Exploring the Influence of the Visual Attributes of Kaplan’s Preference Matrix in the Assessment of Urban Parks: A Discrete Choice Analysis
Abstract
:1. Introduction
Aim
2. Materials and Methods
2.1. Literature Review
2.1.1. Mystery
Physical Access (Shape of Paths)
Visual Access
2.1.2. Legibility
Wayfinding
Distinctive Elements
2.1.3. Coherence
Uniformity (Texture)
Organization of Components—Order (Areas)
2.1.4. Complexity
Variety of Elements
Number of Colors
Organization (Symmetry–Asymmetry)
2.2. Discrete Choice Experiment
= Prob (Vni + εni > Vnj + εnj) = Prob (Vni − Vnj > εnj − εni ∀ j ≠ i).
2.3. Study Erea
2.4. Participants
2.5. Questionnaire
2.6. Experimental Design
Visual Attributes and Levels
2.7. Data Collection
3. Results
3.1. Random Parameter Logit Model
3.2. Parameter Value
3.3. Evaluation of Attribute Levels
3.4. Random Parameter
3.5. Interactions
4. Discussion
Method Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Matsuoka, R.H.; Kaplan, R. People needs in the urban landscape: Analysis of landscape and urban planning contributions. Landsc. Urban Plan. 2008, 84, 7–19. [Google Scholar] [CrossRef]
- Memari, S.; Pazhouhanfar, M.; Grahn, P. Perceived sensory dimensions of green areas: An experimental study on stress recovery. Sustainability 2021, 13, 5419. [Google Scholar] [CrossRef]
- Peschardt, K.K.; Stigsdotter, U.K. Associations between park characteristics and perceived restorativeness of small public urban green spaces. Landsc. Urban Plan. 2013, 112, 26–39. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Sun, Z.; Bao, Z. Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban For. Urban Green. 2013, 12, 44–52. [Google Scholar] [CrossRef]
- Nohl, W. Sustainable landscape use and aesthetic perception–preliminary reflections on future landscape aesthetics. Landsc. Urban Plan. 2001, 54, 223–237. [Google Scholar] [CrossRef]
- Ode, Å.; Tveit, M.S.; Fry, G. Capturing landscape visual character using indicators: Touching base with landscape aesthetic theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- de Val, G.D.L.F.; Atauri, J.A.; de Lucio, J.V. Relationship between landscape visual attributes and spatial pattern indices: A test study in Mediterranean-climate landscapes. Landsc. Urban Plan. 2006, 77, 393–407. [Google Scholar] [CrossRef]
- Kaplan, S. Aesthetics, affect, and cognition: Environmental preference from an evolutionary perspective. Environ. Behav. 1987, 19, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, NY, USA, 1989. [Google Scholar]
- Kaplan, R.; Kaplan, S.; Ryan, R. With People in Mind: Design and Management of Everyday Nature; Island Press: Washington, DC, USA; Covelo, CA, USA, 1998. [Google Scholar]
- Pazhouhanfar, M.; Kamal, M. Effect of predictors of visual preference as characteristics of urban natural landscapes in increasing perceived restorative potential. Urban For. Urban Green. 2014, 13, 145–151. [Google Scholar] [CrossRef]
- Hansson, K.; Külvik, M.; Bell, S.; Maikov, K. A preliminary assessment of preferences for Estonian natural forests. Balt. For. 2012, 18, 299–315. [Google Scholar]
- Cupchik, G.C. A decade after Berlyne: New directions in experimental aesthetics. Poetics 1986, 15, 345–369. [Google Scholar] [CrossRef]
- Herzog, T.R.; Kaplan, S.; Kaplan, R. The prediction of preference for unfamiliar urban places. Popul. Environ. 1982, 5, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.R.; Bryce, A.G. Mystery and preference in within-forest settings. Environ. Behav. 2007, 39, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, S. Perception and landscape: Conceptions and misconceptions. In Proceedings of the Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource, Incline Village, NV, USA, 23–25 April 1979; U.S. Department of Agriculture: Berkeley, CA, USA, 1979; pp. 241–248. [Google Scholar]
- Gimblett, H.R.; Itami, R.M.; Fitzgibbon, J.E. Mystery in an information processing model of landscape preference. Landsc. J. 1985, 4, 87–95. [Google Scholar] [CrossRef]
- Herzog, T.R.; Miller, E.J. The role of mystery in perceived danger and environmental preference. Environ. Behav. 1998, 30, 429–449. [Google Scholar] [CrossRef]
- Eriksson, L.; Nordlund, A. How is setting preference related to intention to engage in forest recreation activities? Urban For. Urban Green. 2013, 12, 481–489. [Google Scholar] [CrossRef]
- Kuper, R. Examining the Visual Effects of Plant Foliation and Vegetative Winter Dormancy on Preference and Mystery. Landsc. J. 2015, 34, 139–159. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Meitner, M.J. Urban woodland understory characteristics in relation to aesthetic and recreational preference. Urban For. Urban Green. 2017, 24, 55–61. [Google Scholar] [CrossRef]
- D’Acci, L. Aesthetical cognitive perceptions of urban street form. Pedestrian preferences towards straight or curvy route shapes. J. Urban Des. 2019, 24, 896–912. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.R.; Kropscott, L.S. Legibility, mystery, and visual access as predictors of preference and perceived danger in forest settings without pathways. Environ. Behav. 2004, 36, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.R.; Kutzli, G.E. Preference and perceived danger in field/forest settings. Environ. Behav. 2002, 34, 819–835. [Google Scholar] [CrossRef]
- Stamps, A. Entropy, Berlyne, Kaplan: Integration of Two Aesthetic Theories. Institute of Environmental Quality. 2006. Available online: http://home.comcast.net/~instituteofenvironmentalquality/EntropyBerlyneKaplan4.pdf (accessed on 10 March 2022).
- Stamps, A.E. Mystery of environmental mystery. Environ. Behav. 2007, 39, 165–197. [Google Scholar] [CrossRef]
- Ikemi, M. The effects of mystery on preference for residential facades. J. Environ. Psychol. 2005, 25, 167–173. [Google Scholar] [CrossRef]
- Garrido Velarde, J.; Montero Parejo, M.J.; Hernández Blanco, J.; García Moruno, L. Using Native Vegetation Screens to Lessen the Visual Impact of Rural Buildings in the Sierras de Béjar and Francia Biosphere Reserve: Case Studies and Public Survey. Sustainability 2019, 11, 2595. [Google Scholar] [CrossRef] [Green Version]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA; London, UK, 1964. [Google Scholar]
- Moulay, A.; Ujang, N.; Said, I. Legibility of neighborhood parks as a predicator for enhanced social interaction towards social sustainability. Cities 2017, 61, 58–64. [Google Scholar] [CrossRef]
- Newman, A.J. Uncovering dimensionality in the servicescape: Towards legibility. Serv. Ind. J. 2007, 27, 15–28. [Google Scholar] [CrossRef]
- Bentley, I. Responsive Environments: A Manual for Designers; Routledge: London, UK, 1985. [Google Scholar]
- Silavi, T.; Hakimpour, F.; Claramunt, C.; Nourian, F. Design of a spatial database to analyze the forms and responsiveness of an urban environment using an ontological approach. Cities 2016, 52, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Paydar, M.; Kamani-Fard, A. Perceived legibility in relation to path choice of commuters in central business district. Urban Des. Int. 2016, 21, 213–235. [Google Scholar] [CrossRef]
- Guiducci, D.; Burke, A. Reading the landscape: Legible environments and Hominin dispersals. Evol. Anthropol. Issues News Rev. 2016, 25, 133–141. [Google Scholar] [CrossRef]
- Huang, S.-C.L. Visitor responses to the changing character of the visual landscape as an agrarian area becomes a tourist destination: Yilan County, Taiwan. J. Sustain. Tour. 2013, 21, 154–171. [Google Scholar] [CrossRef]
- Kuper, R. Evaluations of landscape preference, complexity, and coherence for designed digital landscape models. Landsc. Urban Plan. 2017, 157, 407–421. [Google Scholar] [CrossRef]
- Kuper, R. Effects of flowering, foliation, and autumn colors on preference and restorative potential for designed digital landscape models. Environ. Behav. 2020, 52, 544–576. [Google Scholar] [CrossRef]
- Jang, J.Y.; Baek, E.; Yoon, S.-Y.; Choo, H.J. Store design: Visual complexity and consumer responses. Int. J. Des. 2018, 12. [Google Scholar]
- Wang, Z.; Duff, B.R.; Clayton, R.B. Establishing a factor model for aesthetic preference for visual complexity of brand logo. J. Curr. Issues Res. Advert. 2018, 39, 83–100. [Google Scholar] [CrossRef]
- Deng, L.; Poole, M.S. Aesthetic design of e-commerce web pages–Webpage Complexity, Order and preference. Electron. Commer. Res. 2012, 11, 420–440. [Google Scholar] [CrossRef]
- Sun, L.; Yamasaki, T.; Aizawa, K. Applications. Photo aesthetic quality estimation using visual complexity features. Multimed. Tools Appl. 2018, 77, 5189–5213. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, E.J. Differences of restorative effects while viewing urban landscapes and green landscapes. Sustainability 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-F.; Lin, C.-H. An investigation into visual complexity and aesthetic preference to facilitate the creation of more appropriate learning analytics systems for children. Comput. Hum. Behav. 2019, 92, 706–715. [Google Scholar] [CrossRef]
- Berlyne, D.E. Ends and means of experimental aesthetics. Can. J. Psychol. 1972, 26, 303. [Google Scholar] [CrossRef]
- Alpak, E.M.; Özkan, D.G.; Mumcu, S.; Özbilen, A. Complexity, Historicity and Coherence: Preference and Quality of the Changes in the Urban Scene. Anthropologist 2016, 24, 762–777. [Google Scholar] [CrossRef]
- Kuper, R. Preference and restorative potential for landscape models that depict diverse arrangements of defoliated, foliated, and evergreen plants. Urban For. Urban Green. 2020, 48, 126570. [Google Scholar] [CrossRef]
- Berlyne, D.E. Aesthetics and Psychobiology; Appleton-Century-Crofts: New York, NY, USA, 1971. [Google Scholar]
- Herzog, T.R. A cognitive analysis of preference for field-and-forest environments. Landsc. Res. 1984, 9, 10–16. [Google Scholar] [CrossRef]
- Tang, I.-C.; Sullivan, W.C.; Chang, C.-Y. Perceptual evaluation of natural landscapes: The role of the individual connection to nature. Environ. Behav. 2015, 47, 595–617. [Google Scholar] [CrossRef] [Green Version]
- Sevenant, M.; Antrop, M. The use of latent classes to identify individual differences in the importance of landscape dimensions for aesthetic preference. Land Use Policy 2010, 27, 827–842. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, R.; Cai, Y.; Luo, P. Effects of visual indicators on landscape preferences. J. Urban Plan. Dev. 2012, 139, 70–78. [Google Scholar] [CrossRef]
- Van der Jagt, A.P.; Craig, T.; Anable, J.; Brewer, M.J.; Pearson, D.G. Unearthing the picturesque: The validity of the preference matrix as a measure of landscape aesthetics. Landsc. Urban Plan. 2014, 124, 1–13. [Google Scholar] [CrossRef]
- Ode, Å.; Hagerhall, C.M.; Sang, N. Analysing visual landscape complexity: Theory and application. Landsc. Res. 2010, 35, 111–131. [Google Scholar] [CrossRef]
- Gunawardena, G.; Kubota, Y.; Fukahori, K. Visual complexity analysis using taxonomic diagrams of figures and backgrounds in Japanese residential streetscapes. Urban Stud. Res. 2015, 2015, 173862. [Google Scholar] [CrossRef] [Green Version]
- Abkar, M.; Kamal, M.; Maulan, S.; Davoodi, S.R. Determining the visual preference of urban landscapes. Sci. Res. Essays 2011, 6, 1991–1997. [Google Scholar]
- Pazhouhanfar, M.; Davoodi, S.; Kamal, M. Effect of characteristics of Urban natural landscapes in increasing perceived restorative potential of urban environments. Urban For. Urban Green. 2013, 8, 885–889. [Google Scholar]
- Sadeghifar, M.; Pazhouhanfar, M.; Farrokhzad, M. An exploration of the relationships between urban building façade visual elements and people’s preferences in the city of Gorgan, Iran. Archit. Eng. Des. Manag. 2019, 15, 445–458. [Google Scholar] [CrossRef]
- Scott, S.C. Complexity and mystery as predictors of interior preferences. J. Inter. Des. 1993, 19, 25–33. [Google Scholar] [CrossRef]
- Wohlwill, J.F. Amount of stimulus exploration and preference as differential functions of stimulus complexity. Percept. Psychophys. 1968, 4, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, H.; Norton, B.; Dunnett, N.; Richards, J.P.; Russell, J.M.; Warren, P. Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows. Landsc. Urban Plan. 2018, 180, 103–113. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl. Acad. Sci. USA 2017, 114, 3774–3779. [Google Scholar] [CrossRef] [Green Version]
- Todorova, A.; Asakawa, S.; Aikoh, T. Preferences for and attitudes towards street flowers and trees in Sapporo, Japan. Landsc. Urban Plan. 2004, 69, 403–416. [Google Scholar] [CrossRef]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Hands, D.E.; Brown, R.D. Enhancing visual preference of ecological rehabilitation sites. Landsc. Urban Plan. 2002, 58, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.E.; Williams, K.J.; Sargent, L.D.; Farrell, C.; Williams, N.S. Living roof preference is influenced by plant characteristics and diversity. Landsc. Urban Plan. 2014, 122, 152–159. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Kuper, R. Preference, complexity, and color information entropy values for visual depictions of plant and vegetative growth. HortTechnology 2015, 25, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Tinio, P.P.; Leder, H. Just how stable are stable aesthetic features? Symmetry, complexity, and the jaws of massive familiarization. Acta Psychol. 2009, 130, 241–250. [Google Scholar]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Kirillova, K.; Lehto, X. Destination aesthetics and aesthetic distance in tourism experience. J. Travel Tour. Mark. 2015, 32, 1051–1068. [Google Scholar] [CrossRef]
- Chen, C.-C.; Wu, J.-H.; Wu, C.-C. Reduction of image complexity explains aesthetic preference for symmetry. Symmetry 2011, 3, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Bigoin-Gagnan, A.; Lacoste-Badie, S. Symmetry influences packaging aesthetic evaluation and purchase intention. Int. J. Retail. Distrib. Manag. 2018, 46, 1026–1040. [Google Scholar] [CrossRef]
- Thake, C.L.; Bambling, M.; Edirippulige, S.; Marx, E. A Psychoevolutionary Approach to Identifying Preferred Nature Scenes with Potential to Provide Restoration From Stress. Health Environ. Res. Des. J. 2017, 10, 111–124. [Google Scholar] [CrossRef]
- Orth, U.R.; Wirtz, J. Consumer processing of interior service environments: The interplay among visual complexity, processing fluency, and attractiveness. J. Serv. Res. 2014, 17, 296–309. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D.L. Quantal choice analaysis: A survey. Ann. Econ. Soc. Meas. 1976, 5, 363–390. [Google Scholar]
- Hami, A.; Maulan, S.; Mariapan, M.; Malekizadeh, M. Natural elements spatial configuration and content usage in urban park. Iran Univ. Sci. Technol. 2014, 24, 15–23. [Google Scholar]
- Wagemans, J. The Oxford Handbook of Perceptual Organization; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Pals, R.; Steg, L.; Dontje, J.; Siero, F.; van Der Zee, K. Physical features, coherence and positive outcomes of person–environment interactions: A virtual reality study. J. Environ. Psychol. 2014, 40, 108–116. [Google Scholar] [CrossRef]
- Van Dongen, R.P.; Timmermans, H.J. Preference for different urban greenscape designs: A choice experiment using virtual environments. Urban For. Urban Green. 2019, 44, 126435. [Google Scholar] [CrossRef]
- Nordh, H.; Alalouch, C.; Hartig, T. Assessing restorative components of small urban parks using conjoint methodology. Urban For. Urban Green. 2011, 10, 95–103. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, NY, USA, 2000. [Google Scholar]
- Cha, S.H.; Steemers, K.; Kim, T.W. Modelling building users’ space preferences for group work: A discrete-choice experiment. Archit. Sci. Rev. 2017, 60, 460–471. [Google Scholar] [CrossRef]
- Bierlaire, M. BIOGEME: A free package for the estimation of discrete choice models. In Proceedings of the Swiss Transport Research Conference, Ascona, Switzerland, 19–21 March 2003. [Google Scholar]
- Mandziuk, A.; Fornal-Pieniak, B.; Ollik, M. The willingness of inhabitants in medium-sized city and the city’s surroundings settlements to pay for recreation in urban forests in Poland. Ifor.-Biogeosci. For. 2021, 14, 483. [Google Scholar] [CrossRef]
- Urbis, A.; Povilanskas, R.; Šimanauskienė, R.; Taminskas, J. Key aesthetic appeal concepts of coastal dunes and forests on the example of the Curonian Spit (Lithuania). Water 2019, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Aşur, F. Determination of User Preferences on Visual Landscape at Urban Context: Van/Edremit (Turkey) Example. Pol. J. Environ. Stud. 2022, 31, 1543–1550. [Google Scholar] [CrossRef]
- Weinberger, A.B.; Christensen, A.P.; Coburn, A.; Chatterjee, A. Psychological responses to buildings and natural landscapes. J. Environ. Psychol. 2021, 77, 101676. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S.; Brown, T. Environmental preference: A comparison of four domains of predictors. Environ. Behav. 1989, 21, 509–530. [Google Scholar] [CrossRef] [Green Version]
- Bjerke, T.; Østdahl, T.; Thrane, C.; Strumse, E. Vegetation density of urban parks and perceived appropriateness for recreation. Urban For. Urban Green. 2006, 5, 35–44. [Google Scholar] [CrossRef]
- Appleton, J. The Experience of Landscape; Wiley Chichester: Chichester, UK, 1996. [Google Scholar]
- Gyllin, M.; Grahn, P. Semantic assessments of experienced biodiversity from photographs and on-site observations-a comparison. Environ. Nat. Resour. Res. 2015, 5, 46–62. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Golonka, S. Embodied cognition is not what you think it is. Front. Psychol. 2013, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Kirshner, D.; Whitson, J.A. Editors’ introduction to situated cognition: Social, semiotic, and psychological perspectives. In Situated Cognition; Routledge: London, UK, 2021; pp. 1–16. [Google Scholar]
- Grahn, P.; Ottosson, J.; Uvnäs-Moberg, K. The Oxytocinergic System as a Mediator of Anti-stress and Instorative Effects Induced by Nature: The Calm and Connection Theory. Front. Psychol. 2021, 12, 617814. [Google Scholar] [CrossRef]
- Jager, J.; Putnick, D.L.; Bornstein, M.H., II. More than just convenient: The scientific merits of homogeneous convenience samples. Monogr. Soc. Res. Child Dev. 2017, 82, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Pálsdóttir, A.M.; Stigsdotter, U.; Persson, D.; Thorpert, P.; Grahn, P. The qualities of natural environments that support the rehabilitation process of individuals with stress-related mental disorder in nature-based rehabilitation. Urban For. Urban Green. 2018, 29, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Minsker, B.; Sullivan, W.; Band, L. A novel computational green infrastructure design framework for hydrologic and human benefits. Environ. Model. Softw. 2019, 118, 252–261. [Google Scholar] [CrossRef]
- Stoltz, J.; Grahn, P. Perceived sensory dimensions: Key aesthetic qualities for health-promoting urban green spaces. J. Biomed. Res. 2021, 2, 22–29. [Google Scholar]
Age | <25 Years 82% | 25–30 Years 14.5% | >30 Years 3.5% |
---|---|---|---|
Gender | male 45% | female 55% | |
Occupation | Undergraduate 70.5 | Graduate 19.5 |
Mystery | |
---|---|
Physical access | [20,21,22,23] |
Visual access | [20,21,29] |
Complexity | |
Variety of elements | [38,47,48,51,53,54,56,75,76,79] |
Number of colors | [39,62,63,65,67,75,76] |
Organization | [71,72,74,75,76,80] |
Coherence | |
Uniformity | [7,37] |
Organization | [38,47,81] |
Legibility | |
Wayfinding | [31,32] |
Distinctive elements |
Predictors | Visual Attributes | Levels | |
---|---|---|---|
Mystery | Physical access | Curved | Straight |
Visual access | None | Full | |
Complexity | Variety of elements | 3 | 9 |
Number of colors | 2 | 4 | |
Organization | Asymmetry | Symmetry | |
Coherence | Uniformity | 1 | 3 |
Organization | Scattered | Clustered Formal | |
Legibility | Distinctive elements | Included | Excluded |
Wayfinding | Included | Excluded |
Attributes | Reference Levels | PV a | SE | p | St.dv | SE | p-Value | |
---|---|---|---|---|---|---|---|---|
Mystery | ||||||||
Visual access (high) | Medium | β1 | 0.226 | 0.091 | <0.01 | 1.49 | 0.549 | <0.001 |
Physical access (curve) | Straight | −0.009 | 0.058 | 0.875 | - | - | - | |
Complexity | ||||||||
Variety of elements (9-high) | 3-low | β2 | 0.559 | 0.089 | <0.0001 | 1.7 | 0.442 | <0.0001 |
Number of colors (4-high) | 2-low | β3 | 0.29 | 0.086 | <0.0001 | 0.635 | 0.175 | <0.0001 |
Organization (symmetry) | Asymmetry | β4 | 0.208 | 0.080 | <0.001 | - | - | - |
Coherence | ||||||||
Uniformity (3-high) | 1-low | β5 | 0.474 | 0.103 | <0.0001 | 0.975 | 0.185 | <0.0001 |
Organization (formal) | Scattershot | −0.003 | 0.087 | 0.969 | −1.17 | 0.573 | <0.05 | |
Organization (clustered) | Scattershot | −0.060 | 0.085 | 0.484 | - | - | - | |
Legibility | ||||||||
Wayfinding (included) | Excluded | β6 | 0.168 | 0.094 | <0.1 | 1.41 | 0.669 | <0.05 |
Distinctive elements (included) | Excluded | 0.094 | 0.1 | 0.348 | 0.878 | 0.189 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayestefar, M.; Pazhouhanfar, M.; van Oel, C.; Grahn, P. Exploring the Influence of the Visual Attributes of Kaplan’s Preference Matrix in the Assessment of Urban Parks: A Discrete Choice Analysis. Sustainability 2022, 14, 7357. https://doi.org/10.3390/su14127357
Shayestefar M, Pazhouhanfar M, van Oel C, Grahn P. Exploring the Influence of the Visual Attributes of Kaplan’s Preference Matrix in the Assessment of Urban Parks: A Discrete Choice Analysis. Sustainability. 2022; 14(12):7357. https://doi.org/10.3390/su14127357
Chicago/Turabian StyleShayestefar, Marjan, Mahdieh Pazhouhanfar, Clarine van Oel, and Patrik Grahn. 2022. "Exploring the Influence of the Visual Attributes of Kaplan’s Preference Matrix in the Assessment of Urban Parks: A Discrete Choice Analysis" Sustainability 14, no. 12: 7357. https://doi.org/10.3390/su14127357