External Monitoring, ESG, and Information Content of Discretionary Accruals
Abstract
:1. Introduction
2. Related Literature and Hypothesis Development
3. Data Description
3.1. Data and Sample Selection Procedures
- Stocks that have market price below USD 5 or total assets that are less than USD 1 million.
- Data that have negative or infinite net sales/net income or book-to-market ratio.
- Observations where the value for either total accruals, current accruals, or debt scaled by average total assets are greater than 100%.
- Observations that do not have data to compute total accruals or the variables needed to estimate discretionary accruals.
3.2. Defining Variables
3.3. Control Variables for the Information Environment of a Stock
4. Multivariate Empirical Analysis
4.1. Analysts’ Forecast Dispersion and Discretionary Accruals
4.2. Effect of Institutional Investors
4.3. Effect of ESG
4.4. Robustness Check: Analyst Forecast Error
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, S.A.; Sloan, R.G.; Soliman, M.T.; Tuna, I. Accrual reliability, earnings persistence and stock prices. J. Account. Econ. 2005, 39, 437–485. [Google Scholar] [CrossRef]
- Subramanyam, K.R. The pricing of discretionary accruals. J. Account. Econ. 1996, 22, 249–281. [Google Scholar] [CrossRef]
- Bowen, R.M.; Rajgopal, S.; Venkatachalam, M. Accounting discretion, corporate governance, and firm performance. Contemp. Account. Res. 2008, 25, 351–405. [Google Scholar] [CrossRef] [Green Version]
- Tucker, J.W.; Zarowin, P.A. Does income smoothing improve earnings informativeness? Account. Rev. 2006, 81, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Bergstresser, D.; Philippon, T. CEO incentives and earnings management. J. Financ. Econ. 2006, 80, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Burns, N.; Kedia, S. The impact of performance-based compensation on misreporting. J. Financ. Econ. 2006, 79, 35–67. [Google Scholar] [CrossRef]
- Friedlan, J.M. Accounting choices of issuers of initial public offerings. Contemp. Account. Res. 1994, 11, 1–31. [Google Scholar] [CrossRef]
- Jaggi, B.; Lee, P. Earnings management response to debt covenant violations and debt restructuring. J. Account. Audit. Financ. 2002, 17, 295–324. [Google Scholar] [CrossRef]
- Jo, H.; Kim, Y. Disclosure frequency and earnings management. J. Financ. Econ. 2007, 84, 561–590. [Google Scholar] [CrossRef] [Green Version]
- Barron, O.E.; Kile, C.O.; O’Keefe, T.B. MD&A quality as measured by the SEC and analysts’ earnings forecasts. Contemp. Account. Res. 1999, 16, 75–109. [Google Scholar]
- Bradshaw, M.T.; Richardson, S.A.; Sloan, R.G. Do analysts and auditors use information in accruals? J. Account. Res. 2001, 39, 45–74. [Google Scholar] [CrossRef]
- Guerrera, F. Earnings wizardry. In The Wall Street Journal; Dow Jones & Company, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Ho, T.S.; Michaely, R. Information quality and market efficiency. J. Financ. Quant. Anal. 1988, 23, 53–70. [Google Scholar] [CrossRef]
- Sloan, R.G. Do stock prices fully reflect information in accruals and cash flows about future earnings? Account. Rev. 1996, 71, 289–315. [Google Scholar]
- Thomas, S. Firm diversification and asymmetric information: Evidence from analysts’ forecasts and earnings announcements. J. Financ. Econ. 2002, 64, 373–396. [Google Scholar] [CrossRef]
- Xie, H. The mispricing of abnormal accruals. Account. Rev. 2001, 76, 357–373. [Google Scholar] [CrossRef]
- Dechow, P.M. Accounting earnings and cash flows as measures of firm performance: The role of accounting accruals. J. Account. Econ. 1994, 18, 3–42. [Google Scholar] [CrossRef]
- Moscariello, N.; Fera, P.; Cinque, E. The information content of discretionary accruals during systematic crises. J. Appl. Account. Res. 2020, 21, 455–476. [Google Scholar] [CrossRef]
- Windisch, D. Enforcement, managerial discretion, and the informativeness of accruals. Eur. Account. Rev. 2021, 30, 705–732. [Google Scholar] [CrossRef]
- Behn, B.K.; Choi, J.H.; Kang, T. Audit quality and properties of analyst earnings forecasts. Account. Rev. 2008, 83, 327–349. [Google Scholar] [CrossRef]
- Brown, L.D.; Richardson, G.D.; Schwager, S.J. An information interpretation of financial analyst superiority in forecasting earnings. J. Account. Res. 1987, 25, 48–67. [Google Scholar] [CrossRef]
- Lang, M.H.; Lundholm, R.J. Corporate disclosure policy and analyst behavior. Account. Rev. 1996, 71, 467–492. [Google Scholar]
- Abarbanell, J.S.; Lanen, W.N.; Verrecchia, R.E. Analysts’ forecasts as proxies for investor beliefs in empirical research. J. Account. Econ. 1995, 20, 31–60. [Google Scholar] [CrossRef]
- Barron, O.E.; Stuerke, P.S. Dispersion in analysts’ earnings forecasts as a measure of uncertainty. J. Account. Audit. Financ. 1998, 13, 245–270. [Google Scholar] [CrossRef]
- Callen, J.L.; Fang, X.; Zhang, W. Protection of proprietary information and financial reporting opacity: Evidence from a natural experiment. J. Corp. Financ. 2020, 64, 101641. [Google Scholar] [CrossRef]
- Gilson, S.C. Bankruptcy, boards, banks, and blockholders: Evidence on changes in corporate ownership and control when firms default. J. Financ. Econ. 1990, 27, 355–387. [Google Scholar] [CrossRef]
- Jensen, J.C. The modern industrial revolution, exit, and the failure of internal control systems. J. Financ. 1993, 48, 831–880. [Google Scholar] [CrossRef]
- McConnell, J.J.; Servaes, H. Additional evidence on equity ownership and corporate value. J. Financ. Econ. 1990, 27, 595–612. [Google Scholar] [CrossRef]
- Balsam, S.; Krishnan, J.; Yang, J.S. Auditor industry specialization and earnings quality. Audit. A J. Pract. Theory 2003, 22, 71–97. [Google Scholar] [CrossRef]
- Mitra, S.; Cready, W.M. Institutional stock ownership, accrual management, and information environment. J. Account. Audit. Financ. 2005, 20, 257–286. [Google Scholar] [CrossRef]
- Liu, C.Y.; Low, A.; Masulis, R.; Zhang, L. Monitoring the monitor: Distracted institutional investors and board governance. ECGI Work. Pap. Ser. Financ. 2017, 531. [Google Scholar] [CrossRef]
- McCahery, J.A.; Sautner, Z.; Starks, L.T. Behind the scenes: The corporate governance preferences of institutional investors. J. Financ. 2016, 71, 2905–2932. [Google Scholar] [CrossRef]
- Burns, N.; Kedia, S.; Lipson, M. Institutional ownership and monitoring: Evidence from financial misreporting. J. Corp. Financ. 2010, 16, 443–455. [Google Scholar] [CrossRef]
- Ayers, B.C.; Ramalingegowda, S.; Yeung, P.E. Hometown advantage: The effects of monitoring institution location on financial reporting discretion. J. Account. Econ. 2011, 52, 41–61. [Google Scholar] [CrossRef]
- Bushee, B.J. The influence of institutional investors on myopic R&D investment behavior. Account. Rev. 1998, 73, 305–333. [Google Scholar]
- Rajgopal, S.; Venkatachalam, M. The Role of Institutional Investors in Corporate Governance: An Empirical Investigation; Working Paper; Stanford University: Stanford, CA, USA, 1997. [Google Scholar]
- Dechow, P.M.; Ge, W.; Schrand, C. Understanding earnings quality: A review of the proxies, their determinants and their consequences. J. Account. Econ. 2010, 50, 344–401. [Google Scholar] [CrossRef] [Green Version]
- Larcker, D.F.; Richardson, S.A.; Tuna, I. Corporate governance, accounting outcomes, and organizational performance. Account. Rev. 2007, 82, 963–1008. [Google Scholar] [CrossRef]
- Chatterji, A.; Levine, D.; Toffel, M. How well do social ratings actually measure corporate social responsibility? J. Econ. Manag. Strategy 2009, 18, 125–169. [Google Scholar] [CrossRef]
- Kim, Y.; Park, M.; Wier, B. Is earnings quality associated with corporate social responsibility? Account. Rev. 2012, 87, 761–796. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, C.; Pfeiffer, R.J., Jr. Corporate social responsibility performance and information asymmetry. J. Account. Public Policy 2013, 32, 71–83. [Google Scholar] [CrossRef]
- Goncales, T.; Gaio, C.; Ferro, A. Corporate social responsibility and earnings management: Moderating impact of economic cycles and financial performance. Sustainability 2021, 13, 9969. [Google Scholar] [CrossRef]
- La Porta, R.; Lopez-de-Silanes, F.; Shleifer, A.; Vishny, R.W. Legal Determinants of External Finance. J. Financ. 1997, 52, 1131–1150. [Google Scholar] [CrossRef]
- Jones, J. Earnings management during import relief investigations. J. Account. Res. 1991, 29, 193–228. [Google Scholar] [CrossRef]
- Dechow, P.M.; Sloan, R.G.; Sweeney, A.P. Detecting earnings management. Account. Rev. 1995, 70, 193–226. [Google Scholar]
- Kothari, S.P.; Leon, A.J.; Wasley, C.E. Performance matched discretionary accrual measures. J. Account. Econ. 2005, 39, 163–197. [Google Scholar] [CrossRef]
- Dye, R.A. Earnings Management in an Overlapping Generations Model. J. Account. Res. 1988, 26, 195–235. [Google Scholar] [CrossRef]
- Trueman, B.; Titman, S. An Explanation for Accounting Income Smoothing. J. Account. Res. 1988, 26, 127–139. [Google Scholar] [CrossRef]
- Appel, I.R.; Gormley, T.A.; Keim, D.B. Passive investors, not passive owners. J. Financ. Econ. 2016, 121, 111–141. [Google Scholar] [CrossRef] [Green Version]
Panel A: Main Sample Period of 1991–2020 | ||||||
---|---|---|---|---|---|---|
Variables | Obs | Mean | Std. Dev. | |||
Forecast Dispersion | 23,609 | 7.549 | 13.647 | |||
Absolute Forecast Error | 23,609 | 0.678 | 1.351 | |||
Abs_DA | 23,609 | 0.051 | 0.087 | |||
Ln_BM | 23,609 | −0.988 | 0.790 | |||
Ln_size | 23,609 | 7.196 | 1.772 | |||
NumAnalyst | 23,609 | 6.958 | 5.835 | |||
Nseg | 23,609 | 1.396 | 0.898 | |||
Panel B: Institutional Ownership Sample Period of 1991–2020 | ||||||
Variables | Obs | Mean | Std. Dev. | |||
Forecast Dispersion | 23,383 | 7.501 | 13.558 | |||
Absolute Forecast Error | 23,383 | 0.674 | 1.339 | |||
Abs_DA | 23,383 | 0.051 | 0.088 | |||
IO | 23,383 | 0.646 | 0.276 | |||
HHI | 23,412 | 0.079 | 0.087 | |||
Blockholders | 19,549 | 0.573 | 0.640 | |||
Ln_BM | 23,383 | −0.897 | 0.735 | |||
Ln_size | 23,383 | 6.615 | 1.573 | |||
NumAnalyst | 23,383 | 6.156 | 5.252 | |||
Nseg | 23,383 | 1.169 | 0.536 | |||
Panel C: ESG sample period of 1991–2018 | ||||||
Variables | Obs | Mean | Std. Dev. | |||
Forecast Dispersion | 13,232 | 7.791 | 14.923 | |||
Absolute Forecast Error | 13,232 | 1.007 | 5.290 | |||
Abs_DA | 13,232 | 0.042 | 0.065 | |||
ESG score | 13,232 | 0.003 | 0.383 | |||
Ln_BM | 13,232 | −0.892 | 0.709 | |||
Ln_size | 13,232 | 7.215 | 1.608 | |||
NumAnalyst | 13,232 | 7.135 | 6.640 | |||
Nseg | 13,232 | 1.404 | 0.894 | |||
Panel D: Correlation Matrix | ||||||
Forecast Dispersion | Absolute Forecast Error | Abs_DA | IO | HHI | Blockholders | |
Forecast Dispersion | 1.000 | |||||
Absolute Forecast Error | 0.589 | 1.000 | ||||
Abs_DA | 0.049 | 0.011 | 1.000 | |||
IO | 0.060 | 0.037 | 0.004 | 1.000 | ||
HHI | 0.031 | 0.062 | −0.007 | −0.254 | 1.000 | |
Blockholders | 0.042 | 0.066 | 0.022 | −0.402 | 0.720 | 1.000 |
ESG score | −0.039 | −0.016 | 0.007 | −0.120 | 0.034 | 0.035 |
Ln_BM | −0.001 | 0.046 | −0.096 | −0.033 | 0.027 | 0.066 |
Ln_size | −0.048 | −0.051 | −0.107 | 0.065 | −0.269 | −0.363 |
NumAnalyst | 0.011 | −0.052 | −0.005 | 0.034 | −0.145 | −0.177 |
Nseg | −0.022 | 0.010 | −0.038 | 0.022 | −0.028 | −0.063 |
ESG Score | Ln_BM | Ln_size | Num Analyst | Nseg | ||
ESG Score | 1.000 | |||||
Ln_BM | −0.027 | 1.000 | ||||
Ln_size | −0.036 | −0.223 | 1.000 | |||
NumAnalyst | 0.028 | −0.179 | 0.522 | 1.000 | ||
Nseg | −0.051 | 0.060 | 0.172 | −0.019 | 1.000 |
Dependent Variable | Forecast Dispersion | ||
---|---|---|---|
(1) | (2) | (3) | |
DA = | Abs_DA | Abs_DA_modified | Abs_DA_matched |
DA | 5.119 *** | 6.898 *** | 5.300 *** |
(5.08) | (6.34) | (5.11) | |
Ln_BM | −0.780 *** | −0.514 ** | −0.779 *** |
(−3.51) | (−2.07) | (−3.51) | |
Ln_size | −1.109 *** | −1.078 *** | −1.110 *** |
(−11.68) | (−10.65) | (−11.70) | |
NumAnalyst | 0.062 ** | 0.061 ** | 0.062 ** |
(2.49) | (2.41) | (2.49) | |
Nseg | −0.608 *** | −0.526 *** | −0.607 *** |
(−4.39) | (−3.80) | (−4.38) | |
Observations | 23,609 | 21,487 | 23,609 |
R-squared | 0.106 | 0.107 | 0.106 |
Panel A: Institutional Ownership | ||||
---|---|---|---|---|
Dependent Variable | Forecast Dispersion | |||
(1) | (2) | (3) | ||
Institutional Investor = | IO | HHI | Blockholders | |
Abs_DA | 1.636 | 7.399 *** | 7.484 *** | |
(0.81) | (5.10) | (4.66) | ||
Abs_DAInstitutional Investor | 6.215 * | −0.230 *** | −2.597 * | |
(1.75) | (−2.72) | (−1.88) | ||
Institutional Investor | 0.027 | 0.047 *** | 0.144 | |
(0.04) | (2.81) | (0.86) | ||
Ln_BM | −0.817 *** | −0.779 *** | −0.798 *** | |
(−3.65) | (−3.54) | (−3.14) | ||
Ln_size | −1.130 *** | −1.024 *** | −1.088 *** | |
(−11.36) | (−9.73) | (−9.23) | ||
NumAnalyst | 0.067 *** | 0.064 ** | 0.058 ** | |
(2.67) | (2.54) | (2.07) | ||
Nseg | −0.589 *** | −0.601 *** | −0.568 *** | |
(−4.24) | (−4.33) | (−3.85) | ||
Observations | 23,383 | 23,412 | 19,549 | |
R-squared | 0.103 | 0.103 | 0.104 | |
Panel B: ESG Score | ||||
Dependent Variable | Forecast Dispersion | |||
(1) | (2) | (3) | (4) | |
ESG = | Positive ESG | Positive Governance | Positive Environment | Positive Social |
Abs_DA | 12.086 *** | 10.911 *** | 10.277 *** | 11.109 *** |
(2.82) | (3.43) | (3.99) | (3.54) | |
Abs_DAESG | −2.710 ** | −1.121 * | −1.207 ** | −6.203 |
(−2.50) | (−1.90) | (−2.22) | (−1.29) | |
ESG | −0.745 * | −0.736 ** | −0.833 | −0.554 |
(−1.80) | (−2.04) | (−0.19) | (−1.34) | |
Ln_BM | −0.674 * | −0.490 | −0.677 * | −0.505 |
(−1.88) | (−1.31) | (−1.89) | (−1.44) | |
Ln_size | −1.226 *** | −1.286 *** | −1.178 *** | −0.971 *** |
(−8.12) | (−8.05) | (−7.70) | (−5.56) | |
NumAnalyst | 0.057 * | 0.094 *** | 0.061 ** | 0.122 *** |
(1.89) | (2.70) | (2.01) | (3.33) | |
Nseg | −0.427 *** | −0.314 * | −0.420 *** | −0.262 |
(−2.73) | (−1.75) | (−2.69) | (−1.29) | |
Observations | 13,232 | 10,484 | 13,216 | 8639 |
R-squared | 0.108 | 0.126 | 0.109 | 0.101 |
Panel A: Main Sample | ||||
---|---|---|---|---|
Dependent Variable | Absolute Forecast Error | |||
(1) | (2) | (3) | ||
DA = | Abs_DA | Abs_DA_modified | Abs_DA_matched | |
DA | 0.231 *** | 0.355 *** | 0.255 *** | |
(3.34) | (4.96) | (3.62) | ||
Ln_BM | −0.079 *** | −0.054 *** | −0.079 *** | |
(−4.83) | (−2.94) | (−4.81) | ||
Ln_size | −0.088 *** | −0.084 *** | −0.088 *** | |
(−11.32) | (−10.18) | (−11.31) | ||
NumAnalyst | −0.012 *** | −0.012 *** | −0.012 *** | |
(−6.16) | (−5.85) | (−6.17) | ||
Nseg | −0.048 *** | −0.043 *** | −0.048 *** | |
(−4.03) | (−3.56) | (−4.02) | ||
Observations | 30,441 | 27,522 | 30,441 | |
R-squared | 0.156 | 0.157 | 0.157 | |
Panel B: Institutional Ownership | ||||
Dependent Variable | Absolute Forecast Error | |||
(1) | (2) | (3) | ||
Institutional Investors = | IO | HHI | Blockholders | |
Abs_DA | 0.029 | 0.470 *** | 0.478 *** | |
(0.21) | (4.66) | (4.53) | ||
Abs_DAInstitutional Investors | 0.187 | −0.022 *** | −0.275 *** | |
(0.30) | (−3.61) | (−4.21) | ||
Institutional Investors | 0.017 | 0.003 ** | 0.017 | |
(0.33) | (2.51) | (1.36) | ||
Ln_BM | −0.080 *** | −0.078 *** | −0.073 *** | |
(−4.79) | (−4.72) | (−3.78) | ||
Ln_size | −0.090 *** | −0.081 *** | −0.089 *** | |
(−10.86) | (−8.93) | (−9.06) | ||
NumAnalyst | −0.012 *** | −0.012 *** | −0.012 *** | |
(−6.04) | (−6.10) | (−5.73) | ||
Nseg | −0.046 *** | −0.047 *** | −0.048 *** | |
(−3.88) | (−3.96) | (−3.76) | ||
Observations | 30,089 | 30,140 | 24,905 | |
R-squared | 0.157 | 0.157 | 0.161 | |
Panel C: ESG Score | ||||
Dependent Variable | Absolute Forecast Error | |||
(1) | (2) | (3) | (4) | |
ESG = | Positive ESG | Positive Governance | Positive Environment | Positive Social |
Abs_DA | 1.995 | 0.476 | 1.030 | 1.218 |
(1.39) | (0.44) | (1.59) | (1.53) | |
Abs_DAESG | −1.858 ** | −0.672 | −1.210 | −1.289 |
(−2.14) | (−0.57) | (−1.39) | (−1.09) | |
ESG | 0.022 | −0.441 ** | 0.244 * | −0.028 |
(0.15) | (−2.54) | (1.92) | (−0.20) | |
Ln_BM | −0.140 * | −0.124 | −0.136 * | −0.239 *** |
(−1.76) | (−1.31) | (−1.72) | (−3.05) | |
Ln_size | −0.178 *** | −0.213 *** | −0.184 *** | −0.133 *** |
(−4.03) | (−3.89) | (−3.94) | (−2.60) | |
NumAnalyst | −0.023 *** | −0.020 * | −0.024 *** | −0.015 |
(−2.78) | (−1.84) | (−2.92) | (−1.48) | |
Nseg | −0.039 | −0.024 | −0.039 | 0.001 |
(−0.89) | (−0.45) | (−0.92) | (0.02) | |
Observations | 15,746 | 12,433 | 15,726 | 10,310 |
R-squared | 0.051 | 0.056 | 0.052 | 0.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.; Kim, J.; Kwack, S.Y. External Monitoring, ESG, and Information Content of Discretionary Accruals. Sustainability 2022, 14, 7599. https://doi.org/10.3390/su14137599
Hong K, Kim J, Kwack SY. External Monitoring, ESG, and Information Content of Discretionary Accruals. Sustainability. 2022; 14(13):7599. https://doi.org/10.3390/su14137599
Chicago/Turabian StyleHong, Kihoon, Jinhee Kim, and So Yean Kwack. 2022. "External Monitoring, ESG, and Information Content of Discretionary Accruals" Sustainability 14, no. 13: 7599. https://doi.org/10.3390/su14137599