Effects of Interface Design and Live Atmosphere on Consumers’ Impulse-Buying Behaviour from the Perspective of Human–Computer Interaction
Abstract
:1. Introduction
- Do interface design and live atmosphere affect consumers’ impulse-buying behaviour, and what is its underlying mechanism?
- Do inner-consumer states, such as visual appeal, perceived arousal and consumer engagement, affect consumers’ impulse-buying behaviour, and what are its specific manifestations?
2. Literature Review
2.1. Impulse Buying in Other Scenarios
2.2. Impulse Buying under Live E-Commerce
2.3. Research Gap
3. Theoretical Basis and Research Hypothesis
3.1. Theoretical Basis
3.2. Research Hypothesis
4. Research Design
4.1. Research Method
4.2. Participants
4.3. Statistical Analysis
5. Data Analysis
5.1. Measurement Model
5.2. Structural Model
6. Results
7. Discussion
7.1. Implications
7.2. Limitations and Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahrel, M.Z.; Mutalib, S.; Abdul-Rahman, S. PriceCop-Price Monitor and Prediction Using Linear Regression and LSVM-ABC Methods for E-commerce Platform. Int. J. Inf. Eng. Electron. Bus. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Pejic-Bach, M. Editorial: Electronic Commerce in the Time of COVID-19-Perspectives and Challenges. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1. [Google Scholar] [CrossRef]
- de Wit, J.; van der Kraan, A.; Theeuwes, J. Live Streams on Twitch Help Viewers Cope With Difficult Periods in Life. Front. Psychol. 2020, 11, 3162. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, P.; Gottwald, W. Impulsive consumer buying as a result of emotions. J. Bus. Res. 1982, 10, 43–57. [Google Scholar] [CrossRef]
- Abdelsalam, S.; Salim, N.; Alias, R.A.; Husain, O. Understanding Online Impulse Buying Behavior in Social Commerce: A Systematic Literature Review. IEEE Access 2020, 8, 89041–89058. [Google Scholar] [CrossRef]
- Park, C.H.; Park, Y.-H.; Schweidel, D.A. The effects of mobile promotions on customer purchase dynamics. Int. J. Res. Mark. 2018, 35, 453–470. [Google Scholar] [CrossRef]
- Xiao, S.H.; Nicholson, M. A Multidisciplinary Cognitive Behavioural Framework of Impulse Buying: A Systematic Review of the Literature. Int. J. Manag. Rev. 2013, 15, 333–356. [Google Scholar] [CrossRef]
- Adelaar, T.; Chang, S.; Lancendorfer, K.M.; Lee, B.; Morimoto, M. Effects of media formats on emotions and impulse buying intent. J. Inf. Technol. 2003, 18, 247–266. [Google Scholar] [CrossRef]
- Lim, S.H.; Lee, S.; Kim, D.J. Is Online Consumers’ Impulsive Buying Beneficial for E-Commerce Companies? An Empirical Investigation of Online Consumers’ Past Impulsive Buying Behaviors. Inf. Syst. Manag. 2017, 34, 85–100. [Google Scholar] [CrossRef]
- Rook, D.W. The Buying Impulse. J. Consum. Res. 1987, 14, 189–199. [Google Scholar] [CrossRef]
- Liang, C.-C.; Yu, A.P.-I.; Le, T.H. Customers focus and impulse buying at night markets. J. Retail. Consum. Serv. 2021, 60, 102434. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Lv, X.; Li, H. To buy or not to buy? The effect of time scarcity and travel experience on tourists’ impulse buying. Ann. Tour. Res. 2021, 86, 103083. [Google Scholar] [CrossRef]
- Bao, Z.; Yang, J. Why online consumers have the urge to buy impulsively: Roles of serendipity, trust and flow experience. Manag. Decis. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, C.-D.; Cheng, H.-W.; Wang, J.-L. Determinants of live streamers’ continuance broadcasting intentions on Twitch: A self-determination theory perspective. Telemat. Inform. 2018, 35, 406–420. [Google Scholar] [CrossRef]
- Xu, P.; Cui, B.-j.; Lyu, B. Influence of Streamer’s Social Capital on Purchase Intention in Live Streaming E-Commerce. Front. Psychol. 2022, 12, 6194. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, M.; Wang, Y. Why do audiences choose to keep watching on live video streaming platforms? An explanation of dual identification framework. Comput. Hum. Behav. 2017, 75, 594–606. [Google Scholar] [CrossRef]
- Clover, V.T. Relative Importance of Impulse-Buying in Retail Stores. J. Mark. 1950, 15, 66–70. [Google Scholar] [CrossRef]
- Cobb, C.J.; Hoyer, W.D. Planned versus impulse purchase behavior. J. Retail. 1986, 62, 384–409. [Google Scholar]
- Liu, Y.; Li, H.; Hu, F. Website attributes in urging online impulse purchase: An empirical investigation on consumer perceptions. Decis. Support Syst. 2013, 55, 829–837. [Google Scholar] [CrossRef]
- Parboteeah, D.V.; Valacich, J.S.; Wells, J.D. The Influence of Website Characteristics on a Consumer’s Urge to Buy Impulsively. Inf. Syst. Res. 2009, 20, 60–78. [Google Scholar] [CrossRef]
- Floh, A.; Madlberger, M. The role of atmospheric cues in online impulse-buying behavior. Electron. Commer. Res. Appl. 2013, 12, 425–439. [Google Scholar] [CrossRef]
- Bellini, S.; Cardinali, M.G.; Grandi, B. A structural equation model of impulse buying behaviour in grocery retailing. J. Retail. Consum. Serv. 2017, 36, 164–171. [Google Scholar] [CrossRef]
- Mohan, G.; Sivakumaran, B.; Sharma, P. Impact of store environment on impulse buying behavior. Eur. J. Mark. 2013, 47, 1711–1732. [Google Scholar] [CrossRef]
- Badgaiyan, A.J.; Verma, A. Does urge to buy impulsively differ from impulsive buying behaviour? Assessing the impact of situational factors. J. Retail. Consum. Serv. 2015, 22, 145–157. [Google Scholar] [CrossRef]
- Sokić, K.; Korkut, D. The Influence of Impulsivity and Values on Impulsive Buying. Enterp. Res. Innov. 2020, 6, 18–26. [Google Scholar]
- Yu, C.; Bastin, M. Hedonic Shopping Value and Impulse Buying Behavior in Transitional Economies: A Symbiosis in the Mainland China Marketplace. In Advances in Chinese Brand Management; Balmer, J.M.T., Chen, W., Eds.; Palgrave Macmillan: London, UK, 2017; pp. 316–330. [Google Scholar] [CrossRef]
- Akram, U.; Hui, P.; Khan, M.K.; Yan, C.; Akram, Z. Factors Affecting Online Impulse Buying: Evidence from Chinese Social Commerce Environment. Sustainability 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Aragoncillo, L.; Orus, C. Impulse buying behaviour: An online-offline comparative and the impact of social media. Span. J. Mark-ESIC 2018, 22, 42–62. [Google Scholar] [CrossRef] [Green Version]
- Triwidisari, A.; Nurkhin, A.; Muhsin, M. The Relationships Between Instagram Social Media Usage, Hedonic Shopping Motives and Financial Literacy on Impulse Buying. Din. Pendidik. 2017, 12, 12. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Men, J.; Zheng, X. Consumer perceived value and impulse buying behavior on mobile commerce: The moderating effect of social influence. J. Retail. Consum. Serv. 2021, 63, 102683. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, K.Z.K.; Zhao, S.J. A dual systems model of online impulse buying. Ind. Manag. Data Syst. 2020, 120, 845–861. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A.; Dehouche, N.; Assarut, N. Live streaming commerce from the sellers’ perspective: Implications for online relationship marketing. J. Mark. Manag. 2020, 36, 488–518. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, Y.-C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Cao, C.; Zheng, M.; Xu, Q.; Shao, X.; Jiang, C. Research on the construction mechanism of consumers trust intentions and behaviors in the context of live streaming shopping. In Proceedings of the 21st International Conference on Electronic Business: Corporate Resilience through Electronic Business in the Post-COVID Era, ICEB 2021, Virtual Online, China, 3–7 December 2021; pp. 353–363. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Koniew, M. Classification of the User’s Intent Detection in Ecommerce systems-Survey and Recommendations. Int. J. Inf. Eng. Electron. Bus. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Su, X. An Empirical Study on the Influencing Factors of E-Commerce Live Streaming. In Proceedings of the 2019 International Conference on Economic Management and Model Engineering (ICEMME), Malacca, Malaysia, 6–8 December 2019; pp. 492–496. [Google Scholar]
- Li, D.H.; Zhang, G.Z.; Xu, Z.; Lan, Y.; Shi, Y.D.; Liang, Z.Y.; Chen, H.W. Modelling the Roles of Cewebrity Trust and Platform Trust in Consumers’ Propensity of Live-Streaming: An Extended TAM Method. Comput. Mater. Contin. 2018, 55, 137–150. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wang, Y.; Zhao, L. How to retain customers: Understanding the role of trust in live streaming commerce with a socio-technical perspective. Comput. Hum. Behav. 2022, 127, 107052. [Google Scholar] [CrossRef]
- Ang, T.; Wei, S.; Anaza, N.A. Livestreaming vs pre-recorded. Eur. J. Mark. 2018, 52, 2075–2104. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N.; Wang, J. The Influencing Factors on Impulse Buying Behavior of Consumers under the Mode of Hunger Marketing in Live Commerce. Sustainability 2022, 14, 2122. [Google Scholar] [CrossRef]
- Gong, X.; Ye, Z.; Liu, K.; Wu, N. The Effects of Live Platform Exterior Design on Sustainable Impulse Buying: Exploring the Mechanisms of Self-Efficacy and Psychological Ownership. Sustainability 2020, 12, 2406. [Google Scholar] [CrossRef] [Green Version]
- Donovan, R.J.; Rossiter, J.R.; Marcoolyn, G.; Nesdale, A. Store atmosphere and purchasing behavior. J. Retail. 1994, 70, 283–294. [Google Scholar] [CrossRef]
- Chang, H.-J.; Eckman, M.; Yan, R.-N. Application of the Stimulus-Organism-Response model to the retail environment: The role of hedonic motivation in impulse buying behavior. Int. Rev. Retail. Distrib. Consum. Res. 2011, 21, 233–249. [Google Scholar] [CrossRef]
- Jung Chang, H.; Yan, R.-N.; Eckman, M. Moderating effects of situational characteristics on impulse buying. Int. J. Retail. Distrib. Manag. 2014, 42, 298–314. [Google Scholar] [CrossRef]
- Chan, T.K.H.; Cheung, C.M.K.; Lee, Z.W.Y. The state of online impulse-buying research: A literature analysis. Inf. Manag. 2017, 54, 204–217. [Google Scholar] [CrossRef]
- Zheng, X.; Men, J.; Yang, F.; Gong, X. Understanding impulse buying in mobile commerce: An investigation into hedonic and utilitarian browsing. Int. J. Inf. Manag. 2019, 48, 151–160. [Google Scholar] [CrossRef]
- Xiang, L.; Zheng, X.; Lee, M.K.O.; Zhao, D. Exploring consumers’ impulse buying behavior on social commerce platform: The role of parasocial interaction. Int. J. Inf. Manag. 2016, 36, 333–347. [Google Scholar] [CrossRef]
- Sohn, S.; Seegebarth, B.; Moritz, M. The Impact of Perceived Visual Complexity of Mobile Online Shops on User’s Satisfaction. Psychol. Mark. 2017, 34, 195–214. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Gopinath, M.; Nyer, P.U. The Role of Emotions in Marketing. J. Acad. Mark. Sci. 1999, 27, 184–206. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wu, C.-J. Influence of Website Design on Consumer Emotion and Purchase Intention in Travel Websites. Int. J. Technol. Hum. Interact. 2016, 12, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.-F.; Wu, C.-S.; Leiner, B. The influence of user interface design on consumer perceptions: A cross-cultural comparison. Comput. Hum. Behav. 2019, 101, 394–401. [Google Scholar] [CrossRef]
- Roggeveen, A.L.; Grewal, D.; Schweiger, E.B. The DAST Framework for Retail Atmospherics: The Impact of In- and Out-of-Store Retail Journey Touchpoints on the Customer Experience. J. Retail. 2020, 96, 128–137. [Google Scholar] [CrossRef]
- Eroglu, S.A.; Machleit, K.A.; Davis, L.M. Empirical testing of a model of online store atmospherics and shopper responses. Psychol. Mark. 2003, 20, 139–150. [Google Scholar] [CrossRef]
- van Doorn, J.; Lemon, K.N.; Mittal, V.; Nass, S.; Pick, D.; Pirner, P.; Verhoef, P.C. Customer Engagement Behavior: Theoretical Foundations and Research Directions. J. Serv. Res. 2010, 13, 253–266. [Google Scholar] [CrossRef]
- Zhou, L.; Wong, A. Consumer Impulse Buying and In-Store Stimuli in Chinese Supermarkets. J. Int. Consum. Mark. 2004, 16, 37–53. [Google Scholar] [CrossRef]
- Choi, H.; Kandampully, J. The effect of atmosphere on customer engagement in upscale hotels: An application of S-O-R paradigm. Int. J. Hosp. Manag. 2019, 77, 40–50. [Google Scholar] [CrossRef]
- Hansen, E.K.; Bjørner, T.; Xylakis, E.; Pajuste, M. An experiment of double dynamic lighting in an office responding to sky and daylight: Perceived effects on comfort, atmosphere and work engagement. Indoor Built Environ. 2022, 31, 355–374. [Google Scholar] [CrossRef]
- Baako, I.; Umar, S. An Integrated Vulnerability Assessment of Electronic Commerce Websites. Int. J. Inf. Eng. Electron. Bus. 2020, 12, 24–32. [Google Scholar] [CrossRef]
- Ali, F.; Amin, M.; Ryu, K. The Role of Physical Environment, Price Perceptions, and Consumption Emotions in Developing Customer Satisfaction in Chinese Resort Hotels. J. Qual. Assur. Hosp. Tour. 2016, 17, 45–70. [Google Scholar] [CrossRef]
- Lamberz, J.; Litfin, T.; Teckert, O.; Meeh-Bunse, G. Is there a Link between Sustainability, Perception and Buying Decision at the Point of Sale? Bus. Syst. Res. J. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Ha, Y.; Lennon, S.J. Effects of site design on consumer emotions: Role of product involvement. J. Res. Interact. Mark. 2010, 4, 80–96. [Google Scholar] [CrossRef]
- Hou, F.; Guan, Z.; Li, B.; Chong, A.Y.L. Factors influencing people’s continuous watching intention and consumption intention in live streaming. Internet Res. 2020, 30, 141–163. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wu, J.H.; Li, Q. What Drives Consumer Shopping Behavior in Live Streaming Commerce? J. Electron. Commer. Res. 2020, 21, 144–167. [Google Scholar]
- Luo, M.; Hsu, T.W.; Park, J.S.; Hancock, J.T. Emotional Amplification During Live-Streaming: Evidence from Comments During and After News Events. Proc. ACM Hum-Comput. Interact. 2020, 4, 47. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, D.; Chen, X. Happiness Begets Money: Emotion and Engagement in Live Streaming. J. Mark. Res. 2021, 58, 417–438. [Google Scholar] [CrossRef]
- Iyer, G.R.; Blut, M.; Xiao, S.H.; Grewal, D. Impulse buying: A meta-analytic review. J. Acad. Mark. Sci. 2020, 48, 384–404. [Google Scholar] [CrossRef] [Green Version]
- Koo, D.-M.; Ju, S.-H. The interactional effects of atmospherics and perceptual curiosity on emotions and online shopping intention. Comput. Hum. Behav. 2010, 26, 377–388. [Google Scholar] [CrossRef]
- Kim, A.J.; Johnson, K.K.P. Power of consumers using social media: Examining the influences of brand-related user-generated content on Facebook. Comput. Hum. Behav. 2016, 58, 98–108. [Google Scholar] [CrossRef]
- Malthouse, E.C.; Calder, B.J.; Kim, S.J.; Vandenbosch, M. Evidence that user-generated content that produces engagement increases purchase behaviours. J. Mark. Manag. 2016, 32, 427–444. [Google Scholar] [CrossRef]
- Vazquez, D.; Wu, X.; Nguyen, B.; Kent, A.; Gutierrez, A.; Chen, T. Investigating narrative involvement, parasocial interactions, and impulse buying behaviours within a second screen social commerce context. Int. J. Inf. Manag. 2020, 53, 102135. [Google Scholar] [CrossRef]
- Valentini, C.; Romenti, S.; Murtarelli, G.; Pizzetti, M. Digital visual engagement: Influencing purchase intentions on Instagram. J. Commun. Manag. 2018, 22, 362–381. [Google Scholar] [CrossRef]
- Lepkowska-White, E. Online Store Perceptions: How to Turn Browsers into Buyers? J. Mark. Theory Pract. 2004, 12, 36–47. [Google Scholar] [CrossRef]
- van der Heijden, H. Factors influencing the usage of websites: The case of a generic portal in The Netherlands. Inf. Manag. 2003, 40, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Stoel, L. Apparel retailers: Website quality dimensions and satisfaction. J. Retail. Consum. Serv. 2004, 11, 109–117. [Google Scholar] [CrossRef]
- Dickson, J.; Albaum, G. A Method for Developing Tailormade Semantic Differentials for Specific Marketing Content Areas. J. Mark. Res. 1977, 14, 87–91. [Google Scholar] [CrossRef]
- Mikutta, C.A.; Schwab, S.; Niederhauser, S.; Wuermle, O.; Strik, W.; Altorfer, A. Music, perceived arousal, and intensity: Psychophysiological reactions to Chopin’s “Tristesse”. Psychophysiology 2013, 50, 909–919. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Glynn, M.S.; Brodie, R.J. Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. J. Interact. Mark. 2014, 28, 149–165. [Google Scholar] [CrossRef]
- Kacen, J.J.; Lee, J.A. The Influence of Culture on Consumer Impulsive Buying Behavior. J. Consum. Psychol. 2002, 12, 163–176. [Google Scholar] [CrossRef]
- Beatty, S.E.; Elizabeth Ferrell, M. Impulse buying: Modeling its precursors. J. Retail. 1998, 74, 169–191. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, G.V. Partial least squares structural equation modeling (PLS-SEM). Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Eid, R.; El-Kassrawy, Y.A.; Agag, G. Integrating Destination Attributes, Political (In)Stability, Destination Image, Tourist Satisfaction, and Intention to Recommend: A Study of UAE. J. Hosp. Tour. Res. 2019, 43, 839–866. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly”. MIS Q. 2012, 36, iii–xiv. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Fang, J.M.; Zhao, Z.R.; Wen, C.; Wang, R.P. Design and performance attributes driving mobile travel application engagement. Int. J. Inf. Manag. 2017, 37, 269–283. [Google Scholar] [CrossRef]
- Bhandari, U.; Neben, T.; Chang, K.; Chua, W.Y. Effects of interface design factors on affective responses and quality evaluations in mobile applications. Comput. Hum. Behav. 2017, 72, 525–534. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Ling, L. Exploring the Influence of Live Streaming in Mobile Commerce on Adoption Intention From a Social Presence Perspective. Int. J. Mob. Hum. Comput. Interact. 2020, 12, 53–71. [Google Scholar] [CrossRef]
- Hussain, R.; Ali, M. Effect of Store Atmosphere on Consumer Purchase Intention. Int. J. Mark. Stud. 2015, 7, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Jiyoung, K.; Lennon, S.J. Effects of reputation and website quality on online consumers’ emotion, perceived risk and purchase intention: Based on the stimulus-organism-response model. J. Res. Interact. Mark. 2013, 7, 33–56. [Google Scholar] [CrossRef]
- Iberahim, H.; Zulkurnain, N.A.Z.; Raja Ainal Shah, R.N.S.; Rosli, S.Q. Visual Merchandising and Customers’ Impulse Buying Behavior: A Case of a Fashion Specialty Store. Int. J. Serv. Manag. Sustain. 2020, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-P.; Zheng, X.-L.; Chiu, C.-K.; Lei, J.; Yang, G.; Kim, H.; Wang, F. Towards Figurative Expression Enhancement: Effects of the SVVR-Supported Worked Example Approach on the Descriptive Writing of Highly Engaged Students. Sustainability 2021, 13, 12260. [Google Scholar] [CrossRef]
- Patterson, P.G.; Spreng, R.A. Modelling the relationship between perceived value, satisfaction and repurchase intentions in a business-to-business, services context: An empirical examination. Int. J. Serv. Ind. 1997, 8, 414–434. [Google Scholar] [CrossRef]
- Chang, E.-C.; Tseng, Y.-F. Research note: E-store image, perceived value and perceived risk. J. Bus. Res. 2013, 66, 864–870. [Google Scholar] [CrossRef]
- Corbitt, B.J.; Thanasankit, T.; Yi, H. Trust and e-commerce: A study of consumer perceptions. Electron. Commer. Res. Appl. 2003, 2, 203–215. [Google Scholar] [CrossRef]
- Wu, I.-L.; Chen, K.-W.; Chiu, M.-L. Defining key drivers of online impulse purchasing: A perspective of both impulse shoppers and system users. Int. J. Inf. Manag. 2016, 36, 284–296. [Google Scholar] [CrossRef]
Measure | Category | Number | Percent |
---|---|---|---|
Gender | Male | 147 | 43.4% |
Female | 192 | 56.6% | |
Age | <18 | 0 | 0.0% |
18–24 | 86 | 25.4% | |
25–34 | 93 | 27.4% | |
35–44 | 64 | 18.9% | |
45–54 | 45 | 13.3% | |
55–64 | 38 | 11.2% | |
Over 65 | 13 | 3.8% | |
Education | High School | 72 | 21.2% |
College | 41 | 12.1% | |
Undergraduate | 129 | 38.1% | |
Postgraduate | 97 | 28.6% | |
Live-Streaming-Shopping Frequency | At least once a month | 37 | 10.9% |
2–5 times a month | 134 | 39.5% | |
6–10 times a month | 103 | 30.4% | |
More than 10 times a month | 65 | 19.2% |
Construct | Item | CA | CR | AVE | Source |
---|---|---|---|---|---|
Impulse-Buying Behaviour | Impul | 0.948 | 0.966 | 0.906 | [80,81] |
Visual Appeal | Visua | 0.882 | 0.927 | 0.809 | [20] |
Consumer-Perceived Arousal | Arous | 0.932 | 0.951 | 0.830 | [78] |
Customer Engagement | Engag | 0.953 | 0.970 | 0.914 | [79] |
Interface Design | Inter | 0.844 | 0.906 | 0.762 | [74,75,76] |
Live-Streaming Atmosphere | Atmos | 0.920 | 0.949 | 0.862 | [77] |
Impul | Visua | Arous | Engag | Inter | Atmos | |
---|---|---|---|---|---|---|
Impul.1 | 0.958 | 0.758 | 0.665 | 0.482 | 0.810 | 0.476 |
Impul.2 | 0.942 | 0.717 | 0.645 | 0.487 | 0.785 | 0.484 |
Impul.3 | 0.954 | 0.730 | 0.694 | 0.510 | 0.816 | 0.580 |
Visua.1 | 0.729 | 0.920 | 0.610 | 0.248 | 0.661 | 0.306 |
Visua.2 | 0.703 | 0.904 | 0.571 | 0.272 | 0.657 | 0.269 |
Visua.3 | 0.648 | 0.874 | 0.517 | 0.296 | 0.608 | 0.303 |
Arous.1 | 0.681 | 0.622 | 0.916 | 0.028 | 0.701 | 0.625 |
Arous.2 | 0.637 | 0.550 | 0.905 | −0.018 | 0.682 | 0.598 |
Arous.3 | 0.641 | 0.578 | 0.923 | 0.000 | 0.699 | 0.619 |
Arous.4 | 0.599 | 0.547 | 0.900 | −0.038 | 0.664 | 0.547 |
Engag.1 | 0.498 | 0.285 | −0.013 | 0.961 | 0.338 | 0.202 |
Engag.2 | 0.475 | 0.282 | −0.007 | 0.947 | 0.321 | 0.168 |
Engag.3 | 0.512 | 0.297 | 0.001 | 0.960 | 0.344 | 0.190 |
Inter.1 | 0.736 | 0.566 | 0.651 | 0.282 | 0.855 | 0.486 |
Inter.2 | 0.762 | 0.671 | 0.691 | 0.305 | 0.900 | 0.443 |
Inter.3 | 0.713 | 0.630 | 0.631 | 0.329 | 0.863 | 0.427 |
Atmos.1 | 0.508 | 0.304 | 0.628 | 0.169 | 0.488 | 0.935 |
Atmos.2 | 0.528 | 0.299 | 0.598 | 0.225 | 0.487 | 0.938 |
Atmos.3 | 0.467 | 0.304 | 0.604 | 0.151 | 0.463 | 0.912 |
Impul | Visua | Arous | Engag | Inter | Atmos | |
---|---|---|---|---|---|---|
Impul | 0.952 | |||||
Visua | 0.772 | 0.899 | ||||
Arous | 0.703 | 0.631 | 0.911 | |||
Engag | 0.518 | 0.301 | −0.007 | 0.956 | ||
Inter | 0.845 | 0.714 | 0.754 | 0.350 | 0.873 | |
Atmos | 0.540 | 0.325 | 0.657 | 0.196 | 0.517 | 0.928 |
Path Relationship | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics (|O/STDEV|) | p Values |
---|---|---|---|---|---|
Visua → Impul | 0.333 | 0.335 | 0.033 | 10.224 | 0.000 |
Arous → Impul | 0.495 | 0.494 | 0.039 | 12.861 | 0.000 |
Engag → Impul | 0.421 | 0.421 | 0.031 | 13.599 | 0.000 |
Inter → Visua | 0.714 | 0.716 | 0.025 | 28.693 | 0.000 |
Inter → Arous | 0.565 | 0.566 | 0.041 | 13.946 | 0.000 |
Atmos → Arous | 0.365 | 0.365 | 0.045 | 8.046 | 0.000 |
Atmos → Engag | 0.196 | 0.199 | 0.071 | 2.742 | 0.006 |
Number | Research Hypothesis | Supported (YES/NO) |
---|---|---|
NO. 1 | Interface design significantly and positively affects visual appeal. | YES |
NO. 2 | Interface design significantly and positively affects consumers’ perceived arousal. | YES |
NO. 3 | The live-streaming atmosphere of live streaming significantly and positively affects consumers’ perceived arousal. | YES |
NO. 4 | A live atmosphere significantly and positively affects consumer engagement. | YES |
NO. 5 | Visual appeal significantly and positively affects impulse-buying behaviour. | YES |
NO. 6 | Consumer-perceived arousal significantly and positively influences their impulse-buying behaviour. | YES |
NO. 7 | Consumer engagement significantly and positively affects impulse-buying behaviour. | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Cao, C.; Ye, C.; Shi, Y. Effects of Interface Design and Live Atmosphere on Consumers’ Impulse-Buying Behaviour from the Perspective of Human–Computer Interaction. Sustainability 2022, 14, 7110. https://doi.org/10.3390/su14127110
Yang J, Cao C, Ye C, Shi Y. Effects of Interface Design and Live Atmosphere on Consumers’ Impulse-Buying Behaviour from the Perspective of Human–Computer Interaction. Sustainability. 2022; 14(12):7110. https://doi.org/10.3390/su14127110
Chicago/Turabian StyleYang, Jinjing, Cong Cao, Chensang Ye, and Yangyan Shi. 2022. "Effects of Interface Design and Live Atmosphere on Consumers’ Impulse-Buying Behaviour from the Perspective of Human–Computer Interaction" Sustainability 14, no. 12: 7110. https://doi.org/10.3390/su14127110