Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Models and Datasets Used
2.2.1. Decision Tree Classifier for Rubber Plantation Mapping
2.2.2. Species Distribution Modelling (SDM) Using Maxent Model
2.3. Rubber Plantation Suitability Prediction
3. Results
3.1. Rubber Plantation Mapping
3.2. Species Distribution Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, P.S.; Vijayakumar, K.R. Climatic requirements. In Developments in Crop Science; Elsevier: Amsterdam, The Netherlands, 1992; Volume 23, pp. 200–219. [Google Scholar]
- Huang, I.Y.; James, K.; Thamthanakoon, N.; Pinitjitsamut, P.; Rattanamanee, N.; Pinitjitsamut, M.; Yamklin, S.; Lowenberg-DeBoer, J. Economic outcomes of rubber-based agroforestry systems: A systematic review and narrative synthesis. Agrofor. Syst. 2022, 1–20. [Google Scholar] [CrossRef]
- Vrignon-Brenas, S.; Gay, F.; Ricard, S.; Snoeck, D.; Perron, T.; Mareschal, L.; Laclau, J.-P.; Gohet, É.; Malagoli, P. Nutrient management of immature rubber plantations. A review. Agron. Sustain. Dev. 2019, 39, 11. [Google Scholar] [CrossRef] [Green Version]
- Brahma, B.; Nath, A.J.; Das, A.K. Managing rubber plantations for advancing climate change mitigation strategy. Curr. Sci. 2016, 110, 2015–2019. [Google Scholar] [CrossRef]
- Pinizzotto, S.; Aziz, A.; Gitz, V.; Sainte-Beuve, J.; Nair, L.; Gohet, E.; Penot, E.; Meybeck, A. Natural rubber systems and climate change. In Proceedings and Extended Abstracts from the Online Workshop, 23–25 June 2020; CGIAR: Bogor, Indonesia, 2021. [Google Scholar] [CrossRef]
- Panda, R.M.; Behera, M.D.; Roy, P.S. Assessing distributions of two invasive species of contrasting habits in future climate. J. Environ. Manag. 2018, 213, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Pollock, L.J.; Tingley, R.; Morris, W.K.; Golding, N.; O’Hara, R.B.; Parris, K.M.; Vesk, P.A.; McCarthy, M.A. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 2014, 5, 397–406. [Google Scholar] [CrossRef]
- Chitale, V.; Behera, M.D. How will forest fires impact the distribution of endemic plants in the Himalayan biodi-versity hotspot? Biodivers. Conserv. 2019, 28, 2259–2273. [Google Scholar] [CrossRef]
- Tripathi, P.; Behera, M.D.; Roy, P.S. Spatial heterogeneity of climate explains plant richness distribution at the regional scale in India. PLoS ONE 2019, 14, e0218322. [Google Scholar]
- Panda, R.M.; Behera, M.D.; Roy, P.S.; Ramachandran, R.M. On the relationships between plant species richness and the environment: A case study in Eastern Ghats, India. Environ. Monit. Assess. 2019, 191, 784. [Google Scholar] [CrossRef]
- Fagan, M.E.; DeFries, R.S.; Sesnie, S.E.; Arroyo-Mora, J.P.; Soto, C.; Singh, A.; Townsend, P.A.; Chazdon, R.L. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal Landsat imagery. Remote Sens. 2015, 7, 5660–5696. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Thill, J.-C.; Anantsuksomsri, S.; Tontisirin, N.; Tao, R. Stand-age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel-and object-based tree growth model and annual Landsat time series. ISPRS J. Photogramm. Remote Sens. 2018, 144, 94–104. [Google Scholar] [CrossRef]
- Chakraborty, K.; Sudhakar, S.; Sarma, K.K.; Raju, P.L.N.; Das, A.K. Recognizing the rapid expansion of rubber plantation—A threat to native forest in parts of northeast India. Curr. Sci. 2018, 114, 207. [Google Scholar] [CrossRef]
- Porwal, M.C.; Roy, P.S. Vegetation type discrimination on Landsat TM data in heterogeneous forested landscape of Western Ghats—Accuracy evaluation from large scale aerial photo maps. J. Indian Soc. Remote Sens. 1992, 20, 21. [Google Scholar] [CrossRef]
- Meti, S.; Rao, D.; Nair, N.U.; Jacob, J. Distribution of natural rubber cultivation in relation to soil and landscape attributes in India. In Proceedings of the 29th Asian Conference on Remote Sensing (ACRS), Colombo, Sri Lanka, 10–14 November 2008; Volume 1, pp. 7–16. [Google Scholar]
- Ranganath, B.K.; Pradeep, N.; Manjula, V.B.; Gowda, B.; Rajanna, M.D.; Shettigar, D.; RAo, P.P.N. Detection of diseased rubber plantations using satellite remote sensing. J. Indian Soc. Remote Sens. 2004, 32, 49–58. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Integrating Mahalanobis typicalities with a neural network for rubber distribution mapping. Remote Sens. Lett. 2011, 2, 157–166. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Fan, H.; Fu, X.; Zhang, Z.; Wu, Q. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 2015, 7, 6041–6058. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Beckschäfer, P. Obtaining rubber plantation age information from very dense Landsat TM & ETM+ time series data and pixel-based image compositing. Remote Sens. Environ. 2017, 196, 89–100. [Google Scholar]
- Han, P.; Chen, J.; Han, Y.; Yi, L.; Zhang, Y.; Jiang, X. Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery. Int. J. Remote Sens. 2018, 39, 2189–2206. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Feng, Z. Mapping rubber tree plantations using a Landsat-based phenological algorithm in Xishuangbanna, southwest China. Remote Sens. Lett. 2015, 6, 49–58. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Sangermano, F. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach. ISPRS J. Photogramm. Remote Sens. 2018, 136, 134–143. [Google Scholar] [CrossRef]
- Ray, D.; Behera, M.D.; Jacob, J. Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1337–1343. [Google Scholar] [CrossRef]
- Das, P.; Behera, M.D.; Barik, S.K.; Mudi, S.; Jagadish, B.; Sarkar, S.; Joshi, S.R.; Adhikari, D.; Behera, S.K.; Sarma, K.; et al. Shifting cultivation induced burn area dynamics using ensemble approach in Northeast India. Trees For. People 2022, 7, 100183. [Google Scholar] [CrossRef]
- Das, P.; Mudi, S.; Behera, M.D.; Barik, S.K.; Mishra, D.R.; Roy, P.S. Automated Mapping for Long-Term Analysis of Shifting Cultivation in Northeast India. Remote Sens. 2021, 13, 1066. [Google Scholar] [CrossRef]
- Ray, D.; Behera, M.D.; Jacob, J. Indian Brahmaputra valley offers significant potential for cultivation of rubber trees under changed climate. Curr. Sci. 2014, 107, 461–469. [Google Scholar]
- Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Adhikari, D.; Barik, S.K.; Upadhaya, K. Habitat distribution modelling for e reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol. Eng. 2012, 40, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Behera, M.D.; Jacob, J. Comparing invasiveness of native and non-native species under changing climate in North-East India: Ecological niche modelling with plant types differing in biogeographic origin. Environ. Monit. Assess. 2019, 191, 793. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Li, A.; Lei, G.; Xie, X. A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts. Ecol. Model. 2019, 410, 108783. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Wang, M.; Lang, R.; Chen, H.; Metzger, M.J.; Smajgl, A.; Beckschäfer, P.; Xu, J. Envi-ronmental stratification to model climate change impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China. Biol. Conserv. 2014, 170, 264–273. [Google Scholar] [CrossRef]
- Hazir, M.H.M.; Kadir, R.A.; Gloor, E.; Galbraith, D. Effect of agroclimatic variability on land suitability for cultivating rubber (Hevea brasiliensis) and growth performance assessment in the tropical rainforest climate of Peninsular Malaysia. Clim. Risk Manag. 2020, 27, 100203. [Google Scholar] [CrossRef]
- Yang, X.; Blagodatsky, S.; Marohn, C.; Liu, H.; Golbon, R.; Xu, J.; Cadisch, G. Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change. For. Ecol. Manag. 2019, 439, 55–69. [Google Scholar] [CrossRef]
- FSI. India State of Forest Report 2019; Forest Survey of India: Dehradun, India, 2019. [Google Scholar]
- Chitale, V.S.; Behera, M.D.; Roy, P.S. Future of endemic flora of biodiversity hotspots in India. PLoS ONE 2014, 9, e115264. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.D.; Tripathi, P.; Das, P.; Srivastava, S.K.; Roy, P.S.; Joshi, C.; Behera, P.R.; Deka, J.; Kumar, P.; Khan, M.L.; et al. Remote sensing based deforestation analysis in Mahanadi and Brahmaputra river basin in India since 1985. J. Environ. Manag. 2018, 206, 1192–1203. [Google Scholar] [CrossRef]
- Roy, P.S.; Roy, A.; Joshi, P.K.; Kale, M.P.; Srivastava, V.K.; Srivastava, S.K.; Dwevidi, R.S.; Joshi, C.; Behera, M.D.; Meiyappan, P.; et al. Development of decadal (1985–1995–2005) land use and land cover da-tabase for India. Remote Sens. 2015, 7, 2401. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Janes, T.; McGrath, F.; Macadam, I.; Jones, R. High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas. Sci. Total Environ. 2019, 650, 1499–1520. [Google Scholar] [CrossRef]
- Rana, A.; Nikulin, G.; Kjellström, E.; Strandberg, G.; Kupiainen, M.; Hansson, U.; Kolax, M. Contrasting regional and global climate simulations over South Asia. Clim. Dyn. 2020, 54, 2883–2901. [Google Scholar] [CrossRef] [Green Version]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Change 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Selvalakshmi, S.; Kalarikkal, R.K.; Yang, X. Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors. Environ. Monit. Assess. 2020, 192, 598. [Google Scholar] [CrossRef] [PubMed]
- Golbon, R.; Cotter, M.; Sauerborn, J. Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environ. Res. Lett. 2018, 13, 084002. [Google Scholar] [CrossRef]
- Rojas Briceño, N.B.; Cotrina Sánchez, D.A.; Barboza Castillo, E.; Barrena Gurbillón, M.Á.; Sarmiento, F.O.; Sotomayor, D.A.; Salas López, R. Current and future distribution of five timber forest species in Amazonas, Northeast Peru: Contributions towards a restoration strategy. Diversity 2020, 12, 305. [Google Scholar] [CrossRef]
Actual Year of Plantation | Number of Observations | Correctly Classified within 6 Years of Actual Plantation | Correctly Classified with 6–10 Years of Actual Plantation | Correctly Classified after 10 Years of Actual Plantation | Total Correctly Classified | Misclassified | Not Identified Due to Limited Data |
---|---|---|---|---|---|---|---|
1975 & 1980 | 5 | No data | 4 | 1 | 5 | ||
1990 | 15 | 6 | 2 | 6 | 14 | 1 | |
2000 | 6 | 6 | 6 | ||||
2002 | 9 | 6 | 2 | 8 | 1 | ||
2005 | 30 | 10 | 15 | 3 | 28 | 2 | |
2006 | 11 | 1 | 7 | 1 | 9 | 2 | |
2007 | 18 | 6 | 10 | 16 | 2 | ||
2008 | 10 | 6 | 4 | 10 | |||
2009 | 13 | 9 | 3 | 12 | 1 | ||
2010 | 16 | 11 | 3 | 14 | 2 | ||
2014 | 11 | 5 | 5 | 6 | |||
2015 | 11 | 2 | 2 | 9 | |||
2016 | 6 | 2 | 2 | 4 | |||
2017 | 4 | 1 | 1 | 3 | |||
Column total | 165 | 71 | 48 | 13 | 132 | 11 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.; Panda, R.M.; Dash, P.; Jana, A.; Jana, A.; Ray, D.; Tripathi, P.; Kolluru, V. Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India. Sustainability 2022, 14, 7923. https://doi.org/10.3390/su14137923
Das P, Panda RM, Dash P, Jana A, Jana A, Ray D, Tripathi P, Kolluru V. Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India. Sustainability. 2022; 14(13):7923. https://doi.org/10.3390/su14137923
Chicago/Turabian StyleDas, Pulakesh, Rajendra Mohan Panda, Padmanava Dash, Anustup Jana, Avijit Jana, Debabrata Ray, Poonam Tripathi, and Venkatesh Kolluru. 2022. "Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India" Sustainability 14, no. 13: 7923. https://doi.org/10.3390/su14137923
APA StyleDas, P., Panda, R. M., Dash, P., Jana, A., Jana, A., Ray, D., Tripathi, P., & Kolluru, V. (2022). Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India. Sustainability, 14(13), 7923. https://doi.org/10.3390/su14137923