Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Study Area
2.2. Image Details
2.3. Radiometric Image Correction
2.4. Land Use Land Cover Classification (LULC)
2.5. Normalized Difference Vegetation Index (NDVI)
2.6. Modified Soil-Adjusted Vegetation Index (MSAV-I2)
2.7. Land Surface Temperature (LST)
2.8. Surface Urban Heat Island (SUHI)
3. Results
3.1. Land Use Land Cover
3.2. Normalized Difference Vegetation Index (NDVI)
3.3. Modified Soil-Adjusted Vegetation Index (MSAVI12)
3.4. Land Surface Temperature (LST)
3.5. Surface Urban Heat Island (SUHI)
3.6. Evaluation of LST and UHI Profile over the Study Area
3.7. Correlation of LST with Respect to NDVI and MSAVI12
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Lai, J.; Zhan, W.; Bechtel, B.; Voogt, J.; Quan, J.; Hu, L.; Fu, P.; Huang, F.; Li, L.; et al. Urban heat islands significantly reduced by COVID-19 lockdown. Geo. Res. Lett. 2022, 49, e2021GL096842. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19): Weekly Epidemiological Update; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- El Kenawy, A.M.; Lopez-Moreno, J.I.; McCabe, M.F.; Domínguez-Castro, F.; Peña-Angulo, D.; Gaber, I.M.; Alqasemi, A.S.; Al Kindi, K.M.; Al-Awadhi, T.; Hereher, M.E.; et al. The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East. Environ. Pollut. 2021, 288, 117802. [Google Scholar] [CrossRef]
- Teufel, B.; Sushama, L.; Poitras, V.; Dukhan, T.; Bélair, S.; Miranda-Moreno, L.; Sun, L.; Sasmito, A.P.; Bitsuamlak, G. Impact of COVID-19-Related Traffic Slowdown on Urban Heat Characteristics. Atmosphere 2021, 12, 243. [Google Scholar] [CrossRef]
- Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.; Saibi, H. Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Sci. Total Environ. 2021, 767, 144330. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; Van Gent, J.; Eskes, H.; Levelt, P.F.; Van Der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geo. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Climate Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climate; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Geng, D.C.; Innes, J.; Wu, W.; Wang, G. Impacts of COVID-19 pandemic on urban park visitation: A global analysis. J. For. Res. 2021, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ. 2020, 728, 138890. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Alahmad, B.; Tomasso, L.P.; Al-Hemoud, A.; James, P.; Koutrakis, P. Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. Int. J. Environ. Res. Public Health 2020, 17, 2993. [Google Scholar] [CrossRef]
- Choudhury, D.; Das, K.; Das, A. Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. Egyptian J. Remote Sens. Space Sci. 2019, 22, 203–218. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Shanableh, A.; Khalil, M.A.; Zeiada, W.; Hamad, K.; Abu Dabous, S.; Gibril, M.B.A.; Al-Khayyat, G.; Kaloush, K.E.; Al-Mansoori, S.; et al. Spatial and Temporal Inversion of Land Surface Temperature along Coastal Cities in Arid Regions. Remote Sens. 2022, 14, 1893. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Yang, X.; Ruby Leung, L.; Zhao, N.; Zhao, C.; Qian, Y.; Hu, K. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Y.; Chen, B. Observed surface warming induced by urbanization in east China. J. Geophys. Res. 2011, 116, 10. [Google Scholar] [CrossRef]
- Boumans, R.J.M.; Phillips, D.L.; Victery, W.; Fontaine, T.D. Developing a model for effects of climate change on human health and health–environment interactions: Heat stress in Austin, Texas. Urban Clim. 2014, 8, 78–99. [Google Scholar] [CrossRef]
- Katsouyanni, K.; Pantazopoulou, A.; Touloumi, G.; Tselepidaki, I.; Moustris, K.; Asimakopoulos, D.; Poulopoulou, G.; Trichopoulos, D. Evidence for Interaction between Air Pollution and High Temperature in the Causation of Excess Mortality. Arch. Environ. Health Int. J. 1993, 48, 235–242. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M. Urban heat islands in China enhanced by haze pollution. Nat. Comm. 2016, 7, 12509. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sen. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Lazzarini, M.; Molini, A.; Marpu, P.R.; Ouarda, T.B.; Ghedira, H. Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophys. Res. Lett. 2015, 42, 9980–9989. [Google Scholar] [CrossRef] [Green Version]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Wai, C.Y.; Muttil, N.; Tariq, M.A.U.R.; Paresi, P.; Nnachi, R.C.; Ng, A.W.M. Investigating the Relationship between Human Activity and the Urban Heat Island Effect in Melbourne and Four Other International Cities Impacted by COVID-19. Sustainability 2022, 14, 378. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balances. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop. Res. 2007, 102, 33–42. [Google Scholar] [CrossRef]
- Cleugh, H.; Smith, M.S.; Battaglia, M.; Graham, P. Climate Change: Science and Solutions for Australia; CSIRO: Canberra, Australia, 2011. [Google Scholar]
- Zhang, Y.; Jungang, G.; Linshan, L.; Zhaofeng, W.; Minjung, D.; Xuchao, Y. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Change 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Gaffar, A.; Sawaid, A.; Faisal, M.Q.; Man, S.W. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. COVID-19 lockdown effect on land surface temperature and normalized difference vegetation index. Geomat. Nat. Hazards Risk 2021, 12, 1082–1100. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Guojun, H.; Yuhang., P.; Takano, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China, Tanaka. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Sarangi, C.; Lee, X. Reduction in human activity can enhance the urban heat island: Insights from the COVID-19 lockdown. Environ. Res. Lett. 2021, 16, 5. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Kafy, A.-A.; Tan, S. Simulating the Relationship between Land Use/Cover Change and Urban Thermal Environment Using Machine Learning Algorithms in Wuhan City, China. Land 2022, 11, 14. [Google Scholar] [CrossRef]
- Kafy, A.A.; Faisal, A.-A.; Shuvo, R.M.; Naim, N.H.; Sikdar, S.; Chowdhury, R.R.; Islam, A.; Sarker, H.S.; Khan, H.H.; Kona, M.A. Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 21, 100463. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.; Kerr, A.R.; Sorooshian, Y.H.S. A Modified Soil Adjusted Vegetation Index. Remote Sen. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, P.; Wan, H.; Tian, F.; Wang, L. Integration of Microwave and Optical/Infrared Derived Datasets from Multi-Satellite Products for Drought Monitoring. Water 2020, 12, 1504. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Akinsanola, A.A.; Ishola, K.A. Investigating Surface Urban Heat Island Characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sens. Appl. Soc. Environ. 2017, 7, 57–68. [Google Scholar] [CrossRef]
- Sneha, G.; Shamsunnahar, S.; Mohd Golam, Q.K.; Md, B.K. Analysis of the health, economic and environmental impacts of COVID-19: The Bangladesh perspective. Geosyst. Geo-Environ. 2021, 1, 100011. [Google Scholar]
- Ibrahim, S.; Landa, M.; Pešek, O.; Pavelka, K.; Halounova, L. Space-Time Machine Learning Models to Analyze COVID-19 Pandemic Lockdown Effects on Aerosol Optical Depth over Europe. Remote Sens. 2021, 13, 3027. [Google Scholar] [CrossRef]
- Islam, M.S.; Tusher, T.R.; Roy, S. Impacts of nationwide lockdown due to COVID-19 outbreak on air quality in Bangladesh: A spatiotemporal analysis. Air Qual. Atmos. Health 2021, 14, 351–363. [Google Scholar] [CrossRef]
- Kafy, A.A.; Dey, N.N.; Rakib, A.A.; Rahaman, Z.A.; Rafat-Naser, N.M.; Bhatt, A. Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environ. Challenges 2021, 4, 100190. [Google Scholar] [CrossRef]
- Ahmed, B.; Kamruzzaman, M.; Zhu, X.; Rahman, M.S.; Choi, K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sens. 2013, 5, 5969–5998. [Google Scholar] [CrossRef] [Green Version]
- Faisal, A.A.; Kafy, A.A.; Rakib, A.A. Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environ. Challenges 2021, 4, 100192. [Google Scholar] [CrossRef]
- Gogoi, P.P. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S. Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sens. Appl. Soc. Environ. 2021, 22, 100507. [Google Scholar] [CrossRef]
- Morshed, M.M.; Sarkar, S.K.; Zaman, M.R.U. Application of remote sensing for salinity based coastal land use zoning in Bangladesh. Spat. Inf. Res. 2020, 29, 353–364. [Google Scholar] [CrossRef]
- Xu, J.; Ge, X.; Zhang, X.; Zhao, W.; Zhang, R.; Zhang, Y. COVID-19 impact on the concentration and composition of submicron particulate matter in a typical city of Northwest China. Geo. Res. Lett. 2020, 47, 19. [Google Scholar] [CrossRef]
- Georgiana, G.; Bogdan, U. Land Use/Land Cover changes dynamics and their effects on Surface Urban Heat Island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al Maliki, A.; Sultan, M.A. Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Nat. Hazards 2022, 112, 1223–1246. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Dash, P.; Gottsche, F.M.; Olesen, F.S.; Fischer, H. Land Surface Temperature and Emissivity Estimation from Passive Sensor Data: Theory and Practice-Current Trends. Int. J. Remote Sen. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Binte Mostafiz, R.; Noguchi, R.; Ahamed, T. Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices. Land 2021, 10, 223. [Google Scholar] [CrossRef]
- Li, J.; Pang, G.; Wang, X.; Liu, F.; Zhang, Y. Spatiotemporal Dynamics of Land Surface Albedo and Its Influencing Factors in the Qilian Mountains, Northeastern Tibetan Plateau. Remote Sens. 2022, 14, 1922. [Google Scholar] [CrossRef]
- Abdo, H.G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria. Reg. Environ. Chang. 2018, 18, 1707–1719. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Ding, J.; Li, Z.; Li, Y.; Sun, F. Ecological Impacts of Land Use Change in the Arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, G. Influence of land use change on urban heat island derived from multi-sensor data. Int. J. Climatol. 2011, 30, 1382–1395. [Google Scholar] [CrossRef]
- Bokaie, M.; Shamsipour, A.; Khatibi, P.; Hosseini, A. Seasonal monitoring of urban heat island using multi-temporal Landsat and MODIS images in Tehran. Int. J. Urban Sci. 2019, 23, 269–285. [Google Scholar] [CrossRef]
- El-Hattab, M.; Amany, S.M.; Lamia, G.E. Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate, Egypt. J. Remote Sens. Space Sci. 2018, 21, 311–323. [Google Scholar] [CrossRef]
- Khamchiangta, D.; Dhakal, S. Time series analysis of land use and land cover changes related to urban heat island intensity: Case of Bangkok Metropolitan Area in Thailand. J. Urban Manag. 2020, 9, 383–395. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi. India. Environ. Dev. Sustain. 2020, 22, 7331–7356. [Google Scholar] [CrossRef]
- Parlow, E. Regarding Some Pitfalls in Urban Heat Island Studies Using Remote Sensing Technology. Remote Sens. 2021, 13, 3598. [Google Scholar] [CrossRef]
- Keeratikasikorn, C.; Bonafoni, S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sens. 2018, 10, 440. [Google Scholar] [CrossRef]
- Naserikia, M.; Shamsabadi, E.A.; Rafieian, M.; Filho, W.L. The urban heat island in an urban context: A case study of Mashhad, Iran. Int. J. Environ. Res. Public Health 2019, 16, 313. [Google Scholar] [CrossRef] [Green Version]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal Analysis of Changes in Anthropogenic Emissions and Urban Heat Islands during COVID-19 Restrictions in Gauteng Province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Aneesh, M.; Sarwesh, P.; Sumit, K. Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India. Energy Nexus 2022, 5, 100044. [Google Scholar] [CrossRef]
- Nasir, M.J.; Ahmad, W.; Iqbal, J.; Ahmad, B.; Abdo, H.G.; Hamdi, R.; Bateni, S.M. Effect of the Urban Land Use Dynamics on Land Surface Temperature: A Case Study of Kohat City in Pakistan for the Period 1998–2018. Environ. Earth Sci. 2022, 6, 237–248. [Google Scholar] [CrossRef]
Years | Acquisition Date | Satellite | Sensor | Path/Row | Cloud Coverage |
---|---|---|---|---|---|
2019 Summer | 2019-3-28 (Before COVID-19) | Landsat 8 | OLI-30m | 137/44 | <10% |
2020 Summer | 2020-3-30 (Beginning of lockdown) | Landsat 8 | OLI-30m | 137/44 | <10% |
2021 Summer | 2021-3-28 (After one year of COVID-19 arrival) | Landsat 8 | OLI-30m | 137/44 | <10% |
2019 Summer | 2019-5-15 (Before COVID-19) | Landsat 8 | OLI-30m | 137/44 | <10% |
2020 Summer | 2020-5-17 (After 1 month locked down) | Landsat 8 | OLI-30m | 137/44 | <10% |
2021 Summer | 2021-5-20 (After one year of COVID-19 arrival) | Landsat 8 | OLI-30m | 137/44 | <10% |
Land Use Type | Area km2 | Area (%) |
---|---|---|
Bare soil | 76.58045 | 25.02629 |
Built-up | 161.1702 | 52.67 |
Low land | 47.98463 | 15.68125 |
Vegetation | 10.8474 | 3.544902 |
Water | 9.4173 | 3.077549 |
Total: | 306 | 100 |
March (Area km2) | May (Area km2) | |||||
---|---|---|---|---|---|---|
NDVI Values | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
−0.20 to 0.05 | 64.719 | 72.522 | 78.8868 | 65.79 | 71.6652 | 78.03 |
0.00 to 0.15 | 95.166 | 84.915 | 102.2652 | 94.554 | 83.844 | 101.1024 |
0.15 to 0.30 | 96.237 | 91.8 | 74.817 | 96.084 | 92.0448 | 74.205 |
0.30 to 0.40 | 22.185 | 18.972 | 22.95 | 21.573 | 19.89 | 24.786 |
0.40 to 0.60 | 27.693 | 37.791 | 27.081 | 27.999 | 38.556 | 27.8766 |
Total: | 306 | 306 | 306 | 306 | 306 | 306 |
March (Area km2) | May (Area km2) | |||||
---|---|---|---|---|---|---|
MSAVI12 Values | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
−0.50 to 0.00 | 13.617 | 12.087 | 11.322 | 13.464 | 10.71 | 15.606 |
0.00 to 0.15 | 72.981 | 68.697 | 108.63 | 68.85 | 80.172 | 99.756 |
0.15 to 0.30 | 90.27 | 111.69 | 90.27 | 94.095 | 65.79 | 108.63 |
0.30 to 0.45 | 61.353 | 46.818 | 33.354 | 56.763 | 71.298 | 25.704 |
0.45 to 0.70 | 67.779 | 66.708 | 62.424 | 72.828 | 78.03 | 56.304 |
Total Area | 306 | 306 | 306 | 306 | 306 | 306 |
March (Area km2) | May (Area km2) | |||||
---|---|---|---|---|---|---|
LST Values | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
23.00 to 26.00 | 68.85 | 14.841 | 19.9512 | 70.839 | 18.207 | 20.3796 |
26.00 to 28.00 | 34.731 | 19.89 | 24.6024 | 22.185 | 31.671 | 22.644 |
28.00 to 30.00 | 71.604 | 78.183 | 71.145 | 65.943 | 84.456 | 60.435 |
30.00 to 35.00 | 95.013 | 111.69 | 128.826 | 81.855 | 78.03 | 122.706 |
35.00 to 42.00 | 35.802 | 81.396 | 61.4754 | 65.178 | 93.636 | 79.8354 |
Total Area | 306 | 306 | 306 | 306 | 306 | 306 |
March (Area km2) | May (Area km2) | |||||
---|---|---|---|---|---|---|
UHI Values | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
−3.00 to −1.00 | 77.724 | 54.9576 | 58.599 | 68.085 | 70.84 | 55.7532 |
−1.00 to 0.50 | 54.315 | 34.425 | 22.797 | 37.791 | 20.655 | 17.5644 |
0.50 to 2.00 | 85.374 | 92.9016 | 74.97 | 80.784 | 48.195 | 84.762 |
2.00 to 3.80 | 27.693 | 65.178 | 68.391 | 46.818 | 97.308 | 80.019 |
3.80 to 5.00 | 60.894 | 58.5378 | 81.243 | 72.522 | 69 | 67.9014 |
Total Area | 306 | 306 | 306 | 306 | 306 | 306 |
Area with Max UHI | Changes in LST before and after Locked Down | |||||
---|---|---|---|---|---|---|
28/3/19 | 30/3/20 | 28/3/21 | 15/5/19 | 17/5/20 | 20/5/21 | |
Turag | 34.5 | 36.8 | 36.7 | 34.65 | 36.25 | 37.7 |
Khilkhet | 35.55 | 35.8 | 36.1 | 35.6 | 35.15 | 36 |
Badda | 39.2 | 40.44 | 40.15 | 39.15 | 39.54 | 41.4 |
Kamrangir Char | 39.33 | 40.5 | 40.65 | 40.05 | 39.4 | 41 |
Tejgaon industrial area | 39.765 | 40.97 | 40.9 | 40.1 | 39.00 | 41.7 |
Shyamnagar | 39.265 | 40.47 | 40.4 | 39.6 | 39.4 | 41.2 |
Airport area | 37.935 | 39.16 | 39.15 | 38.19 | 38.296 | 39.66 |
Mirpur | 38.98 | 40.2 | 40.15 | 39.3 | 39.24 | 40.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sresto, M.A.; Morshed, M.M.; Siddika, S.; Almohamad, H.; Al-Mutiry, M.; Abdo, H.G. Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh. Sustainability 2022, 14, 7922. https://doi.org/10.3390/su14137922
Sresto MA, Morshed MM, Siddika S, Almohamad H, Al-Mutiry M, Abdo HG. Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh. Sustainability. 2022; 14(13):7922. https://doi.org/10.3390/su14137922
Chicago/Turabian StyleSresto, Mizbah Ahmed, Md. Manjur Morshed, Sharmin Siddika, Hussein Almohamad, Motrih Al-Mutiry, and Hazem Ghassan Abdo. 2022. "Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh" Sustainability 14, no. 13: 7922. https://doi.org/10.3390/su14137922