Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Plot Design
2.2. Soil Conditions
2.3. Agronomic Traits
2.4. Stress Resistance Indicators
2.5. Biochemical Parameters
2.6. Meteorological Conditions
2.7. Statistical Analysis
3. Results
3.1. Agronomic Parameters
3.2. Stress Resistance Indicators
3.3. Stability Performance of Analyzed Genotypes
3.4. Biochemical Parameters
3.5. Inter-Relationships among Analyzed Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Okur, B.; Örçen, N. Soil salinization and climate change. In Climate Change and Soil Interactions; Narasimha, M., Prasad, V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–350. [Google Scholar]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Jat Sarkar, H.; Sharma Chander, P.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar]
- Liu, X.; Chen, D.; Yang, T.; Huang, F.; Fu, S.; Li, L. Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indic. 2020, 110, 105925. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Li, X.; Zhang, Z.; Yu, X.; Gao, Z.; Wang, Y.; Wang, J.; Li, Z.; Mu, C. Salinity-alkalinity tolerance in wheat: Seed germination, early seedling growth, ion relations and solute accumulation. Afr. J. Agric. Res. 2012, 7, 467–474. [Google Scholar]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Rahim, J.; Naeem, W.; Hassan, S.; Khattab, Y.; El-Sabagh, A. Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull. 2021, 30, 3115–3121. [Google Scholar]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Mauricho, G. Crops that feed the world 10. Past scuccesses and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Desoky, E.S.M.; Ali, M.; Yasin, M.A.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Crouch, J.H.; Payne, T.S.; Dreisigacker, S.; Wu, H.; Braun, H.J. Improved discovery and utilization of new traits for breeding. In Wheat Facts and Futures; Dixon, J., Braun, H.J., Kosina, P., Crouch, J., Eds.; CIMMYT: Mexico City, Mexico, 2009; pp. 42–51. [Google Scholar]
- Oyiga, B.C.; Sharma, R.; Shen, J.; Baum, M.; Ogbonnaya, F.; Leon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Moustafa, E.S.A.; Ali, M.M.A.; Kamara, M.M.; Awad, M.F.; Hassanin, A.A.; Mansour, E. Field sreening of wheat advanced lines for salinity tolerance. Agronomy 2021, 11, 281. [Google Scholar] [CrossRef]
- Saddiq, M.S.; Iqbal, S.; Hafeez, M.B.; Ibrahim, A.M.; Raza, A.; Fatima, E.M.; Baloch, H.; Woodrow, P.; Ciarmiello, L.F. Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 2021, 11, 1193. [Google Scholar] [CrossRef]
- Dimitrijević, M.; Petrović, S.; Banjac, B. Variation of phenotypic markers of wheat yield on alkalized soil. Sel. I Semen. 2013, 19, 1–9. (In Serbian) [Google Scholar]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Allel, D.; BenAmar, A.; Badri, M.; Abdelly, C. Evaluation of salinity tolerance indices in North African barley accessions at reproductive stage. Czech J. Genet. Plant Breed. 2019, 55, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Hafiz, H.R.; Siddiqui, N.; Khatun, M.; Islam, R.; Al-Mamun, A. Evaluation on wheat genotypes for salt tolerance based on some physiological traits. J. Crop Sci. Biotech. 2015, 18, 333–340. [Google Scholar] [CrossRef]
- Nadeem, M.; Tariq, M.N.; Amjad, M.; Sajjad, M.; Akram, M.; Imran, M.; Shariati, M.A.; Gondal, T.A.; Kenijz, N.; Kulikov, D. Salinity-induced changes in the nutritional quality of bread wheat (Triticum aestivum L.) genotypes. Agrivita J. Agric. Sci. 2020, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Ashkar, I.; Alderfasi, A.; Romdhane, W.B.; Seleiman, M.F.; El-Said, R.A.; Al-Doss, A. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 2020, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Zeeshan, M.; Lu, M.; Sehar, S.; Holford, P.; Wu, F. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 2020, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Arzani, A.; Ashraf, M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci. 2016, 35, 146–189. [Google Scholar] [CrossRef]
- El-Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity stress in wheat (Triticum aestivum L.) in the shanging climatte: Adaptation and management strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Khokhar, M.I.; Hussain, M.; Anwar, J.; Zulkiffal, M.; Iqbal, M.M.; Khan, S.B.; Khan, A.; Qayyum, A.; Sabir, W.; Mehmood, S. Correlation and path analysis for yield and yield contributing characters in wheat (Triticum aestivum L.). Acta Agric. Serb. 2017, 15, 19–24. [Google Scholar]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Rajput, V.D.; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; Mandzhieva, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Parvin, K.; Bhuiyan, T.F.; Anee, T.I.; Nahar, K.; Hossen, M.; Zulfiqar, F.; Alam, M.; Fujita, M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 2020, 21, 8695. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Caverzan, A.; Casassola, A.; Patussi Brammer, S. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 2016, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bistgani, Z.E.; Hashemi, M.; da Costa, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crop. Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Aly, A.A. Alternations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am.-Eurasian J. Sci. Res. 2008, 3, 139–146. [Google Scholar]
- Sytar, O.; Mbarki, S.; Zivčak, M.; Brestić, M. The involvement of different secondary metabolites in salinity tolerance of crops. In Salinity Responses and Tolerance in Plants; Kumar, V., Wani, S., Suprasanna, P., Tran, L.S., Eds.; Springer: Cham, Switzerland, 2018; Volume 2, pp. 21–48. [Google Scholar]
- Chernane, H.; Latique, S.; Mansori, M.; El-Kaoua, M. Salt stress tolerance and antioxidative mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J. Agric. Vet. Sci. 2015, 8, 36–44. [Google Scholar]
- Kumar, S.; Beena, A.S.; Awana, M.; Singh, A. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant Sci. 2017, 8, 1151. [Google Scholar] [CrossRef] [Green Version]
- Kiani, R.; Arzani, A.; Mirmohammady Maibody, S.A.M. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops sylandrica and their amphidiploids. Front. Plant Sci. 2021, 12, 646221. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hu, Y.; Sakagami, J.I.; Schimidhalter, U. Screening Egyptian wheat genotypes for salt tolerance at early growth stages. Int. J. Plant Prod. 2011, 5, 1735–8043. [Google Scholar]
- Belić, M.; Nešić, L.; Dimitrijević, M.; Petrović, S.; Ćirić, V.; Pekeč, S.; Vasić, J. Impact of reclamation practices on the content and qualitative composition of exchangeable base cations of the solonetz soil. Aust. J. Crop Sci. 2012, 6, 1471–1480. [Google Scholar]
- Belić, M.; Nešić, L.; Ćirić, V. Types of halomorphic soils. In Reclamation of Halomorphic Soils; Manojlović, M., Ed.; University of Novi Sad, Faculty of Agriculture: Novi Sad, Serbia, 2014; pp. 12–37. [Google Scholar]
- Miljković, N.S. Fundamentals of Pedology; Faculty of Natural Science, Institute of Geography: Novi Sad, Serbia, 1996; p. 274. [Google Scholar]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield response. Aust. J. Agric. Res. 1978, 29, 897–907. [Google Scholar] [CrossRef]
- Hossain, A.B.S.; Sears, A.G.; Cox, T.S.; Paulsen, G.M. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci. 1990, 30, 622–627. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing stress tolerance. In Adaptation of Food Crops to Temperature and Water Stress; Kuo, C.G., Ed.; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 257–270. [Google Scholar]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campaline, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybean. Part. 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Lee, S.; Mbwambo, Z.; Chung, H.; Luyengi, L.; Gamez, E.; Mehta, R.; Kinghorn, A.; Pezzuto, J. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.; Harvey-Mueller, I.; Makkar, H.P.S. Quantification of Tannins in Tree Foliage—A Laboratory Manual; FAO/IAEA: Vienna, Austria, 2000; pp. 1–26. [Google Scholar]
- Republic Hydrometeorological Institute of Serbia. Available online: http://www.hidmet.gov.rs/ (accessed on 15 July 2021).
- IBM SPSS Statistics, Trial Version 22.0. Available online: https://www.ibm.com/ (accessed on 31 January 2021).
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of a yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- GenStat, Trial Version 18.1.0.17005. Available online: https://www.vsni.co.uk/ (accessed on 17 February 2021).
- R Project for Statistical Computing, Version 4.2.0 (2022-04-22 ucrt); R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 18 May 2022).
- Genc, Y.; Taylor, J.; Lyons, G.H.; Li, Y.; Cheong, J.; Appelbee, M.; Oldach, K.; Sutton, T. Bread wheat with high salinity and sodicity tolerance. Front. Plant Sci. 2019, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Gharib, M.; Qabil, N.; Salem, A.; Ali, M.; Awaad, H.; Mansour, E. Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits. Cereal Res. Commun. 2020, 49, 149–159. [Google Scholar] [CrossRef]
- Dimitrijević, M.; Petrović, S.; Banjac, B. Wheat breeding in abiotic stress conditions of solonetz. Genetika 2012, 44, 91–100. [Google Scholar] [CrossRef]
- Kalhoro, N.A.; Rajpar, I.; Kalhoro, S.A.; Ali, A.; Raza, S.; Ahmed, M.; Kalhoto, F.A.; Ramazan, M.; Wahid, F. Effect of salts stress on the growth and yield of wheat. Am. J. Plant Sci. 2016, 7, 2257–2271. [Google Scholar] [CrossRef] [Green Version]
- Otu, H.; Celiktas, V.; Duzenli, S.; Hossain, A.; El Sabagh, A. Germination and early seedling growth of five durum wheat cultivars (Triticum durum Desf.) is affected by different levels of salinity. Fresenius Environ. Bull. 2018, 27, 7746–7757. [Google Scholar]
- Nassar, R.; Kamel, H.A.; Ghoniem, A.E.; Alacon, J.J.; Sekara, A.; Ulrich, C.; Abdelhamid, M.T. Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 2020, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Mladenov, N.; Hristov, N.; Malešević, M.; Mladenović, G.; Kovačević, N. Dragana: New winter wheat cultivar. Zb. Inst. Ratar. I Povrt. 2001, 45, 5–14. [Google Scholar]
- Dadshani, S.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS ONE 2019, 14, e0222659. [Google Scholar] [CrossRef] [PubMed]
- Hammam, K.A.; Negim, O. Evaluation of wheat genotypes and some soil properties under saline water irrigation. Ann. Agric. Sci. 2014, 59, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sengar, R.S.; Kulshreshtha, N.; Datta, D.; Tomar, R.S.; Rao, V.P.; Garg, D.; Ojha, A. Assessment of multiple tolerance indices for salinity stress in bread wheat (Triticum aestivum L.). J. Agric. Sci. 2015, 7, 49–57. [Google Scholar] [CrossRef]
- El-Sayed, M.D.; Abdel-Rahman, M.M. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J. Agric. Sci. 2015, 7, 203–217. [Google Scholar]
- Kaur, G.; Asthir, B.; Bains, N.S. Modulation of proline metabolism under drought and salt stress conditions in wheat seedlings. Indian J. Biochem. Biop. 2018, 55, 114–124. [Google Scholar]
- Sadak, M.S.; Talaat, I.M. Attenuation of negative effects of saline stress in wheat plant by chitosan and calcium carbonate. Bull. Natl. Res. Cent. 2021, 45, 136. [Google Scholar] [CrossRef]
- Turki, N.; Harrabi, M.; Kazutoshi, O. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J. Arid Land Stud. 2012, 22, 311–314. [Google Scholar]
- Dugasa, T.; Bebie, B.; Tomer, R.; Barnabas, J. Efect of seed priming on salt tolerance of bread wheat (Triticum aestivum L.) varieties. J. Sci. Islamic Repub. Iran 2016, 6, 139–153. [Google Scholar]
- Hussain, N.; Ghafar, A.; Zafar, Z.U.; Javed, M.; Hussain Shah, K.; Noreen, S.; Manzoor, H.; Iqbal, M.; Zaky Hassan, F.; Bano, H.; et al. Identifcation of novel source of salt tolerance in local bread wheat germplasm using morpho-physiological and biochemical attributes. Sci. Rep. 2021, 11, 10854. [Google Scholar] [CrossRef]
No. | Genotype | Pedigree | Year of Approval |
---|---|---|---|
1. | Banatka | Local landrace cultivated in Banat (Vojvodina Province) in the 20th century | |
2. | Grbljanka | Local landrace cultivated in Montenegro in the 20th century | |
3. | Bankut 1205 | Bankut 5 × Marquis | 1953 |
4. | KG-75 | Kruševačka 9083 × Mara | 1966 |
5. | Šumadija | Mara × Funoto | 1968 |
6. | Kosmajka | Fiorelo × Mara × Leonardo | 1971 |
7. | Gružanka | Leonardo × Argento | 1972 |
8. | Morava | Mara × Fortunato | 1972 |
9. | Zastava | Besostaya 1 × Abbobdanza | 1973 |
10. | KG-56 | (Besostaya 1 × Halle Stamm) × Besostaya 1 | 1975 |
11. | Orašanka | (Besostaya 1 × Halle Stamm) × Besostaya 1 | 1976 |
12. | KG-58 | (Besostaya 1 × Halle Stamm) × Besostaya 1 | 1977 |
13. | KG-78 | (Besostaya 1× Halle Stamm) × Besostaya 1 | 1978 |
14. | Lepenica | Besostaya 1 × IW 66 | 1980 |
15. | Jugoslavija | (HC.646 × Besostaya 1) × Aurora | 1980 |
16. | Oplenka | Kavkaz × Kragujevčanka-56 | 1982 |
17. | Ljubičevka | Orašanka × Zastava | 1985 |
18. | Srbijanka | Kavkaz × L 29/60 | 1986 |
19. | Šumadinka | KG-56 и MVC-18 | 1988 |
20. | NSR-5 | [(NSR-1 × Tisa) × Partizanka)] × Mačvanka 1 | 1991 |
21. | Renesansa | Jugoslavija × NS 55-25 | 1994 |
22. | Pesma | NS 51-37 × Balkan | 1995 |
23. | Aleksandra | Pobeda × SSK 19/94 | 2007 |
24. | Perfekta | Pobeda × Studenica | 2009 |
25. | Harmonija | Vraca × Renesansa | 2012 |
26. | Rujna | (SK-54 × K-45968) × KG-56 S | 2013 |
27. | Premija | [(PI-159102 × Evropa) × Studenica)] × KG-2086 | 2013 |
October | November | December | January | February | March | April | May | June | Aver./Sum | |
---|---|---|---|---|---|---|---|---|---|---|
Kumane 2015/2016 | ||||||||||
Mean temperature (°C) | 11.9 | 8.2 | 3.4 | 0.5 | 7.8 | 7.9 | 14.5 | 16.8 | 21.8 | 10.3 |
Sum of precipitation (mm) | 72 | 43 | 0 | 58 | 77 | 56 | 28 | 62 | 164 | 560 |
Kumane 2016/2017 | ||||||||||
Mean temperature (°C) | 10.3 | 6.4 | −0.2 | −4.4 | 4.1 | 9.8 | 11.6 | 18.1 | 23.7 | 8.8 |
Sum of precipitation (mm) | 70 | 48 | 4 | 11 | 13 | 20 | 52 | 29 | 42 | 290 |
Rimski Šančevi 2015/2016 | ||||||||||
Mean temperature (°C) | 11.3 | 7.8 | 3.2 | 1.3 | 7.5 | 7.8 | 14.2 | 169.9 | 21.7 | 10.2 |
Sum of precipitation (mm) | 75 | 56 | 4 | 51 | 49 | 65 | 74 | 85 | 143 | 602 |
Rimski Šančevi 2016/2017 | ||||||||||
Mean temperature (°C) | 10.2 | 6.3 | −0.3 | −4.9 | 4.2 | 9.9 | 11.4 | 17.6 | 23.2 | 8.6 |
Sum of precipitation (mm) | 85 | 67 | 2 | 18 | 20 | 30 | 57 | 83 | 66 | 429 |
Source of Variation | df | Plant Height | Spike Weight | Number of Grains Per Spike | Thousand Grain Weight | Grain Yield/Plant |
---|---|---|---|---|---|---|
Sum of Squares (%) | ||||||
Genotype (G) | 26 | 38.68 ** | 8.54 ** | 8.24 ** | 21.64 ** | 9.38 ** |
Year (Y) | 1 | 4.48 ** | 22.06 ** | 13.01 ** | 19.36 ** | 24.29 ** |
Soil type (S) | 1 | 41.75 ** | 31.51 ** | 51.67 ** | 0.57 ** | 31.42 ** |
G × Y | 26 | 5.27 ** | 3.62 * | 5.91 ** | 9.41 ** | 6.74 ** |
G × S | 26 | 2.62 ** | 6.88 ** | 4.57 ** | 15.98 ** | 6.15 ** |
Y × S | 1 | 0.81 ** | 0.20 ns | 0.004 ns | 9.34 ** | 0.34 * |
G × Y × S | 26 | 2.98 ** | 10.33 ** | 6.96 ** | 18.49 ** | 9.39 ** |
Error | 216 | 3.42 | 16.87 | 9.63 | 5.19 | 12.26 |
Total | 323 | 100 | 100 | 100 | 100 | 100 |
No. | Genotype | Plant Height (cm) | Spike Weight (g) | Number of Grains Per Spike | Thousand Grain Weight (g) | Grain Yield/Plant (g) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Ch | S | Ch | S | Ch | S | Ch | S | Ch | ||||||||||||||||||||||
1. | Banatka | 105.1 | 124.0 | 114.6 | 1.1 | 2.2 | 1.7 | 22.6 | 35.7 | 29.2 | 35.9 | 39.8 | 37.8 | 3.2 | 5.0 | 4.1 | |||||||||||||||
2. | Grbljanka | 106.9 | 131.4 | 119.2 | 1.6 | 2.3 | 1.9 | 23.7 | 40.3 | 32.0 | 39.8 | 37.7 | 38.7 | 3.5 | 5.3 | 4.4 | |||||||||||||||
3. | Bankut 1205 | 87.2 | 98.4 | 92.8 | 1.5 | 2.5 | 2.0 | 30.0 | 46.7 | 38.4 | 38.7 | 39.6 | 39.1 | 3.8 | 6.4 | 5.1 | |||||||||||||||
4. | KG-75 | 93.8 | 112.6 | 103.2 | 1.5 | 2.1 | 1.8 | 26.0 | 36.5 | 31.2 | 38.9 | 39.3 | 39.1 | 3.4 | 5.1 | 4.2 | |||||||||||||||
5. | Šumadija | 78.4 | 99.4 | 88.9 | 1.5 | 1.6 | 1.6 | 29.8 | 35.7 | 32.7 | 36.8 | 30.3 | 33.5 | 3.8 | 3.7 | 3.7 | |||||||||||||||
6. | Kosmajka | 76.7 | 93.2 | 84.9 | 1.3 | 2.0 | 1.6 | 23.5 | 34.0 | 28.7 | 37.2 | 41.2 | 39.2 | 3.0 | 4.8 | 3.9 | |||||||||||||||
7. | Gružanka | 74.4 | 92.2 | 83.3 | 1.5 | 2.1 | 1.8 | 27.6 | 41.4 | 34.5 | 37.4 | 37.1 | 37.2 | 3.5 | 5.5 | 4.5 | |||||||||||||||
8. | Morava | 74.5 | 90.3 | 82.4 | 1.4 | 2.9 | 2.2 | 25.5 | 39.6 | 32.6 | 41.4 | 39.7 | 40.5 | 3.7 | 5.5 | 4.6 | |||||||||||||||
9. | Zastava | 72.6 | 95.9 | 84.2 | 1.4 | 2.4 | 1.9 | 25.0 | 42.8 | 33.9 | 38.3 | 37.7 | 38.0 | 3.2 | 5.9 | 4.6 | |||||||||||||||
10. | KG-56 | 71.4 | 98.9 | 85.2 | 1.7 | 2.1 | 1.9 | 28.4 | 35.8 | 32.1 | 39.3 | 43.6 | 41.4 | 4.2 | 5.6 | 4.9 | |||||||||||||||
11. | Orašanka | 71.8 | 90.4 | 81.1 | 1.7 | 2.4 | 2.1 | 32.2 | 41.5 | 36.8 | 39.3 | 43.2 | 41.3 | 4.0 | 6.3 | 5.1 | |||||||||||||||
12. | KG-58 | 75.1 | 99.2 | 87.2 | 2.0 | 2.3 | 2.2 | 30.2 | 37.7 | 33.9 | 38.8 | 43.4 | 41.1 | 4.0 | 5.9 | 4.9 | |||||||||||||||
13. | KG-78 | 75.7 | 97.5 | 86.6 | 1.7 | 2.1 | 1.9 | 27.2 | 40.3 | 33.7 | 39.5 | 37.5 | 38.5 | 4.0 | 4.9 | 4.5 | |||||||||||||||
14. | Lepenica | 74.5 | 95.8 | 85.2 | 1.6 | 2.1 | 1.9 | 26.9 | 39.4 | 33.1 | 38.1 | 38.2 | 38.2 | 3.6 | 5.4 | 4.5 | |||||||||||||||
15. | Jugoslavija | 83.2 | 93.7 | 88.5 | 1.6 | 2.5 | 2.1 | 28.3 | 42.8 | 35.5 | 39.5 | 41.4 | 40.5 | 3.7 | 6.8 | 5.2 | |||||||||||||||
16. | Oplenka | 76.2 | 101.8 | 89.0 | 1.8 | 2.0 | 1.9 | 30.4 | 38.2 | 34.3 | 40.2 | 37.6 | 38.9 | 4.1 | 5.3 | 4.7 | |||||||||||||||
17. | Ljubičevka | 80.6 | 98.7 | 89.7 | 1.6 | 1.9 | 1.7 | 24.9 | 34.1 | 29.5 | 41.3 | 40.4 | 40.8 | 3.7 | 4.8 | 4.2 | |||||||||||||||
18. | Srbijanka | 67.6 | 93.8 | 80.7 | 1.7 | 2.1 | 1.9 | 28.7 | 40.5 | 34.6 | 35.3 | 37.5 | 36.4 | 3.5 | 5.1 | 4.3 | |||||||||||||||
19. | Šumadinka | 72.7 | 95.2 | 83.9 | 1.6 | 2.0 | 1.8 | 29.9 | 41.9 | 35.9 | 34.8 | 38.7 | 36.7 | 3.3 | 5.3 | 4.3 | |||||||||||||||
20. | NSR-5 | 71.6 | 91.5 | 81.5 | 1.2 | 2.4 | 1.8 | 25.1 | 40.2 | 32.6 | 32.9 | 40.3 | 36.6 | 2.8 | 5.6 | 4.2 | |||||||||||||||
21. | Renesansa | 84.8 | 94.3 | 89.6 | 1.8 | 2.4 | 2.1 | 29.9 | 45.0 | 37.4 | 40.8 | 41.7 | 41.2 | 4.7 | 6.7 | 5.7 | |||||||||||||||
22. | Pesma | 76.7 | 96.4 | 86.6 | 1.3 | 2.1 | 1.7 | 25.1 | 43.0 | 34.1 | 34.7 | 37.2 | 35.9 | 2.9 | 5.6 | 4.3 | |||||||||||||||
23. | Aleksandra | 69.3 | 92.6 | 81.0 | 1.5 | 2.2 | 1.9 | 26.5 | 41.8 | 34.1 | 37.3 | 40.3 | 38.8 | 3.5 | 5.7 | 4.6 | |||||||||||||||
24. | Perfekta | 69.9 | 92.5 | 81.2 | 1.6 | 2.4 | 2.0 | 26.7 | 48.1 | 37.4 | 37.2 | 37.8 | 37.5 | 3.7 | 6.4 | 5.0 | |||||||||||||||
25. | Harmonija | 81.5 | 92.1 | 86.8 | 2.1 | 2.4 | 2.3 | 33.2 | 40.8 | 36.9 | 38.6 | 40.8 | 39.7 | 4.8 | 5.9 | 5.3 | |||||||||||||||
26. | Rujna | 74.6 | 90.8 | 82.7 | 1.5 | 1.8 | 1.7 | 25.7 | 36.0 | 30.8 | 39.4 | 31.7 | 35.5 | 3.6 | 4.0 | 3.8 | |||||||||||||||
27. | Premija | 77.2 | 93.0 | 85.1 | 1.5 | 1.9 | 1.7 | 26.2 | 37.4 | 31.8 | 38.5 | 34.0 | 36.3 | 4.0 | 4.6 | 4.3 | |||||||||||||||
Average | 78.7 | 98.0 | 88.3 | 1.6 | 2.2 | 1.9 | 27.5 | 39.2 | 33.3 | 38.1 | 38.7 | 38.4 | 3.7 | 5.4 | 4.6 | ||||||||||||||||
2015/2016 | 91.51 | 2.17 | 36.79 | 40.33 | 5.33 | ||||||||||||||||||||||||||
2016/2017 | 85.19 | 1.64 | 30.48 | 36.57 | 3.80 | ||||||||||||||||||||||||||
LSD | 0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | |||||||||||||||||||||
Genotype | 3.846 | 5.074 | 0.331 | 0.436 | 3.785 | 4.991 | 1.358 | 1.790 | 0.758 | 0.998 | |||||||||||||||||||||
Year | 1.048 | 1.380 | 0.090 | 0.118 | 1.030 | 1.358 | 0.369 | 0.487 | 0.206 | 0.272 | |||||||||||||||||||||
Soil type | 1.048 | 1.380 | 0.090 | 0.118 | 1.030 | 1.358 | 0.369 | 0.487 | 0.206 | 0.272 | |||||||||||||||||||||
Reduction percent (%) | 19.69 | 27.27 | 29.85 | 1.55 | 31.48 |
No. | Genotype | SSI | MP | TOL | STI | GMP | YSI | YI |
---|---|---|---|---|---|---|---|---|
1. | Banatka | 1.12 (D) | 4.09 (D) | 1.81 (C) | 0.28 (D) | 3.99 (D) | 0.64 (D) | 0.87 (D) |
2. | Grbljanka | 1.07 (D) | 5.13 (C) | 1.85 (C) | 0.30 (C) | 4.32 (C) | 0.65 (D) | 0.95 (C) |
3. | Bankut 1205 | 1.25 (D) | 6.27 (A) | 2.60 (D) | 0.34 (B) | 4.92 (B) | 0.59 (D) | 1.03 (C) |
4. | KG-75 | 0.99 (D) | 5.25 (C) | 1.62 (C) | 0.29 (D) | 4.17 (C) | 0.68 (C) | 0.93 (D) |
5. | Šumadija | −0.13 (A) | 4.59 (D) | −0.15 (A) | 0.25 (E) | 3.74 (D) | 1.04 (A) | 1.04 (D) |
6. | Kosmajka | 1.16 (D) | 4.56 (D) | 1.82 (C) | 0.26 (E) | 3.79 (D) | 0.62 (D) | 0.81 (E) |
7. | Gružanka | 1.10 (D) | 5.63 (B) | 1.95 (C) | 0.30 (C) | 4.38 (C) | 0.64 (D) | 0.96 (C) |
8. | Morava | 1.01 (D) | 5.76 (B) | 1.80 (C) | 0.31 (C) | 4.51 (C) | 0.67 (D) | 1.01 (C) |
9. | Zastava | 1.39 (E) | 5.65 (B) | 2.65 (D) | 0.31 (C) | 4.37 (C) | 0.55 (E) | 0.88 (D) |
10. | KG-56 | 0.80 (C) | 5.69 (B) | 1.45 (C) | 0.33 (B) | 4.86 (B) | 0.74 (C) | 1.14 (B) |
11. | Orašanka | 1.13 (D) | 6.39 (A) | 2.30 (D) | 0.35 (B) | 5.01 (B) | 0.63 (D) | 1.09 (B) |
12. | KG-58 | 0.97 (D) | 6.19 (A) | 1.84 (C) | 0.33 (B) | 4.85 (B) | 0.69 (C) | 1.09 (B) |
13. | KG-78 | 0.59 (C) | 5.46 (B) | 0.94 (B) | 0.30 (C) | 4.43 (C) | 0.81 (C) | 1.08 (B) |
14. | Lepenica | 1.00 (D) | 5.39 (B) | 1.74 (C) | 0.30 (C) | 4.40 (C) | 0.68 (C) | 0.98 (C) |
15. | Jugoslavija | 1.40 (E) | 6.33 (A) | 3.08 (D) | 0.35 (B) | 4.99 (B) | 0.54 (E) | 1.00 (C) |
16. | Oplenka | 0.70 (C) | 5.82 (B) | 1.21 (B) | 0.32 (C) | 4.69 (B) | 0.77 (C) | 1.12 (B) |
17. | Ljubičevka | 0.71 (C) | 5.38 (B) | 1.11 (B) | 0.29 (D) | 4.21 (C) | 0.77 (C) | 1.01 (C) |
18. | Srbijanka | 0.99 (D) | 5.43 (B) | 1.65 (C) | 0.29 (D) | 4.24 (C) | 0.68 (C) | 0.95 (C) |
19. | Šumadinka | 1.15 (D) | 5.37 (D) | 1.96 (C) | 0.29 (D) | 4.17 (C) | 0.63 (D) | 0.90 (D) |
20. | NSR-5 | 1.55 (E) | 5.17 (C) | 2.78 (D) | 0.28 (D) | 3.92 (D) | 0.50 (E) | 0.75 (E) |
21. | Renesansa | 0.94 (D) | 6.61 (A) | 2.06 (C) | 0.39 (A) | 5.61 (A) | 0.69 (C) | 1.27 (A) |
22. | Pesma | 1.47 (E) | 5.43 (B) | 2.69 (D) | 0.29 (D) | 4.06 (D) | 0.52 (E) | 0.80 (E) |
23. | Aleksandra | 1.21 (D) | 5.62 (B) | 2.22 (C) | 0.31 (C) | 4.43 (C) | 0.61 (D) | 0.94 (D) |
24. | Perfekta | 1.27 (D) | 5.96 (B) | 2.62 (D) | 0.34 (B) | 4.87 (B) | 0.59 (D) | 1.01 (C) |
25. | Harmonija | 0.57 (C) | 6.68 (A) | 1.09 (B) | 0.36 (B) | 5.29 (A) | 0.81 (C) | 1.30 (A) |
26. | Rujna | 0.28 (B) | 4.73 (D) | 0.36 (A) | 0.26 (E) | 3.80 (D) | 0.91 (B) | 0.99 (C) |
27. | Premija | 0.39 (B) | 4.98 (C) | 0.58 (B) | 0.29 (D) | 4.30 (C) | 0.87 (B) | 1.09 (B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matković Stojšin, M.; Petrović, S.; Banjac, B.; Zečević, V.; Roljević Nikolić, S.; Majstorović, H.; Đorđević, R.; Knežević, D. Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions. Sustainability 2022, 14, 6973. https://doi.org/10.3390/su14126973
Matković Stojšin M, Petrović S, Banjac B, Zečević V, Roljević Nikolić S, Majstorović H, Đorđević R, Knežević D. Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions. Sustainability. 2022; 14(12):6973. https://doi.org/10.3390/su14126973
Chicago/Turabian StyleMatković Stojšin, Mirela, Sofija Petrović, Borislav Banjac, Veselinka Zečević, Svetlana Roljević Nikolić, Helena Majstorović, Radiša Đorđević, and Desimir Knežević. 2022. "Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions" Sustainability 14, no. 12: 6973. https://doi.org/10.3390/su14126973