Graph-Community-Enabled Personalized Course-Job Recommendations with Cross-Domain Data Integration
Abstract
:1. Introduction
2. Related Work
2.1. Course Recommendation
2.2. Graph-Based Recommendation
2.3. Cross-Domain Based Recommendation
3. Research Methods
3.1. Data Collection
Algorithm 1. Greedy Matching Algorithm |
Input: the skill vocabulary V from MOOCs; the content C of each IUB-SICE course (course name+ course description). Output: the corresponding skill S of each IUB-SICE course. 1: skills []; 2: convert content C to list C_List; convert vocabulary V to list V_List; 3: let the pointer P point to the end of C_List; 4: calculates the number of words from the pointer P to the beginning of C_List (that is, the length of the unsliced content) as n; 5: calculates the number of words in the longest phrase in V_List as m; 6: while P is not at the beginning of the C_List do 7: if n < m then 8: m = n; 9: end 10: takes m words from the current P to the left of C_List as the phrase W 11: if W is in the V_List then 12: adds W to skills; 13: modifies the pointer P based on the length of W; 14: else 15: removes one word from the left end of W; 16: end 17: end 18: return skills. |
3.2. Skill Community Detection and Data Indexation Based on Heterogeneous Graph
3.3. Community-Constrained Cross-Domain Recommendations with Heterogeneous Graph-Enabled
3.4. Experimental Result
3.4.1. Comparison with Baselines
- Text ranking features:
- Graph-Enabled (GE) ranking features:
- Graph-Community-Enabled (GCE) ranking features:
3.4.2. Recommending Courses to User
3.4.3. Recommending Jobs to User
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majidi, N. A Personalized Course Recommendation System Based on Career Goals. Ph.D. Dissertation, Memorial University of Newfoundland, St. John’s, NL, Canada, 2018. [Google Scholar]
- Börner, K.; Scrivner, O.; Gallant, M.; Ma, S.; Liu, X.; Chewning, K.; Wu, L.; Evans, J.A. Skill discrepancies between research, education, and jobs reveal the critical need to supply soft skills for the data economy. Proc. Natl. Acad. Sci. USA 2018, 115, 12630–12637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzan, R.; Brusilovsky, P. Social navigation support in a course recommendation system. In Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Dublin, Ireland, 21–23 June 2006; pp. 91–100. [Google Scholar]
- Parameswaran, A.; Venetis, P.; Garcia-Molina, H. Recommendation systems with complex constraints: A course recommendation perspective. ACM Trans. Inf. Syst. 2011, 29, 20. [Google Scholar] [CrossRef]
- Patel, B.; Kakuste, V.; Eirinaki, M. Capar: A career path recommendation framework. In Proceedings of the 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco, CA, USA, 6–9 April 2017; pp. 23–30. [Google Scholar]
- Li, N.; Naren, S.; Gao, Z.; Xia, T.; Börner, K.; Liu, X. Enter a job, get course recommendations. In Proceedings of the iConference 2017, Wuhan, China, 22–25 March 2017; pp. 118–122. [Google Scholar]
- Zhu, G.; Kopalle, N.A.; Wang, Y.; Liu, X.; Jona, K.; Börner, K. Community-based data integration of course and job data in support of personalized career-education recommendations. In Proceedings of the 83rd Annual Meeting of the Association for Information Science and Technology, Pittsburgh, PA, USA, 22 October–1 November 2020; p. e324. [Google Scholar]
- Zhu, G.; Kopalle, N.A.; Wang, Y.; Liu, X.; Jona, K.; Börner, K. Community-based data integration of course and job data in support of personalized career-education recommendations. arXiv 2020, arXiv:2006.13864. [Google Scholar] [CrossRef]
- Manouselis, N.; Drachsler, H.; Vuorikari, R.; Hummel, H.; Koper, R. Recommender Systems in Technology Enhanced Learning. Recommender Systems Handbook; Springer: Boston, MA, USA, 2011; pp. 387–415. [Google Scholar]
- Linden, G.; Smith, B.; York, J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 2003, 7, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chang, S.K. A personalized e-learning system based on user profile constructed using information fusion. In Proceedings of the 11th International Conference on Distributed Multimedia Systems (DMS), Banff, AB, Canada, 5–7 September 2005; pp. 109–114. [Google Scholar]
- Tan, H.; Guo, J.; Li, Y. E-learning recommendation system. In Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; pp. 430–433. [Google Scholar]
- Ray, S.; Sharma, A. A collaborative filtering based approach for recommending elective courses. In Proceedings of the International Conference on Information Intelligence, Systems, Technology and Management, Gurgaon, India, 10–12 March 2011; pp. 330–339. [Google Scholar]
- Thai-Nghe, N.; Drumond, L.; Krohn-Grimberghe, A.; Schmidt-Thieme, L. Recommender system for predicting student performance. Procedia Comput. Sci. 2010, 1, 2811–2819. [Google Scholar] [CrossRef] [Green Version]
- Ghauth, K.I.; Abdullah, N.A. Measuring learner’s performance in e-learning recommender systems. Australas. J. Educ. Technol. 2010, 26, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, G.; Manni, E.; Romano, A. Training offer selection and course timetabling for remedial education. Comput. Ind. Eng. 2017, 111, 282–288. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Pham, T.T.; Vo, V.; Vo, B.; Quan, T.T. The predictive modeling for learning student results based on sequential rules. Int. J. Innov. Comput. Inf. Control 2018, 14, 2129–2140. [Google Scholar]
- Morsy, S.; Karypis, G. Learning Course Sequencing for Course Recommendation. Available online: https://conservancy.umn.edu/handle/11299/216025 (accessed on 27 June 2020).
- Ma, X.; Ye, L. Career goal-based e-learning recommendation using enhanced collaborative filtering and prefixspan. Int. J. Mob. Blended Learn. 2018, 10, 23–37. [Google Scholar] [CrossRef]
- Paparrizos, I.; Cambazoglu, B.B.; Gionis, A. Machine learned job recommendation. In Proceedings of the fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 325–328. [Google Scholar]
- Diaby, M.; Viennet, E.; Launay, T. Toward the next generation of recruitment tools: An online social network-based job recommender system. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), Niagara Falls, ON, Canada, 25–28 August 2013; pp. 821–828. [Google Scholar]
- Lu, Y.; El Helou, S.; Gillet, D. A recommender system for job seeking and recruiting website. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 963–966. [Google Scholar]
- Minkov, E.; Kahanov, K.; Kuflik, T. Graph-based recommendation integrating rating history and domain knowledge: Application to on-site guidance of museum visitors. J. Assoc. Inf. Sci. Technol. 2017, 68, 1911–1924. [Google Scholar] [CrossRef]
- Ma, M.; Na, S.; Wang, H.; Chen, C.; Xu, J. The graph-based behavior-aware recommendation for interactive news. Appl. Intell. 2022, 52, 1913–1929. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Zhu, L.; Song, J.; Yin, H. Multi-graph heterogeneous interaction fusion for social recommendation. ACM Trans. Inf. Syst. 2021, 40, 1–26. [Google Scholar] [CrossRef]
- Salamat, A.; Luo, X.; Jafari, A. HeteroGraphRec: A heterogeneous graph-based neural networks for social recommendations. Knowl. Based Syst. 2021, 217, 106817. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, C.; Li, D.; Zhang, Z.; Lin, K.; Shen, X.; Wang, J. Multi-perspective social recommendation method with graph representation learning. Neurocomputing 2022, 468, 469–481. [Google Scholar] [CrossRef]
- Yan, D.; Xie, W.; Zhang, Y. Heterogeneous information network-based interest composition with graph neural network for Recommendation. Appl. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, Q.; Qu, Q.; Chen, L.; Chen, H. Information fusion oriented heterogeneous social network for friend recommendation via community detection. Appl. Soft Comput. 2022, 114, 108103. [Google Scholar] [CrossRef]
- Bridges, C.; Jared, J.; Weissmann, J.; Montanez-Garay, A.; Spencer, J.; Brinton, C.G. Course recommendation as graphical analysis. In Proceedings of the 52nd Annual Conference on Information Sciences and Systems, (CISS), Princeton, NJ, USA, 21–23 March 2018; pp. 1–6. [Google Scholar]
- Polyzou, A.; Nikolakopoulos, A.N.; Karypis, G. Scholars walk: A markov chain framework for course recommendation. In Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019), Montreal, QC, Canada, 2–5 July 2019; pp. 396–401. [Google Scholar]
- Shalaby, W.; AlAila, B.; Korayem, M.; Pournajaf, L.; AlJadda, K.; Quinn, S.; Zadrozny, W. Help me find a job: A graph-based approach for job recommendation at scale. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 1544–1553. [Google Scholar]
- Chang, W.; Zhang, Q.; Fu, C.; Liu, W.; Zhang, G.; Lu, J. A cross-domain recommender system through information transfer for medical diagnosis. Decis. Support Syst. 2021, 143, 113489. [Google Scholar] [CrossRef]
- Fernández-Tobías, I.; Cantador, I.; Tomeo, P.; Anelli, V.W.; Di Noia, T. Addressing the user cold start with cross-domain collaborative filtering: Exploiting item metadata in matrix factorization, user model. User Model. User-Adapt. Interact. 2019, 29, 443–486. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Hussain, M.; Chaudhury, S.; Agarwal, S. Semantic clustering-based cross-domain recommendation. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Orlando, FL, USA, 9–12 December 2014; pp. 137–141. [Google Scholar]
- Jiang, M.; Cui, P.; Yuan, N.J.; Xie, X.; Yang, S. Little is much: Bridging cross-platform behaviors through overlapped crowds. In Proceedings of the the Thirtieth AAAI Conference on Artificial Intelligence (AAAI), Phoenix, AZ, USA, 12–17 February 2016; pp. 13–19. [Google Scholar]
- Krishnamurthy, B.; Puri, N.; Goel, R. Learning vector-space representations of items for recommendations using word embedding models. Procedia Comput. Sci. 2016, 80, 2205–2210. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Cui, P.; Chen, X.; Wang, F.; Zhu, W.; Yang, S. Social recommendation with cross-domain transferable knowledge. IEEE Trans. Knowl. Data Eng. 2015, 27, 3084–3097. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yu, Y.; Guo, C.; Sun, Y. Meta-path-based ranking with pseudo relevance feedback on heterogeneous graph for citation recommendation. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 3–7 November 2014; pp. 121–130. [Google Scholar]
- Wang, S.; Hu, L.; Wang, Y.; He, X.; Sheng, Q.Z.; Orgun, M.A.; Cao, L.; Ricci, F.; Philip, S.Y. Graph learning based recommender systems: A review. In Proceedings of the 30th International Joint Conference on Artificial Intelligence, Virtual Event. Montreal, QC, Canada, 19–26 August 2021; pp. 4644–4652. [Google Scholar]
- Guo, C.; Liu, X. Automatic Feature Generation on Heterogeneous Graph for Music Recommendation. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 807–810. [Google Scholar]
- Robertson, S.; Zaragoza, H. The probabilistic relevance framework: BM25 and beyond. Inf. Retr. 2009, 3, 333–389. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [Google Scholar]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Sun, Y.; Han, J.; Yan, X.; Yu, P.S.; Wu, T. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 2011, 4, 992–1003. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, H.; Qiu, P.; Shi, K.; Chambua, J.; Niu, Z. Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization. Neurocomputing 2020, 415, 84–95. [Google Scholar] [CrossRef]
- Gong, J.; Wang, S.; Wang, J.; Feng, W.; Peng, H.; Tang, J.; Yu, P.S. Attentional graph convolutional networks for knowledge concept recommendation in moocs in a heterogeneous view. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event. 25–30 July 2020; pp. 79–88. [Google Scholar]
- Pardos, Z.A.; Jiang, W. Designing for serendipity in a university course recommendation system. In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, Frankfurt, Germany, 23–27 March 2020; pp. 350–359. [Google Scholar]
- Almaleh, A.; Aslam, M.A.; Saeedi, K.; Aljohani, N.R. Align my curriculum: A framework to bridge the gap between acquired university curriculum and required market skills. Sustainability 2019, 11, 2607. [Google Scholar] [CrossRef] [Green Version]
Nodes and Relations | Description |
---|---|
C | The course nodes |
J | The job nodes |
S | The skill nodes |
The course to course edge via the pre-required relation | |
The course to skill edge via the covered relation | |
The job to skill edge via the required relation | |
Skill to skill edge (skill-skill text similarity within each community based on BM25/Word2Vec/Bert). |
Scenarios | Meta-Paths | Ranking Hypothesis | |
---|---|---|---|
Course Recommendation | 1 | The candidate courses in the community where the query job is located will be related to the query job if the skills covered by the courses are related to the skills required by the query job. | |
The pre-required course of the candidate courses not in the community where the query job is located will be related to the query job. | |||
2 | The candidate courses not in the community where the query job is located will be related to the job if they share similar skills as the taken course. | ||
3 | The candidate courses in the community where the query job is located will be related to the job if the skills of the pre-required courses of candidate courses are related to the skills required by the query job. | ||
Job Recommendation | 4 | The candidate jobs in the community where the courses that have been taken will be related to the courses, if the skills covered for the query courses are related to the skills required by the job. | |
5 | The candidate jobs not in the community where the current job is located will be related to the courses if the skills covered for the query courses are related to the skills required by the job. |
Method | P@5 | MAP@5 | NCDG@5 | P@10 | MAP@10 | NCDG@10 | P@15 | MAP@15 | NCGD@15 | P@20 | MAP@20 | NCDG@20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 0.38 | 0.52 | 0.58 | 0.43 | 0.55 | 0.61 | 0.45 | 0.57 | 0.64 | 0.48 | 0.58 | 0.65 |
Word2Vec | 0.41 | 0.55 | 0.61 | 0.48 | 0.57 | 0.65 | 0.48 | 0.6 | 0.67 | 0.5 | 0.62 | 0.68 |
Bert | 0.48 | 0.62 | 0.73 | 0.5 | 0.63 | 0.74 | 0.51 | 0.65 | 0.77 | 0.55 | 0.66 | 0.79 |
GE(BM25) | 0.39 | 0.53 | 0.58 | 0.48 | 0.56 | 0.62 | 0.49 | 0.59 | 0.65 | 0.51 | 0.61 | 0.68 |
GE(W2V) | 0.43 | 0.65 | 0.74 | 0.52 | 0.64 | 0.76 | 0.55 | 0.69 | 0.78 | 0.57 | 0.70 | 0.79 |
GE(Bert) | 0.51 | 0.67 | 0.75 | 0.57 | 0.69 | 0.77 | 0.58 | 0.71 | 0.79 | 0.61 | 0.73 | 0.81 |
GCE(BM25) | 0.55 | 0.71 | 0.79 | 0.59 | 0.73 | 0.82 | 0.61 | 0.76 | 0.85 | 0.64 | 0.77 | 0.86 |
GCE(W2V) | 0.63 | 0.75 | 0.81 | 0.66 | 0.78 | 0.85 | 0.68 | 0.81 | 0.87 | 0.72 | 0.82 | 0.87 |
GCE(Bert) | 0.67 | 0.78 | 0.83 | 0.69 | 0.81 | 0.89 | 0.72 | 0.83 | 0.9 | 0.75 | 0.85 | 0.91 |
Method | P@5 | MAP@5 | NCDG@5 | P@10 | MAP@10 | NCDG@10 | P@15 | MAP@15 | NCGD@15 | P@20 | MAP@20 | NCDG@20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 0.39 | 0.51 | 0.55 | 0.44 | 0.54 | 0.59 | 0.46 | 0.56 | 0.63 | 0.47 | 0.57 | 0.64 |
Word2Vec | 0.4 | 0.54 | 0.58 | 0.47 | 0.55 | 0.62 | 0.48 | 0.58 | 0.65 | 0.5 | 0.60 | 0.66 |
Bert | 0.46 | 0.61 | 0.69 | 0.49 | 0.64 | 0.71 | 0.52 | 0.67 | 0.74 | 0.54 | 0.67 | 0.75 |
GE(BM25) | 0.37 | 0.51 | 0.57 | 0.41 | 0.54 | 0.59 | 0.45 | 0.57 | 0.63 | 0.48 | 0.59 | 0.65 |
GE(W2V) | 0.42 | 0.61 | 0.69 | 0.49 | 0.62 | 0.72 | 0.54 | 0.68 | 0.75 | 0.56 | 0.69 | 0.77 |
GE(Bert) | 0.5 | 0.65 | 0.72 | 0.54 | 0.69 | 0.75 | 0.56 | 0.70 | 0.78 | 0.58 | 0.72 | 0.80 |
GCE(BM25) | 0.53 | 0.68 | 0.74 | 0.57 | 0.72 | 0.78 | 0.60 | 0.73 | 0.82 | 0.63 | 0.75 | 0.83 |
GCE(W2V) | 0.59 | 0.73 | 0.77 | 0.62 | 0.75 | 0.79 | 0.67 | 0.78 | 0.83 | 0.70 | 0.79 | 0.85 |
GCE(Bert) | 0.61 | 0.75 | 0.80 | 0.66 | 0.77 | 0.83 | 0.70 | 0.79 | 0.85 | 0.72 | 0.81 | 0.86 |
Method | P@5 | MAP@5 | NCDG@5 | P@10 | MAP@10 | NCDG@10 | P@15 | MAP@15 | NCGD@15 | P@20 | MAP@20 | NCDG@20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 0.37 | 0.52 | 0.54 | 0.42 | 0.56 | 0.58 | 0.46 | 0.58 | 0.61 | 0.47 | 0.59 | 0.63 |
Word2Vec | 0.39 | 0.53 | 0.56 | 0.48 | 0.58 | 0.60 | 0.51 | 0.6 | 0.63 | 0.53 | 0.62 | 0.64 |
Bert | 0.47 | 0.63 | 0.65 | 0.50 | 0.62 | 0.68 | 0.53 | 0.65 | 0.70 | 0.55 | 0.66 | 0.72 |
GE(BM25) | 0.38 | 0.5 | 0.53 | 0.41 | 0.53 | 0.59 | 0.47 | 0.56 | 0.63 | 0.48 | 0.58 | 0.64 |
GE(W2V) | 0.43 | 0.64 | 0.66 | 0.51 | 0.63 | 0.70 | 0.55 | 0.66 | 0.73 | 0.56 | 0.68 | 0.75 |
GE(Bert) | 0.5 | 0.66 | 0.69 | 0.55 | 0.68 | 0.74 | 0.58 | 0.70 | 0.77 | 0.59 | 0.72 | 0.78 |
GCE(BM25) | 0.52 | 0.69 | 0.71 | 0.58 | 0.71 | 0.76 | 0.64 | 0.72 | 0.81 | 0.64 | 0.74 | 0.82 |
GCE(W2V) | 0.61 | 0.72 | 0.75 | 0.64 | 0.75 | 0.78 | 0.68 | 0.77 | 0.82 | 0.69 | 0.78 | 0.84 |
GCE(Bert) | 0.63 | 0.76 | 0.79 | 0.66 | 0.79 | 0.82 | 0.71 | 0.80 | 0.83 | 0.73 | 0.81 | 0.85 |
Method | P@5 | MAP@5 | NCDG@5 | P@10 | MAP@10 | NCDG@10 | P@15 | MAP@15 | NCGD@15 | P@20 | MAP@20 | NCDG@20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 0.35 | 0.48 | 0.51 | 0.51 | 0.55 | 0.56 | 0.52 | 0.57 | 0.59 | 0.53 | 0.58 | 0.61 |
Word2Vec | 0.38 | 0.58 | 0.62 | 0.52 | 0.59 | 0.65 | 0.54 | 0.62 | 0.69 | 0.54 | 0.64 | 0.7 |
Bert | 0.41 | 0.62 | 0.65 | 0.54 | 0.63 | 0.68 | 0.58 | 0.66 | 0.72 | 0.59 | 0.67 | 0.73 |
GE(BM25) | 0.36 | 0.5 | 0.54 | 0.49 | 0.57 | 0.58 | 0.53 | 0.61 | 0.62 | 0.55 | 0.62 | 0.64 |
GE(W2V) | 0.42 | 0.64 | 0.68 | 0.56 | 0.65 | 0.72 | 0.59 | 0.69 | 0.76 | 0.61 | 0.71 | 0.77 |
GE(Bert) | 0.49 | 0.68 | 0.71 | 0.59 | 0.69 | 0.73 | 0.62 | 0.73 | 0.77 | 0.62 | 0.73 | 0.78 |
GCE(BM25) | 0.52 | 0.7 | 0.73 | 0.63 | 0.72 | 0.77 | 0.67 | 0.75 | 0.80 | 0.69 | 0.77 | 0.81 |
GCE(W2V) | 0.61 | 0.73 | 0.77 | 0.67 | 0.75 | 0.79 | 0.71 | 0.79 | 0.83 | 0.73 | 0.80 | 0.85 |
GCE(Bert) | 0.65 | 0.75 | 0.78 | 0.71 | 0.79 | 0.83 | 0.73 | 0.84 | 0.86 | 0.76 | 0.85 | 0.87 |
Method | P@5 | MAP@5 | NCDG@5 | P@10 | MAP@10 | NCDG@10 | P@15 | MAP@15 | NCGD@15 | P@20 | MAP@20 | NCDG@20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 0.34 | 0.49 | 0.50 | 0.52 | 0.54 | 0.54 | 0.53 | 0.56 | 0.57 | 0.53 | 0.57 | 0.59 |
Word2Vec | 0.36 | 0.58 | 0.61 | 0.53 | 0.58 | 0.63 | 0.55 | 0.60 | 0.67 | 0.56 | 0.62 | 0.69 |
Bert | 0.4 | 0.61 | 0.63 | 0.55 | 0.62 | 0.67 | 0.56 | 0.65 | 0.70 | 0.58 | 0.66 | 0.71 |
GE(BM25) | 0.34 | 0.49 | 0.52 | 0.48 | 0.56 | 0.55 | 0.51 | 0.59 | 0.59 | 0.53 | 0.60 | 0.61 |
GE(W2V) | 0.44 | 0.64 | 0.66 | 0.57 | 0.66 | 0.70 | 0.58 | 0.69 | 0.73 | 0.60 | 0.71 | 0.75 |
GE(Bert) | 0.47 | 0.66 | 0.69 | 0.58 | 0.67 | 0.72 | 0.60 | 0.71 | 0.76 | 0.61 | 0.72 | 0.77 |
GCE(BM25) | 0.51 | 0.69 | 0.72 | 0.64 | 0.7 | 0.75 | 0.66 | 0.73 | 0.78 | 0.67 | 0.75 | 0.79 |
GCE(W2V) | 0.6 | 0.72 | 0.75 | 0.67 | 0.76 | 0.78 | 0.69 | 0.78 | 0.81 | 0.71 | 0.79 | 0.83 |
GCE(Bert) | 0.63 | 0.75 | 0.76 | 0.69 | 0.78 | 0.82 | 0.72 | 0.82 | 0.84 | 0.73 | 0.84 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Chen, Y.; Wang, S. Graph-Community-Enabled Personalized Course-Job Recommendations with Cross-Domain Data Integration. Sustainability 2022, 14, 7439. https://doi.org/10.3390/su14127439
Zhu G, Chen Y, Wang S. Graph-Community-Enabled Personalized Course-Job Recommendations with Cross-Domain Data Integration. Sustainability. 2022; 14(12):7439. https://doi.org/10.3390/su14127439
Chicago/Turabian StyleZhu, Guoqing, Yan Chen, and Shutian Wang. 2022. "Graph-Community-Enabled Personalized Course-Job Recommendations with Cross-Domain Data Integration" Sustainability 14, no. 12: 7439. https://doi.org/10.3390/su14127439