How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies
Abstract
:1. Introduction
2. Circular Economy and the Role of Biodigesters
3. Materials and Methods
4. Results
4.1. Questionnaire Results and SWOT Matrix
4.2. Case Study Results
5. Discussion
5.1. Facilitators of Using Biodigesters to Promote the Circular Economy
5.2. Barriers to the Use of Biodigesters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geissdoerfer, M.; Morioka, S.N.; De Carvalho, M.M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712–721. [Google Scholar] [CrossRef]
- Jesus, A.; Mendonça, S. Lost in transition? Drivers and barriers in the eco-innovation road to the circular economy. Ecol. Econ. 2018, 145, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular economy innovation and environmental sustainability impact on economic growth: An integrated model for sustainable development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Michelini, G.; Moraes, R.N.; Cunha, R.N.; Costa, J.M.; Ometto, A.R. From linear to circular economy: PSS conducting the transition. Procedia CIRP 2017, 64, 2–6. [Google Scholar] [CrossRef]
- Åkerman, M.; Humalisto, N.; Pitzen, S. Material politics in the circular economy: The complicated journey from manure surplus to resource. Geoforum 2020, 116, 73–80. [Google Scholar] [CrossRef]
- Stanchev, P.; Vasilaki, V.; Egas, D.; Colon, J.; Ponsá, S.; Katsou, E. Multilevel environmental assessment of the anaerobic treatment of dairy processing effluents in the context of circular economy. J. Clean. Prod. 2020, 261, 121139. [Google Scholar] [CrossRef]
- Fischer, A.; Pascucci, S. Institutional incentives in circular economy transition: The case of material use in the Dutch textile industry. J. Clean. Prod. 2017, 155, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.; Skene, K.; Haynes, K. The circular economy: An interdisciplinary exploration of the concept and application in a global context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Sauvé, S.; Bernard, S.; Sloan, P. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environ. Dev. 2016, 17, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Niero, M.; Olsen, S.I. Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resour. Conserv. Recycl. 2016, 114, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Bocken, N.; Balkenende, R. How do companies collaborate for circular oriented innovation? Sustainability 2020, 12, 1648. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Feiz, R.; Ammenberg, J. Assessment of feedstocks for biogas production, part I—A multi-criteria approach. Resour. Conserv. Recycl. 2017, 122, 373–387. [Google Scholar] [CrossRef]
- Okonkwo, U.C.; Onokpite, E.; Onokwai, A.O. Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester. J. King Saud Univ. Eng. Sci. 2018, 30, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Mwakaje, A.G. Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints. Renew. Sust. Energy Rev. 2008, 12, 2240–2252. [Google Scholar] [CrossRef]
- Brazil. Law No. 12.305. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 22 April 2021).
- Biogas Portal. Legal Incentives for the Construction of Biodigesters in Brazil. Available online: https://www.portaldobiogas.com/incentivos-legais-para-construcao-de-biodigestores-brasil/#:~:text=A%20Pol%C3%ADtica%20Nacional%20de%20Res%C3%ADduos,de%20res%C3%ADduos%20s%C3%B3lidos%20org%C3%A2nicos%20urbanos (accessed on 1 July 2020).
- Ferreira, J.; Oliveira, D.; Maldonado, R.R.; Kamimura, E.S.; Furigo, A. Enzymatic pretreatment and anaerobic co-digestion as a new technology to high-methane production. Appl. Microbiol. Biotechnol. 2020, 104, 4235–4246. [Google Scholar] [CrossRef]
- Van der Velden, R.; Da Fonseca-Zang, W.; Zang, J.; Clyde-Smith, D.; Leandro, W.M.; Parikh, P.; Borrion, A.; Campos, L.C. Closed-loop organic waste management systems for family farmers in Brazil. Environ. Technol. 2021, 43, 2252–2269. [Google Scholar] [CrossRef]
- Martins, L.S.; Silva, N.G.; Claro, A.M.; Amaral, N.C.; Barud, H.S.; Mulinari, D.R. Insight on açaí seed biomass economy and waste cooking oil: Eco-sorbent castor oil-based. J. Environ. Manag. 2021, 293, 112803. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Zhu, Q.; Geng, Y.; Lai, K.H. Circular economy practices among Chinese manufacturers varying in environmental-oriented supply chain cooperation and the performance implications. J. Environ. Manag. 2010, 91, 1324–1331. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martín-Marroquín, J.M.; Corona, F. A multi-waste management concept as a basis towards a circular economy model. Renew. Sust. Energ. Rev. 2019, 111, 481–489. [Google Scholar] [CrossRef]
- Neves, L.C.M.; Converti, A.; Vessoni Penna, T.C. Biogas production: New trends for alternative energy sources in rural and urban zones. Chem. Eng. Technol. 2009, 32, 1147–1153. [Google Scholar] [CrossRef]
- Donia, E.; Mineo, A.M.; Sgroi, F. A methodological approach for assessing businness investments in renewable resources from a circular economy perspective. Land Use Policy 2018, 76, 823–827. [Google Scholar] [CrossRef]
- Maciel-Silva, F.W.; Buller, L.S.; MBB Gonçalves, M.L.; Rostagno, M.A.; Forster-Carneiro, T. Sustainable development in the Legal Amazon: Energy recovery from açaí seeds. Biofuels Bioprod. Biorefining 2021, 15, 1174–1189. [Google Scholar] [CrossRef]
- Brazil. Brazil Inaugurates One of the Largest Biogas Plants in the World, in SP. Plateau. 2020. Available online: https://www.gov.br/planalto/pt-br/acompanhe-o-planalto/noticias/2020/10/brasil-inaugura-uma-das-maiores-plantas-de-biogas-do-mundo-em-sp (accessed on 27 January 2021).
- Picardo, A.; Soltero, V.M.; Peralta, M.E.; Chacartegui, R. District heating based on biogas from wastewater treatment plant. Energy 2019, 180, 649–664. [Google Scholar] [CrossRef]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Xue, Y.N.; Luan, W.X.; Wang, H.; Yang, Y.J. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: Case study of pig farming in Liaoning, China. J. Clean. Prod. 2019, 238, 117968. [Google Scholar] [CrossRef]
- Xu, X.; Ma, Z.; Chen, Y.; Gu, X.; Liu, Q.; Wang, Y.; SUN, M.; Chang, D. Circular economy pattern of livestock manure management in Longyou, China. J. Mater. Cycles Waste Manag. 2018, 20, 1050–1062. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef] [PubMed]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate management in polish farms as an element of the nutrient cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A.; Defersha, F.; Dubey, B. Municipal food waste to biomethane and biofertilizer: A circular economy concept. Waste Biomass Valorization 2018, 9, 601–611. [Google Scholar] [CrossRef]
- Grippo, V.; Romano, S.; Vastola, A. Multi-criteria evaluation of bran use to promote circularity in the cereal production chain. Nat. Resour. Res. 2019, 28, 125–137. [Google Scholar] [CrossRef]
- Lybæk, R.; Kjær, T. Enhancing identified circular economic benefits related to the deployment of the Solrød biogas plant. Eng. Appl. Sci. Res. 2017, 44, 97–105. [Google Scholar]
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is biogas an energy or a sustainability product?-Business opportunities in the Finnish biogas branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Tampio, E.A.; Blasco, L.; Vainio, M.M.; Kahala, M.M.; Rasi, S.E. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. GCB Bioenergy 2019, 11, 72–84. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 1–12. [Google Scholar] [CrossRef]
- Pérez-Camacho, M.N.; Curry, R.; Cromie, T. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks. Waste Manag. 2018, 73, 140–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchi, F.; Cavinato, C. Smart approaches to food waste final disposal. Int. J. Environ. Res. Public Health 2019, 16, 2860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, A.V.; Magaril, E.R.; Rada, E.C. Energy and sustainability assessment of municipal wastewater treatment under circular economy paradigm. WIT Trans. Ecol. Environ. 2019, 237, 109–120. [Google Scholar]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. An economic analysis of biogas-biomethane chain from animal residues in Italy. J. Clean. Prod. 2019, 230, 888–897. [Google Scholar] [CrossRef]
- Ferella, F.; Cucchiella, F.; D’Adamo, I.; Gallucci, K. A techno-economic assessment of biogas upgrading in a developed market. J. Clean. Prod. 2019, 210, 945–957. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Liquid biofuels from the organic fraction of municipal solid waste: A review. Renew. Sust. Energ. Rev. 2019, 110, 298–314. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, Y.H.; Lin, Y.S.; Hung, Z.S.; Yuan, M.H.; Chang, C.Y.; Li, Y.; Shie, J.; Chen, Y.; Wang, Y.; et al. A pilot plant study on the autoclaving of food wastes for resource recovery and reutilization. Sustainability 2018, 10, 3566. [Google Scholar] [CrossRef] [Green Version]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.; Verniquet, A.; Broze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.M.; Shao, X.; Zhao, D.; Basheer, A.K.; Jin, H.; Zhang, Y. Methane Production from alginate-extracted and non-extracted waste of Laminaria japonica: Anaerobic mono-and synergetic co-digestion effects on yield. Sustainability 2019, 11, 1269. [Google Scholar] [CrossRef] [Green Version]
- Muradin, M.; Joachimiak-Lechman, K.; Foltynowicz, Z. Evaluation of eco-efficiency of two alternative agricultural biogas plants. Appl. Sci. 2018, 8, 2083. [Google Scholar] [CrossRef] [Green Version]
- Hadin, Å.; Hillman, K.; Eriksson, O. Prospects for increased energy recovery from horse manure—A case study of management practices, environmental impact and costs. Energies 2017, 10, 1935. [Google Scholar] [CrossRef] [Green Version]
- Vondra, M.; Touš, M.; Teng, S.Y. Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees. J. Clean. Prod. 2019, 238, 117870. [Google Scholar] [CrossRef] [Green Version]
- Magrí, A.; Giovannini, F.; Connan, R.; Bridoux, G.; Béline, F. Nutrient management from biogas digester effluents: A bibliometric-based analysis of publications and patents. Int. J. Environ. Sci. Technol. 2017, 14, 1739–1756. [Google Scholar] [CrossRef]
- Dahlin, A.S.; Eriksson, J.; Campbell, C.D.; Öborn, I. Soil amendment affects Cd uptake by wheat—Are we underestimating the risks from chloride inputs? Sci. Total Environ. 2016, 554, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Costa, L.; Pradella, C.; Adami, L. Unconventional small-scale biogas production with reduced local impact. Energy Resour. Policies Sustain. 2019, 4, 198–208. [Google Scholar] [CrossRef]
- Islam, K.N.; Sarker, T.; Taghizadeh-Hesary, F.; Atri, A.C.; Alam, M.S. Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh. Renew. Sust. Energ. Rev. 2021, 139, 110695. [Google Scholar] [CrossRef]
- Rauseo, J.; Caracciolo, A.B.; Ademollo, N.; Cardoni, M.; Di Lenola, M.; Gaze, W.; Stanton, I.; Grenni, P.; Pescatore, T.; Spataro, F.; et al. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. J. Hazard. Mater. 2019, 378, 120769. [Google Scholar] [CrossRef]
- Arruda, M.H.; Amaral, L.D.P.; Pires, O.P.; Barufi, C.R. Sizing of biodigester for alternative energy generation. Sci. Electron. J. Agron. 2002, 1, 1–8. [Google Scholar]
- Abad, V.; Avila, R.; Vicent, T.; Font, X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour. Technol. 2019, 283, 10–17. [Google Scholar] [CrossRef]
- Svanström, M.; Heimersson, S.; Peters, G.; Harder, R.; I’Ons, D.; Finnson, A.; Olsson, J. Life cycle assessment of sludge management with phosphorus utilisation and improved hygienisation in Sweden. Water Sci. Technol. 2017, 75, 2013–2024. [Google Scholar] [CrossRef]
- Yazan, D.M.; Cafagna, D.; Fraccascia, L.; Mes, M.; Pontrandolfo, P.; Zijm, H. Economic sustainability of biogas production from animal manure: A regional circular economy model. Manag. Res. Rev. 2018, 41, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Madsen, D.Ø. SWOT analysis: A management fashion perspective. Int. J. Bus. Res. 2016, 16, 39–56. [Google Scholar] [CrossRef]
- Vlados, C. On a correlative and evolutionary SWOT analysis. J. Strategy Manag. 2019, 12, 347–363. [Google Scholar] [CrossRef]
- Gottfried, O.; De Clercq, D.; Blair, E.; Weng, X.; Wang, C. SWOT-AHP-TOWS analysis of private investment behavior in the Chinese biogas sector. J. Clean. Prod. 2018, 184, 632–647. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective–A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Helms, M.M.; Nixon, J. Exploring SWOT analysis–where are we now? A review of academic research from the last decade. J. Strategy Manag. 2010, 3, 215–251. [Google Scholar] [CrossRef]
- Vinuto, J. Snowball sampling in qualitative research: An open debate. Temáticas 2014, 22, 203–220. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
Facilitators | Description | References |
---|---|---|
Environmental, economic, and social sustainability | Biodigesters and CE are tools that contribute to sustainability through increased economic power, improved quality of life, and greater environmental preservation | [25,27,33,34,35] |
Increase in the economic power of the companies and small producers that adhere to the use of biodigesters | Increased economic power through the production, consumption, and sale of biogas and biofertilizer. The carbon trade and the reduction of costs with other forms of energy and fertilizers | [33,36,37,38,39,40] |
Biofertilizer use | Transformation of waste into a resource and its full utilization, as well as the environmental and economic impacts of reducing the use of chemical fertilizer | [27,35,37,41,42] |
Greenhouse gas (GHG) reduction | The proper treatment of waste inside the biodigester reduces the emission of GHG into the atmosphere. | [32,43,44,45,46] |
Government laws and subsidies | Creation of regulation and incentive laws for the use of biodigesters | [33,47] |
Waste reuse | Reuse of residues by means of the anaerobic digestion that takes place inside the biodigester | [31,43,48,49,50] |
Availability of large quantities of raw materials | Large amounts of animal and vegetable waste generation can be used to supply the biodigesters. | [31,38,50,51,52] |
Nearby production and consumption | For greater efficiency, the biodigester should be close to where the biogas and biofertilizer are to be used and close to where the waste is to be collected. | [36,53] |
Renewable energy | Biogas allows the generation of clean energy from waste. | [33,40,43,54,55] |
Closing the product loop | Closing product cycles, extending the useful life of each resource | [27,36,38,46,56] |
Barriers | Description | References |
---|---|---|
Difficulty to perform and high transportation costs | High transportation costs when the biodigester is far away from the point of waste collection or from the land where the biofertilizer is to be used | [35,36,54,58,62] |
Lack of knowledge about the energy potential of the sector | Lack of awareness of the energy potential that can be obtained with the use of biogas | [40] |
Population awareness | Lack of knowledge of the population about the advantages of biodigesters and the need for proper separation of waste | [40,58] |
Contamination of soil, air, water, etc. | If not built in an adequate place or in an adequate manner, contamination can occur from the waste inside the biodigester or during the process of storing the waste | [57,60,63] |
Pre-treatment steps | Pre-treatment is necessary before filling the digesters or before using the biofertilizer and biogas | [41,45,46,50,58] |
Cost/difficulty of storage | Due to the possibility of contamination, the waste must be stored in appropriate places | [36,62] |
Economic unfeasibility of small plants/small producers | Difficulty to generate biogas if the amount of waste for supply is small | [47,64] |
Lack of laws and government subsidies | Lack of laws and little financial support from governments for the construction of biodigesters and the use of biogas | [32,40,47] |
Energy insufficiency/low biogas yield | Low energy sufficiency can occur if there is a leak during the process or the biodigester is not filled correctly | [35] |
Cost/lack of infrastructure | Lack of structure for large-scale use of biogas | [30,51,55] |
Adequate selective collection | The waste must be separated correctly so as not to interfere with the efficiency of the biodigester | [34,37,45,62] |
High investment cost | The construction of the biodigester and a system for collecting and using the biogas requires a high investment cost | [27,30,40,51,54] |
Bad smell | If not stored correctly, a bad smell can occur around the waste storage | [58] |
α | Variable | Mean | SD | Var | Std. Error | Median | Min | Max | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|---|---|
Strength (α = 0.9100) | Use of materials considered to be waste as inputs/raw materials for new products | 4.7 | 0.9 | 0.8 | 0.2 | 5.0 | 1 | 5 | 11.68 | −3.31 |
Generation of renewable energy through the production of biogas | 4.7 | 0.9 | 0.7 | 0.2 | 5.0 | 1 | 5 | 16.30 | −3.86 | |
Increased profitability of the company, with the use and sale of biogas and biofertilizer | 4.2 | 1.1 | 1.3 | 0.2 | 4.5 | 1 | 5 | 1.85 | −1.54 | |
The company performance within sustainable development, a productive process that respects the limitations of the environment and does not pollute | 4.8 | 0.9 | 0.8 | 0.2 | 5.0 | 1 | 5 | 14.65 | −3.80 | |
Weakness (α = 0.8512) | High cost with transportation and storage of the inputs used to supply the biodigester and the final products: the biofertilizer and the biogas | 2.8 | 1.3 | 1.8 | 0.3 | 3.0 | 1 | 5 | −0.95 | 0.33 |
High infrastructure costs for construction and periodic maintenance of the biodigester and the biogas distribution network | 3.1 | 1.5 | 2.1 | 0.3 | 3.0 | 1 | 5 | −1.26 | −0.24 | |
Possibility of soil, water, and air contamination | 2.8 | 1.4 | 1.9 | 0.3 | 3.0 | 1 | 5 | −0.95 | 0.28 | |
Inadequate selective collection | 3.2 | 1.4 | 1.8 | 0.3 | 3.0 | 1 | 5 | −1.01 | −0.07 | |
Opportunity (α = 0.7816) | Serving a class of consumers increasingly aware of environmental issues | 4.3 | 1.1 | 1.3 | 0.2 | 5.0 | 1 | 5 | 2.16 | −1.64 |
Economic benefits through carbon trading and the sale of biogas and biofertilizer | 4.3 | 1.1 | 1.2 | 0.2 | 5.0 | 2 | 5 | 0.23 | −1.24 | |
Advantageous productive system due to the high diversification of inputs and abundant raw material, with low market cost | 4.3 | 0.7 | 0.5 | 0.1 | 4.0 | 3 | 5 | −0.70 | −0.58 | |
Obtaining environmental (greenhouse gas reduction) and social (better quality of life for the population) benefits | 4.7 | 0.6 | 0.4 | 0.1 | 5.0 | 3 | 5 | 2.20 | −1.79 | |
Threats (α = 0.3872) | Lack of government incentive—for example, laws of subsidy for the construction of the biodigester, laws of fiscal incentive for the use of the biodigester, greater infrastructure for the use of biogas | 4.1 | 1.0 | 1.0 | 0.2 | 4.5 | 2 | 5 | −1.18 | −0.56 |
Lack of knowledge and awareness of the general population about the benefits of using biodigesters | 4.5 | 0.9 | 0.8 | 0.2 | 5.0 | 2 | 5 | 3.48 | −1.93 | |
Emergence of more attractive renewable energy sources | 3.5 | 1.2 | 1.5 | 0.2 | 3.5 | 1 | 5 | −0.35 | −0.48 | |
Possibility of decline in the production of inputs, such as problems with transportation, decrease in cattle raising, use of waste for another purpose | 3.0 | 1.3 | 1.6 | 0.3 | 3.0 | 1 | 5 | −0.95 | −4 × 10−17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, S.C.; Cherri, A.C.; Jugend, D.; Jesus, G.M.K.; Bezerra, B.S. How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies. Sustainability 2022, 14, 7972. https://doi.org/10.3390/su14137972
Cortez SC, Cherri AC, Jugend D, Jesus GMK, Bezerra BS. How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies. Sustainability. 2022; 14(13):7972. https://doi.org/10.3390/su14137972
Chicago/Turabian StyleCortez, Suzy C., Adriana C. Cherri, Daniel Jugend, Gessica M. K. Jesus, and Barbara S. Bezerra. 2022. "How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies" Sustainability 14, no. 13: 7972. https://doi.org/10.3390/su14137972