Understanding Students’ Acceptance and Usage Behaviors of Online Learning in Mandatory Contexts: A Three-Wave Longitudinal Study during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Technology Acceptance Model (TAM)
2.2. Actual Usage
2.3. Task-Technology Fit (TTF)
2.4. The Longitudinal Component
3. Methods
3.1. Participants and Procedures
3.2. Questionnaire Development
3.3. Data Analysis
4. Results
4.1. Convergent and Discriminate Validity
4.2. The Results of ANOVAs and Paired t-Test
4.3. Model Testing
5. Discussion
5.1. Primary Findings
5.2. Implications
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kizilcec, R.F.; Saltarelli, A.J.; Reich, J.; Cohen, G.L. Closing global achievement gaps in MOOCs. Science 2017, 355, 251–252. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.C.; Ramayah, T.; Mohamad, A.A. Does intention really lead to actual use of technology? A study of an E-learning system among university students in Malaysia. Croat. J. Educ. Hrvat. Časopis Za Odgoj. I Obraz. 2015, 17, 835–863. [Google Scholar]
- Jung, Y.; Lee, J. Learning Engagement and Persistence in Massive Open Online Courses (MOOCS). Comput. Educ. 2018, 122, 9–22. [Google Scholar] [CrossRef]
- Adedoyin, O.B.; Soykan, E. COVID-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ. 2020, 1–13. [Google Scholar] [CrossRef]
- Singh, V.; Thurman, A. How Many Ways Can We Define Online Learning? A Systematic Literature Review of Definitions of Online Learning (1988-2018). Am. J. Distance Educ. 2019, 33, 289–306. [Google Scholar] [CrossRef]
- Cheng, M.; Yuen, A.H.K. Student continuance of learning management system use: A longitudinal exploration. Comput. Educ. 2018, 120, 241–253. [Google Scholar] [CrossRef]
- Tao, D.; Fu, P.; Wang, Y.; Zhang, T.; Qu, X. Key characteristics in designing massive open online courses (MOOCs) for user acceptance: An application of the extended technology acceptance model. Interact. Learn. Environ. 2019, 30, 882–895. [Google Scholar] [CrossRef]
- Vladova, G.; Ullrich, A.; Bender, B.; Gronau, N. Students’ acceptance of technology-mediated teaching–how it was influenced during the COVID-19 Pandemic in 2020: A Study from Germany. Front. Psychol. 2021, 12, 69. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Phang, C.W. Role of Instructors’ Forum Interactions with Students in Promoting MOOC Continuance. J. Glob. Inf. Manag. 2018, 26, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Bartolome, A.; Steffens, K. Are MOOCs Promising Learning Environments? Comunicar. Media Educ. Res. J. 2015, 22, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cao, T.; Shu, J.; Liu, H. Identifying key factors affecting college students’ adoption of the e-learning system in mandatory blended learning environments. Interact. Learn. Environ. 2020, 1–14. [Google Scholar] [CrossRef]
- Sun, Y.; Jeyaraj, A. Information technology adoption and continuance: A longitudinal study of individuals′ behavioral intentions. Inf. Manag. 2013, 50, 457–465. [Google Scholar] [CrossRef]
- Back, D.A.; Haberstroh, N.; Sostmann, K.; Schmidmaier, G.; Putzier, M.; Perka, C.; Hoff, E. High efficacy and students’ satisfaction after voluntary vs mandatory use of an e-learning program in traumatology and orthopedics—A follow-up study. J. Surg. Educ. 2014, 71, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Costa, A.; Costa, A.; Olsson, I.A.S. Students′ acceptance of e-learning approaches in Laboratory Animal Science Training. Lab. Anim. 2020, 54, 487–497. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X. Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Comput. Hum. Behav. 2017, 67, 221–232. [Google Scholar] [CrossRef]
- Dishaw, M.T.; Strong, D.M. Extending the technology acceptance model with task-technology fit constructs. Inf. Manag. 1999, 36, 9–21. [Google Scholar] [CrossRef]
- Goodhue, D.L.; Thompson, R.L. Task-Technology Fit and Individual Performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Chang, H.H. Task-technology fit and user acceptance of online auction. Int. J. Human-Comput. Stud. 2010, 68, 69–89. [Google Scholar] [CrossRef]
- Vanduhe, V.Z.; Nat, M.; Hasan, H.F. Continuance intentions to use gamification for training in higher education: Integrating the technology acceptance model (TAM), Social motivation, and task technology fit (TTF). IEEE Access 2020, 8, 21473–21484. [Google Scholar] [CrossRef]
- Tao, D.; Wang, T.; Wang, T.; Zhang, T.; Zhang, X.; Qu, X. A systematic review and meta-analysis of user acceptance of consumer-oriented health information technologies. Comput. Hum. Behav. 2020, 104, 106147. [Google Scholar] [CrossRef]
- Granić, A.; Marangunić, N. Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Yuan, J.; Shao, F.; Li, D.; Zhou, Q.; Qu, X. Factors Affecting Consumer Acceptance of an Online Health Information Portal Among Young Internet Users. CIN Comput. Inform. Nurs. 2018, 36, 530–539. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Shao, F.; Wang, H.; Yan, M.; Qu, X. Integrating usability and social cognitive theories with the technology acceptance model to understand young users’ acceptance of a health information portal. Health Inform. J. 2020, 26, 1347–1362. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104156. [Google Scholar] [CrossRef]
- Liu, K.; Tao, D. The roles of trust, personalization, loss of privacy, and anthropomorphism in public acceptance of smart healthcare services. Comput. Hum. Behav. 2021, 127, 107026. [Google Scholar] [CrossRef]
- Chen, X.; Tao, D.; Zhou, Z. Factors affecting reposting behaviour using a mobile phone-based user-generated-content online community application among Chinese young adults. Behav. Inf. Technol. 2018, 38, 120–131. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring Students’ Acceptance of E-Learning Through the Development of a Comprehensive Technology Acceptance Model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Decman, M. Modeling the acceptance of e-learning in mandatory environments of higher education: The influence of previous education and gender. Comput. Hum. Behav. 2015, 49, 272–281. [Google Scholar] [CrossRef]
- Melone, N.P. A Theoretical Assessment of the User-Satisfaction Construct in Information Systems Research. Manag. Sci. 1990, 36, 76–91. [Google Scholar] [CrossRef]
- Akman, I.; Turhan, C. User acceptance of social learning systems in higher education: An application of the extended Technology Acceptance Model. Innov. Educ. Teach. Int. 2015, 54, 229–237. [Google Scholar] [CrossRef]
- Kaewsaiha, P.; Chanchalor, S. Factors affecting the usage of learning management systems in higher education. Educ. Inf. Technol. 2020, 26, 2919–2939. [Google Scholar] [CrossRef]
- Cheng, M.; Yuen, A.H.K. Junior secondary students’ acceptance and continuance of e-learning system use: A multi-group analysis across social backgrounds. Behav. Inf. Technol. 2022, 41, 324–347. [Google Scholar] [CrossRef]
- Raes, A.; Depaepe, F. A longitudinal study to understand students’ acceptance of technological reform. When experiences exceed expectations. Educ. Inf. Technol. 2020, 25, 533–552. [Google Scholar]
- Tam, C.; Oliveira, T. Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Comput. Hum. Behav. 2016, 61, 233–244. [Google Scholar]
- D’Ambra, J.; Wilson, C.S.; Akter, S. Application of the task-technology fit model to structure and evaluate the adoption of E-books by Academics. J. Am. Soc. Inf. Sci. Technol. 2012, 64, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Cheng, H.K.; Cheng, H.-H. An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decis. Support Syst. 2007, 43, 95–110. [Google Scholar] [CrossRef]
- Yen, D.C.; Wu, C.-S.; Cheng, F.-F.; Huang, Y.-W. Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Comput. Hum. Behav. 2010, 26, 906–915. [Google Scholar] [CrossRef]
- Pal, D.; Patra, S. University Students’ Perception of Video-Based Learning in Times of COVID-19: A TAM/TTF Perspective. Int. J. Human-Comput. Interact. 2020, 37, 903–921. [Google Scholar] [CrossRef]
- Mokhtar, S.A.; Katan, H.; Hidayat-ur-Rehman, I. Instructors’ behavioural intention to use learning management system: An integrated TAM perspective. TEM J. 2018, 7, 513. [Google Scholar]
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Giger, J.T.; Pope, N.D.; Vogt, H.B.; Gutierrez, C.; Newland, L.A.; Lemke, J.; Lawler, M.J. Remote patient monitoring acceptance trends among older adults residing in a frontier state. Comput. Hum. Behav. 2015, 44, 174–182. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.; Sutcliffe, A. Is it all about the Apps or the Device?: User experience and technology acceptance among iPad users. Int. J. Human-Comput. Stud. 2019, 130, 93–112. [Google Scholar] [CrossRef]
- Hogarth, R.; Einhorn, H.J. Order effects in belief updating: The belief-adjustment model. Cogn. Psychol. 1992, 24, 1–55. [Google Scholar] [CrossRef]
- Conner, M.; Armitage, C. Extending the Theory of Planned Behavior: A Review and Avenues for Further Research. J. Appl. Soc. Psychol. 1998, 28, 1429–1464. [Google Scholar] [CrossRef]
- Kesharwani, A. Do (how) digital natives adopt a new technology differently than digital immigrants? A longitudinal study. Inf. Manag. 2019, 57, 103170. [Google Scholar] [CrossRef]
- Willis, G. Cognitive Interviewing: A Tool for Improving Questionnaire Design; Sage Publications: Thousand Oaks, CA, USA, 2005. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- DeVellis, R. Scale Development: Theory and Applications, 2nd ed.; Applied Social Research Methods Series; Sage Publications: Thousand Oaks, CA, USA, 2003; Volume 26. [Google Scholar]
- Cangur, S.; Ercan, I. Comparison of model fit indices used in structural equation modeling under multivariate normality. J. Mod. Appl. Stat. Methods 2015, 14, 152–167. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Lockee, B.B. Online education in the post-COVID era. Nat. Electron. 2021, 4, 5–6. [Google Scholar] [CrossRef]
- Lin, C.-L.; Jin, Y.Q.; Zhao, Q.; Yu, S.-W.; Su, Y.-S. Factors influence students’ switching behavior to online learning under COVID-19 pandemic: A push–pull–mooring model perspective. Asia-Pac. Educ. Res. 2021, 30, 229–245. [Google Scholar] [CrossRef]
- Mohammadi, H. Factors affecting the e-learning outcomes: An integration of TAM and IS success model (Retration of vol 32, pg 701, 2015). Telemat. Inform. 2015, 32, R1. [Google Scholar] [CrossRef]
- Drennan, J.; Kennedy, J.; Pisarski, A. Factors Affecting Student Attitudes Toward Flexible Online Learning in Management Education. J. Educ. Res. 2005, 98, 331–338. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A model of the antecedents of perceived ease of use: Development and test. Decis. Sci. 1996, 27, 451–481. [Google Scholar] [CrossRef]
- Metallo, C.; Agrifoglio, R. The effects of generational differences on use continuance of Twitter: An investigation of digital natives and digital immigrants. Behav. Inf. Technol. 2015, 34, 869–881. [Google Scholar] [CrossRef]
- Lee, M.-C. Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Comput. Educ. 2010, 54, 506–516. [Google Scholar] [CrossRef]
Characteristics | Categories | n (%) |
---|---|---|
Gender | Male | 175 (69.7%) |
Female | 76 (30.3%) | |
Type of student identity | Junior college students | 14 (5.6%) |
Undergraduate students | 224 (89.2%) | |
Postgraduate students | 13 (5.2%) | |
Students’ major | Arts and humanities | 3 (1.2%) |
Science | 20 (8%) | |
Engineering | 183 (72.9%) | |
Business | 16 (6.4%) | |
Other major | 29 (11.6%) | |
Frequency of using online learning before the semester | None | 29 (11.6%) |
Several times or less per year | 84 (33.5%) | |
Several times or less per month | 75 (29.9%) | |
Several times or less per week | 43 (17.1%) | |
Several times or less per day | 20 (8.0%) |
Constructs | Items | Factor Loading | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
TTF | The online learning system is fit for the requirements of my learning. | 0.87 | 0.90 | 0.91 |
Using online learning system fits with my e-learning practice. | 0.90 | 0.90 | 0.86 | |
The functions in online learning system fit with my learning needs. | 0.88 | 0.88 | 0.95 | |
The online learning system is suitable for helping me with my learning. | 0.86 | 0.92 | 0.91 | |
PEOU | Learning to use online learning system is easy for me. | 0.75 | 0.71 | 0.81 |
I find it easy to use online learning system to do what I want it to do. | 0.69 | 0.74 | 0.88 | |
It will be easy for me to become skillful at using online learning system. | 0.87 | 0.89 | 0.87 | |
I will find online learning system easy to use. | 0.88 | 0.87 | 0.88 | |
PU | Using online learning system is useful in meeting my learning needs. | 0.83 | 0.89 | 0.88 |
Using online learning system enables me to accomplish learning goals more quickly. | 0.77 | 0.70 | 0.80 | |
Using online learning system improves the quality of my learning. | 0.86 | 0.87 | 0.93 | |
I find online learning system useful in my learning. | 0.76 | 0.81 | 0.84 | |
BI | I plan to use online learning system in the future. | 0.78 | 0.86 | 0.93 |
I am willing to use online learning system more in my future learning. | 0.91 | 0.92 | 0.93 | |
I want to continuously use online learning system in my future learning. | 0.90 | 0.91 | 0.95 | |
USE | In the past two months, the frequency of effective use of online learning system | - | - | - |
Time Stages | Constructs | Number of Items | Cronbach’s Alpha | Composite Reliability | AVE |
---|---|---|---|---|---|
T1 | TTF | 4 | 0.93 | 0.93 | 0.77 |
PEOU | 4 | 0.87 | 0.87 | 0.63 | |
PU | 4 | 0.88 | 0.88 | 0.65 | |
BI | 3 | 0.90 | 0.90 | 0.75 | |
T2 | TTF | 4 | 0.94 | 0.94 | 0.81 |
PEOU | 4 | 0.87 | 0.88 | 0.65 | |
PU | 4 | 0.88 | 0.89 | 0.67 | |
BI | 3 | 0.92 | 0.93 | 0.81 | |
T3 | TTF | 4 | 0.95 | 0.95 | 0.82 |
PEOU | 4 | 0.92 | 0.92 | 0.74 | |
PU | 4 | 0.92 | 0.92 | 0.75 | |
BI | 3 | 0.95 | 0.96 | 0.88 |
Factors | T1 | T2 | T3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TTF | PEOU | PU | BI | TTF | PEOU | PU | BI | USE | TTF | PEOU | PU | BI | USE | ||
T1 | TTF | 0.88 | |||||||||||||
PEOU | 0.62 *** | 0.80 | |||||||||||||
PU | 0.79 *** | 0.63 *** | 0.81 | ||||||||||||
BI | 0.70 *** | 0.53 *** | 0.69 *** | 0.87 | |||||||||||
T2 | TTF | 0.04 | 0.01 | 0.06 | 0.06 | 0.90 | |||||||||
PEOU | −0.06 | −0.02 | 0.00 | −0.01 | 0.62 *** | 0.81 | |||||||||
PU | −0.03 | −0.04 | 0.00 | −0.01 | 0.82 *** | 0.63 *** | 0.82 | ||||||||
BI | 0.00 | −0.04 | 0.04 | 0.01 | 0.72 *** | 0.58 *** | 0.74 *** | 0.90 | |||||||
USE | 0.130 * | 0.155 * | 0.09 | 0.12 | −0.07 | −0.06 | −0.02 | −0.03 | - | ||||||
T3 | TTF | 0.00 | −0.05 | −0.03 | −0.10 | −0.04 | 0.00 | 0.01 | 0.03 | 0.03 | 0.91 | ||||
PEOU | −0.03 | −0.12 | −0.05 | −0.08 | −0.03 | 0.05 | −0.01 | 0.05 | 0.04 | 0.75 *** | 0.86 | ||||
PU | −0.01 | −0.05 | −0.01 | −0.11 | 0.04 | 0.08 | 0.08 | 0.11 | 0.02 | 0.86 *** | 0.74 *** | 0.86 | |||
BI | −0.05 | −0.08 | −0.03 | −0.12 | −0.02 | 0.03 | 0.03 | 0.06 | −0.04 | 0.81 *** | 0.73 *** | 0.83 *** | 0.94 | ||
USE | 0.09 | 0.06 | 0.05 | 0.02 | 0.05 | −0.07 | −0.01 | −0.06 | 0.06 | 0.02 | 0.00 | 0.02 | 0.02 | - |
Factors | Stages | Mean | SD | F/t | p-Value |
---|---|---|---|---|---|
TTF | T1 | 2.36 | 0.75 | 3.929 | 0.020 |
T2 | 2.38 | 0.74 | |||
T3 | 2.25 | 0.78 | |||
PEOU | T1 | 2.13 | 0.63 | 4.81 | 0.009 |
T2 | 2.10 | 0.60 | |||
T3 | 2.01 | 0.64 | |||
PU | T1 | 2.43 | 0.69 | 10.196 | <0.001 |
T2 | 2.45 | 0.73 | |||
T3 | 2.26 | 0.79 | |||
BI | T1 | 2.45 | 0.79 | 6.183 | 0.002 |
T2 | 2.51 | 0.79 | |||
T3 | 2.33 | 0.88 | |||
USE | T1 | 4.52 | 0.68 | 3.375 | 0.001 |
T2 | 4.35 | 0.83 |
Fit Indices | Recommended Values | Tested Model |
---|---|---|
χ2/df | <3 | 1.642 |
RMR | <0.05 | 0.036 |
IFI | >0.9 | 0.941 |
TLI | >0.9 | 0.936 |
CFI | >0.9 | 0.941 |
RMSEA | <0.08 | 0.051 |
Hypotheses | Path Coefficients | p-Values | Hypothesis Supported? |
---|---|---|---|
H1a: PU (T1)→BI (T1) | 0.79 | <0.001 *** | Yes |
H1b: PU (T2)→BI (T2) | 0.77 | <0.001 *** | Yes |
H1c: PU (T3)→B I(T3) | 0.73 | <0.001 *** | Yes |
H2a. PEOU (T1)→BI (T1) | 0.01 | 0.922 | No |
H2b: PEOU (T2)→BI (T2) | 0.09 | 0.127 | No |
H2c: PEOU (T3)→BI (T3) | 0.20 | 0.002 ** | Yes |
H3a: PEOU (T1)→PU (T1) | 0.18 | 0.002 ** | Yes |
H3b: PEOU (T2)→PU (T2) | 0.11 | 0.017 * | Yes |
H3c: PEOU (T3)→PU (T3) | 0.10 | 0.112 | No |
H4a: BI (T1)→USE (T2) | 0.13 | 0.045 * | Yes |
H4b: BI (T2)→USE (T3) | −0.05 | 0.447 | No |
H5a: USE (T2)→BI (T2) | 0.02 | 0.592 | No |
H5b: USE (T3)→BI (T3) | 0.00 | 0.968 | No |
H6a: TTF (T1)→PEOU (T1) | 0.62 | <0.001 *** | Yes |
H6b: TTF (T2)→PEOU (T2) | 0.62 | <0.001 *** | Yes |
H6c: TTF (T3)→PEOU (T3) | 0.80 | <0.001 *** | Yes |
H7a: TTF (T1)→PU (T1) | 0.77 | <0.001 *** | Yes |
H7b: TTF (T2)→PU (T2) | 0.84 | <0.001 *** | Yes |
H7c: TTF (T3)→PU (T3) | 0.85 | <0.001 *** | Yes |
H8a: PEOU (T1)→PEOU (T2) | −0.03 | 0.567 | No |
H8b: PEOU (T2)→PEOU (T3) | 0.04 | 0.338 | No |
H9a: PU (T1)→PU (T2) | −0.07 | 0.052 | No |
H9b: PU (T2)→PU (T3) | 0.09 | 0.007 ** | Yes |
H10a: BI (T1)→BI (T2) | 0.03 | 0.48 | No |
H10b: BI (T2)→BI (T3) | −0.04 | 0.318 | No |
H11a: TTF (T1)→TTF (T2) | 0.04 | 0.511 | No |
H11a: TTF (T2)→TTF (T3) | −0.03 | 0.618 | No |
H12: USE (T2)→USE (T3) | 0.06 | 0.314 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, D.; Li, W.; Qin, M.; Cheng, M. Understanding Students’ Acceptance and Usage Behaviors of Online Learning in Mandatory Contexts: A Three-Wave Longitudinal Study during the COVID-19 Pandemic. Sustainability 2022, 14, 7830. https://doi.org/10.3390/su14137830
Tao D, Li W, Qin M, Cheng M. Understanding Students’ Acceptance and Usage Behaviors of Online Learning in Mandatory Contexts: A Three-Wave Longitudinal Study during the COVID-19 Pandemic. Sustainability. 2022; 14(13):7830. https://doi.org/10.3390/su14137830
Chicago/Turabian StyleTao, Da, Wenkai Li, Mingfu Qin, and Miaoting Cheng. 2022. "Understanding Students’ Acceptance and Usage Behaviors of Online Learning in Mandatory Contexts: A Three-Wave Longitudinal Study during the COVID-19 Pandemic" Sustainability 14, no. 13: 7830. https://doi.org/10.3390/su14137830
APA StyleTao, D., Li, W., Qin, M., & Cheng, M. (2022). Understanding Students’ Acceptance and Usage Behaviors of Online Learning in Mandatory Contexts: A Three-Wave Longitudinal Study during the COVID-19 Pandemic. Sustainability, 14(13), 7830. https://doi.org/10.3390/su14137830