebei Cooperative Afforestation Project. J. Agrotech. Econ. 2016, 5, 92–101. [Google Scholar]
- Xu, H.L. Comprehensive Benefit Evaluation of the Beijing-Tianjin Wind and Sandstorm Source Control Project in Shanxi Province. South China Agric. 2021, 15, 191–192. [Google Scholar]
- Mlynarski, W.; Predki, A. Data Envelopment Analysis in evaluation of the forest districts efficiency. Sylwan 2017, 161, 1018–1025. [Google Scholar]
- Cheng, B.D.; Guan, H.L.; Su, Y.J. Efficiency Evaluation on Forestry Finance Based on DEA. J. Ind. Technol. Econ. 2013, 32, 95–101. [Google Scholar]
- Kao, C. Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization. Omega 2010, 38, 484–491. [Google Scholar] [CrossRef]
- Yang, M.H.; Xie, Y. Research on Forestry Input-Output Efficiency Measurement Based on Super-efficiency DEA-Malmquist. Chin. For. Econ. 2021, 6, 7–10. [Google Scholar]
- Salehirad, N.; Sowlati, T. Productivity and efficiency assessment of the wood industry: A review with a focus on Canada. For. Prod. J. 2006, 56, 25–32. [Google Scholar]
- Ying, J.Y. Study on Comprehensive Benefit of Forestry Finance Expenditure in Hunan. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, May 2017. [Google Scholar]
- Deng, Y.H.; Ning, Y.L.; Zhao, R.; Zhang, Y. Government Forestry Input-output Efficiency Comparison of China and the United States. For. Resour. Manag. 2013, 5, 41–46. [Google Scholar]
- Liu, Y.; Yao, S.B. The Impact of National Key Forestry Programs on Labor Utilization and Transfer in China. Resour. Sci. 2016, 38, 126–135. [Google Scholar]
- Tian, S.Y.; Xu, W.L. Evaluation of China’s Forestry Input-output Efficiency Based on DEA Modeling. Resour. Sci. 2012, 34, 1944–1950. [Google Scholar]
- Lai, Z.Q.; Zhang, Z.H. The Super-efficiency DEA Analysis of Guangdong Forestry Input-output. J. South China Agric. Univ. 2008, 04, 43–48. [Google Scholar]
- Yu, M.X.; Zhang, Z.Q.; Gao, L. Analysis of Forestry Fiscal Expenditure Efficiency Based on DEA-Tobit Model—A Case Study of Guangdong Province. Rural. Econ. 2014, 11, 83–86. [Google Scholar]
- Cao, B.; Wang, Y.F. The Influence of Financial Support and Forest Tenure Reform on Forestry Production Efficiency under the Background of Ecological Civilization Construction. Issues For. Econ. 2019, 39, 307–315. [Google Scholar]
- Zadmirzaei, M.; Limaei, S.M.; Olsson, L.; Alireza, A. Assessing the Impact of the External non-discretionary Factor on the performance of forest management units using DEA approach. J. For. Res. 2017, 22, 144–152. [Google Scholar] [CrossRef]
- Yang, X.; Luo, J.Z. Research on the Efficiency of Rural Capital Allocation in The Western Region and Its Influencing Factors. Econ. Restruct. 2014, 6, 57–61. [Google Scholar]
- Robson, M.; Shashi, K. The Influence of Context on Deliberation and Cooperation in Community-Based Forest Management in Ontario, Canada. Hum. Ecol. 2009, 37, 547–558. [Google Scholar] [CrossRef]
- Feng, D.; Zheng, Y.Y.; Wen, Y.L. Research on the Effect of Factor Input on Forestry Economic Growth. China For. Econ. 2010, 3, 1–4, 7. [Google Scholar]
- Li, W. Input-Output Efficiency of Forestry Industry in Jiangxi Province and its Influencing Factors—Based on DEA-Tobit Model. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, May 2021. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rousseau, J.J. A goal-focusing approach to analysis of intergenerational transfers of income. Int. J. Syst. Sci. 1986, 17, 433–446. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; Li, N.; Luo, H.Y.; Wang, B.N. Analysis of Forestry Production Efficiency and Optimization Paths in China Based on DEA Method. China Agron. Bull. 2011, 27, 55–59. [Google Scholar]
- Mi, F.; Liu, Z.D.; Li, Z.W.; Ji, Y.X. Analysis of Forestry Input-output Efficiency in Gansu Province and the Influence of Each Indicator—An Empirical Study Based on DEA Model. For. Econ. 2013, 37, 100–104. [Google Scholar]
Indicators | Region | The Mean | The Standard Deviation | The Maximum | The Minimum | The Median |
---|---|---|---|---|---|---|
Net income of farmers (RMB) | Beijing | 15,700.94118 | 7000.573779 | 28,928 | 5398 | 14,736 |
Hebei | 7833.271765 | 3997.299376 | 15,373 | 2685 | 7119.69 | |
Shanxi | 7107.719412 | 4331.741301 | 16,124.39 | 2299.4 | 5601.4 | |
Inner Mongolia | 7234.917059 | 4009.272366 | 15,283 | 2132 | 6641.56 | |
Proportion of primary industry (%) | Beijing | 0.008294118 | 0.00339142 | 0.016 | 0.003 | 0.008 |
Hebei | 0.119760444 | 0.018852031 | 0.1612 | 0.0921 | 0.1142 | |
Shanxi | 0.057764706 | 0.007840539 | 0.075 | 0.046 | 0.057 | |
Inner Mongolia | 0.138529412 | 0.020674274 | 0.178 | 0.108 | 0.138 | |
Barren mountain (sand) afforestation area (ha) | Beijing | 14,010.22 | 6678.82 | 27,399 | 825 | 12,027.5 |
Hebei | 11,1583.2 | 69,517.05535 | 326,255 | 38,668 | 99,548 | |
Shanxi | 51,805.66667 | 41,052.81289 | 165,971 | 4979 | 33,346 | |
Inner Mongolia | 238,059.8667 | 128,040.8802 | 468,988 | 67,211 | 205,119 | |
Closed mountain (sand) forest area (ha) at the end of the year | Beijing | 87,479.85714 | 35,251.04 | 140,199 | 22,933 | 84,941 |
Hebei | 563,179 | 115,985.159 | 731,787 | 310,035 | 565,767.5 | |
Shanxi | 156,907.2857 | 42,358.34915 | 272,071 | 72,390 | 156,806 | |
Inner Mongolia | 1,062,554.857 | 454,433.1277 | 1,808,451 | 473,103 | 924,706 | |
National forestry investment (ten thousand RMB) | Beijing | 992,204.8235 | 840,255.8481 | 2,409,673 | 13,269 | 851,235 |
Hebei | 475,658.1176 | 301,217.4291 | 1,135,517 | 130,895 | 411,553 | |
Shanxi | 525,651.2353 | 318,607.402 | 1,036,327 | 164,066 | 378,681 | |
Inner Mongolia | 954,173.6471 | 479,868.0054 | 1,670,665 | 321,079 | 1,048,171 | |
Other forestry investment (ten thousand RMB) | Beijing | 137,071 | 176,944.4016 | 557,169 | 168 | 46,942 |
Hebei | 210,398 | 197,286.9899 | 766,783 | 17,913 | 141,700 | |
Shanxi | 250,763.8824 | 225,124.8911 | 663,968 | 6205 | 209,063 | |
Inner Mongolia | 84,429.17647 | 91,151.44861 | 326,942 | 7035 | 48,608 |
Malmquist | Total | Beijing | Hebei | Shanxi | Inner Mongolia |
---|---|---|---|---|---|
2003 | - | - | - | - | - |
2004 | 1.917 | 10.613 | 1.030 | 1.047 | 1.179 |
2005 | 0.615 | 0.309 | 0.915 | 0.738 | 0.685 |
2006 | 0.870 | 0.597 | 0.984 | 0.665 | 1.469 |
2007 | 0.925 | 1.037 | 1.110 | 0.983 | 0.650 |
2008 | 1.070 | 1.907 | 0.720 | 0.662 | 1.442 |
2009 | 0.823 | 0.496 | 0.752 | 1.365 | 0.902 |
2010 | 0.802 | 1.206 | 1.182 | 0.826 | 0.352 |
2011 | 0.712 | 0.595 | 0.802 | 0.870 | 0.620 |
2012 | 0.876 | 0.672 | 0.897 | 1.037 | 0.940 |
2013 | 0.827 | 0.836 | 0.974 | 1.091 | 0.527 |
2014 | 1.090 | 1.684 | 1.087 | 0.925 | 0.838 |
2015 | 1.636 | 5.048 | 0.988 | 1.087 | 1.312 |
2016 | 0.948 | 0.642 | 0.865 | 1.134 | 1.282 |
2017 | 1.061 | 0.649 | 0.957 | 1.094 | 1.866 |
2018 | 1.050 | 1.733 | 0.873 | 1.027 | 0.783 |
2019 | 1.004 | 0.714 | 1.041 | 1.020 | 1.340 |
mean | 1.014 | 1.796 | 0.949 | 0.973 | 1.012 |
Year | Beijing | Hebei | Shanxi | Inner Mongolia | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
crste | vrste | Scale | rs | crste | vrste | Scale | rs | crste | vrste | Scale | rs | crste | vrste | Scale | rs | |
2003 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2004 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2005 | 0.788 | 1.000 | 0.788 | drs | 1.000 | 1.000 | 1.000 | - | 0.728 | 0.788 | 0.924 | drs | 0.856 | 0.861 | 0.995 | irs |
2006 | 0.850 | 1.000 | 0.850 | irs | 0.845 | 1.000 | 0.845 | drs | 0.793 | 0.794 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2007 | 0.785 | 0.789 | 0.995 | irs | 0.782 | 0.972 | 0.805 | drs | 0.770 | 1.000 | 0.770 | irs | 0.803 | 0.824 | 0.974 | irs |
2008 | 0.775 | 0.790 | 0.980 | irs | 0.621 | 0.865 | 0.718 | drs | 0.623 | 0.637 | 0.977 | drs | 0.827 | 0.853 | 0.970 | irs |
2009 | 0.701 | 0.740 | 0.947 | drs | 0.676 | 0.915 | 0.739 | drs | 1.000 | 1.000 | 1.000 | - | 0.818 | 0.846 | 0.967 | irs |
2010 | 0.479 | 0.734 | 0.654 | drs | 0.652 | 0.890 | 0.733 | drs | 1.000 | 1.000 | 1.000 | - | 0.699 | 0.702 | 0.996 | irs |
2011 | 0.324 | 0.754 | 0.430 | drs | 0.878 | 0.963 | 0.912 | drs | 0.898 | 0.910 | 0.986 | drs | 0.899 | 1.000 | 0.899 | irs |
2012 | 0.345 | 0.818 | 0.421 | drs | 0.792 | 0.933 | 0.849 | drs | 1.000 | 1.000 | 1.000 | - | 0.734 | 0.757 | 0.970 | drs |
2013 | 0.357 | 0.909 | 0.392 | drs | 0.901 | 1.000 | 0.901 | drs | 1.000 | 1.000 | 1.000 | - | 0.968 | 0.969 | 0.999 | drs |
2014 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 0.919 | 0.931 | 0.988 | drs |
2015 | 0.942 | 1.000 | 0.942 | drs | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2016 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2017 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2018 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
2019 | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - | 1.000 | 1.000 | 1.000 | - |
mean | 0.785 | 0.914 | 0.847 | 0.892 | 0.973 | 0.912 | 0.930 | 0.949 | 0.980 | 0.913 | 0.926 | 0.986 |
Year | Beijing | Hebei | Shanxi | Inner Mongolia | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
techch 1 | pech 2 | sech 3 | tfpch 4 | techch | pech | sech | tfpch | echch | pech | sech | tfpch | techch | pech | sech | tfpch | |
2004 | 10.61 | 1.00 | 1.00 | 10.61 | 1.03 | 1.00 | 1.00 | 1.03 | 1.05 | 1.00 | 1.00 | 1.05 | 1.18 | 1.00 | 1.00 | 1.18 |
2005 | 0.31 | 1.00 | 1.00 | 0.31 | 0.92 | 1.00 | 1.00 | 0.92 | 0.74 | 1.00 | 1.00 | 0.74 | 0.84 | 1.00 | 0.82 | 0.69 |
2006 | 0.60 | 1.00 | 1.00 | 0.60 | 0.98 | 1.00 | 1.00 | 0.98 | 0.67 | 1.00 | 1.00 | 0.67 | 1.20 | 1.00 | 1.23 | 1.47 |
2007 | 1.04 | 1.00 | 1.00 | 1.04 | 1.11 | 1.00 | 1.00 | 1.11 | 0.98 | 1.00 | 1.00 | 0.98 | 0.76 | 0.95 | 0.86 | 0.65 |
2008 | 1.91 | 1.00 | 1.00 | 1.91 | 0.72 | 1.00 | 1.00 | 0.72 | 0.66 | 1.00 | 1.00 | 0.66 | 1.24 | 1.06 | 1.17 | 1.44 |
2009 | 0.50 | 1.00 | 1.00 | 0.50 | 0.75 | 1.00 | 1.00 | 0.75 | 1.37 | 1.00 | 1.00 | 1.37 | 0.90 | 0.84 | 1.00 | 0.90 |
2010 | 1.21 | 1.00 | 1.00 | 1.21 | 1.18 | 1.00 | 1.00 | 1.18 | 0.83 | 1.00 | 1.00 | 0.83 | 0.35 | 1.04 | 1.00 | 0.35 |
2011 | 0.60 | 1.00 | 1.00 | 0.60 | 0.80 | 1.00 | 1.00 | 0.80 | 0.87 | 1.00 | 1.00 | 0.87 | 0.62 | 1.14 | 1.00 | 0.62 |
2012 | 0.67 | 1.00 | 1.00 | 0.67 | 0.90 | 1.00 | 1.00 | 0.90 | 1.04 | 1.00 | 1.00 | 1.04 | 0.94 | 0.77 | 1.00 | 0.94 |
2013 | 0.84 | 1.00 | 1.00 | 0.84 | 0.97 | 1.00 | 1.00 | 0.97 | 1.09 | 1.00 | 1.00 | 1.09 | 0.53 | 1.29 | 1.00 | 0.53 |
2014 | 1.68 | 1.00 | 1.00 | 1.68 | 1.09 | 1.00 | 1.00 | 1.09 | 0.93 | 1.00 | 1.00 | 0.93 | 0.84 | 0.80 | 1.00 | 0.84 |
2015 | 5.05 | 1.00 | 1.00 | 5.05 | 0.99 | 1.00 | 1.00 | 0.99 | 1.09 | 1.00 | 1.00 | 1.09 | 1.31 | 1.00 | 1.00 | 1.31 |
2016 | 0.64 | 1.00 | 1.00 | 0.64 | 0.87 | 1.00 | 1.00 | 0.87 | 1.13 | 1.00 | 1.00 | 1.13 | 1.28 | 1.05 | 1.00 | 1.28 |
2017 | 0.65 | 1.00 | 1.00 | 0.65 | 0.96 | 1.00 | 1.00 | 0.96 | 1.09 | 1.00 | 1.00 | 1.09 | 1.87 | 1.00 | 1.00 | 1.87 |
2018 | 1.73 | 1.00 | 1.00 | 1.73 | 0.87 | 1.00 | 1.00 | 0.87 | 1.03 | 1.00 | 1.00 | 1.03 | 0.78 | 1.00 | 1.00 | 0.78 |
2019 | 0.71 | 1.00 | 1.00 | 0.71 | 1.04 | 1.00 | 1.00 | 1.04 | 1.02 | 1.00 | 1.00 | 1.02 | 1.34 | 1.00 | 1.00 | 1.34 |
mean | 1.80 | 1.00 | 1.00 | 1.80 | 0.95 | 1.00 | 1.02 | 0.95 | 0.97 | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | 1.01 |
Variable Types | Variable Symbol | The Variable Name | Variable Declaration |
---|---|---|---|
Explained variable | C | Input-output efficiency | According to the results in Figure 1 of this paper |
Explanatory variables | Fiscal pressure | A measure of the ratio of local government expenditure to revenue | |
Explanatory variables | Educational development status | A measure of education spending as a percentage of GDP | |
Explanatory variables | Regional economic development | The ratio of household consumption level to per capita GDP | |
Explanatory variables | Financial development | Proportion of household deposits in regional GDP at the end of the year |
Variable | Tobit Regression | OLS Regression |
---|---|---|
F1: Fiscal pressure | 0.6734984 *** (0.1763233) | 0.1621822 *** (0.0514033) |
F2: Educational development level | 3.458915 (2.494572) | 0.2814971 (0.1976356) |
F3: Regional economic development level | 3.280853 ** (1.295633) | 0.5443188 (0.5386912) |
F4: Regional financial development level | 0.4002577 *** (0.146111) | 0.0871645 (0.0631869) |
Intercept item | −1.805526 *** (0.6599287) | 0.2915206 (0.175619) |
R2 | 0.6115 | 0.1550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Gu, X.; Liu, Z.; Yi, J. Input–Output Efficiency of the Beijing–Tianjin Sandstorm Source Control Project and Influencing Factors. Sustainability 2022, 14, 8266. https://doi.org/10.3390/su14148266
Cui Y, Gu X, Liu Z, Yi J. Input–Output Efficiency of the Beijing–Tianjin Sandstorm Source Control Project and Influencing Factors. Sustainability. 2022; 14(14):8266. https://doi.org/10.3390/su14148266
Chicago/Turabian StyleCui, Yuxin, Xuesong Gu, Zelin Liu, and Jingxiong Yi. 2022. "Input–Output Efficiency of the Beijing–Tianjin Sandstorm Source Control Project and Influencing Factors" Sustainability 14, no. 14: 8266. https://doi.org/10.3390/su14148266
APA StyleCui, Y., Gu, X., Liu, Z., & Yi, J. (2022). Input–Output Efficiency of the Beijing–Tianjin Sandstorm Source Control Project and Influencing Factors. Sustainability, 14(14), 8266. https://doi.org/10.3390/su14148266