Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Foci Data
2.3. Descriptive and Multivariate Analysis
2.4. Remotely Sensed Data
2.4.1. Vegetation Indices
2.4.2. Precipitation
2.4.3. Standardized Precipitation Index (SPI)
3. Results
3.1. Descriptive and Multivariate Analysis
3.1.1. Temporal
3.1.2. Annual
3.1.3. Monthly
3.1.4. Spatial
3.2. Land Use and Occupation via MODIS Product
3.2.1. NDVI
3.2.2. EVI
3.3. Precipitation and SPI
3.3.1. Precipitation (CHIRPS)
3.3.2. SPI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, T.-X.; Zhao, B.-Q.; Li, F.; Dou, X.; Hu, H.-Q.; Sun, L. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: Implications for forest ecosystem carbon cycling. Geoderma 2021, 402, 115273. [Google Scholar] [CrossRef]
- Valente, F.; Laurini, M. Spatio-temporal analysis of fire occurrence in Australia. Stoch. Environ. Res. Risk Assess. 2021, 35, 1759–1770. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.-L.; Dou, X.; Li, F. Effect of Moderate Fire Disturbance on Soil Phosphorus and Potassium of Dahurian Larch (Larxi gmelinii) Forest. For. Eng. 2020, 36, 10–18. [Google Scholar]
- Wu, C.; Venevsky, S.; Sitch, S.; Mercado, L.M.; Huntingford, C.; Staver, A.C. Historical and future global burned area with changing climate and human demography. One Earth 2021, 4, 517–530. [Google Scholar] [CrossRef]
- Li, A.X.; Wang, Y.; Yung, Y.L. Inducing factors and impacts of the October 2017 California wildfires. Earth Space Sci. 2019, 6, 1480–1488. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Deng, Y.; Shi, P. Mapping forest wildfire risk of the world. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 261–275. [Google Scholar]
- Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol. Inform. 2017, 39, 32–44. [Google Scholar] [CrossRef]
- Nami, M.; Jaafari, A.; Fallah, M.; Nabiuni, S. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Int. J. Environ. Sci. Technol. 2018, 15, 373–384. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hübl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying forest fire driving factors and related impacts in china using random forest algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Kayet, N.; Chakrabarty, A.; Pathak, K.; Sahoo, S.; Dutta, T.; Hatai, B.K. Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. J. For. Res. 2020, 31, 565–579. [Google Scholar] [CrossRef]
- Salavati, G.; Saniei, E.; Ghaderpour, E.; Hassan, Q.K. Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models. Sustainability 2022, 14, 3881. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A. Using GIS to Develop a Model for Forest Fire Risk Mapping. J. Indian Soc. Remote Sens. 2019, 47, 1173–1185. [Google Scholar] [CrossRef]
- Ljubomir, G.; Pamucar, D.; Drobnjak, S.; Pourghasemi, H.R. Modeling the spatial variability of forest fire susceptibility using geographical information systems and the analytical hierarchy process. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 337–369. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J. Environ. Manag. 2020, 260, 109867. [Google Scholar] [CrossRef] [PubMed]
- Sivrikaya, F.; Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Zhang, S.; Liu, J.; Sun, S.; Hu, T.; Sun, L. Simulating Forest Fire Spread with Cellular Automation Driven by a LSTM Based Speed Model. Fire 2022, 5, 13. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; Van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Worden, H.M.; Kinnison, D.E.; Gaubert, B.; Tilmes, S.; Emmons, L.K.; Boone, C.D. Fate of pollution emitted during the 2015 Indonesian Fire Season. J. Geophys. Res. Atmos. 2021, 126, e2020JD033474. [Google Scholar] [CrossRef]
- Caúla, R.H.; Oliveira-Júnior, J.F.; Lyra, G.B.; Delgado, R.C.; Heilbron Filho, P.F.L. Overview of fire foci causes and locations in Brazil based on meteorological satellite data from 1998 to 2011. Environ. Earth Sci. 2015, 74, 1497–1508. [Google Scholar] [CrossRef]
- Lima, G.S.; Torres, F.T.P.; Costa, A.G.; Félix, G.A.; Silva Júnior, M.R. Avaliação da Eficiência de Combate aos Incêndios Florestais em Unidades de Conservação Brasileiras. Floresta 2018, 48, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Silva Junior, C.A.; Teodoro, P.E.; Delgado, R.C.; Teodoro, L.P.R.; Lima, M.; Pantaleão, A.A.; Baio, F.H.R.; Azevedo, G.B.; Azevedo, G.T.O.S.; Capristo-Silva, G.F.; et al. Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci. Rep. 2020, 10, 16246. [Google Scholar] [CrossRef]
- Lima, M.; Vale, J.C.E.; Costa, G.M.; Santos, R.C.; Correia Filho, W.L.F.; Gois, G.; Oliveira Júnior, J.F.; Teodoro, P.E.; Rossi, F.S.; Silva Junior, C.A. The Forests in the Indigenous Lands in Brazil in Peril. Land Use Policy 2020, 90, 1–3. [Google Scholar] [CrossRef]
- Clemente, S.S.; Oliveira-Júnior, J.F.; Louzada, M.A.P. Focos de Calor na Mata Atlântica do Estado do Rio de Janeiro. Rev. Bras. Meteorol. 2017, 32, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; Van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.Q.; Liu, X.; Qian, Y.; Zhang, K.; Wang, M.; Lu, Z. Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacks. J. Clim. 2020, 33, 3351–3366. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, L.; Wang, X.; Wei, X.; Gao, H.; Zhang, Y.; Cheng, J. Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant Soil 2018, 428, 123–136. [Google Scholar] [CrossRef]
- Kumari, B.; Pandey, A.C. MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spat. Inf. Res. 2020, 28, 87–99. [Google Scholar] [CrossRef]
- Oliveira-Júnior, J.F.; Mendes, D.; Correia Filho, W.L.F.; Silva Junior, C.A.; Gois, G.; Jardim, A.M.R.F.; Silva, M.V.; Lyra, G.B.; Teodoro, P.E.; Pimentel, L.C.G.; et al. Fire Foci in South America: Impact and Causes, Fire Hazard and Future Scenarios. J. S. Am. Earth Sci. 2021, 112, 103623. [Google Scholar] [CrossRef]
- Zeri, M.; Carvalho, V.S.B.; Cunha-Zeri, G.; Oliveira-Júnior, J.F.; Lyra, G.B.; Freitas, E.D. Assessment of the variability of pollutants concentration over the metropolitan area of São Paulo, Brazil, using the wavelet transform. Atmos. Sci. Lett. 2016, 17, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Squizzato, R.; Nogueira, T.; Martins, L.D.; Astolfo, R.; Bueno Machado, C.; de Fatima Andrade, M.; de Freitas, E.D. Beyond megacities: Tracking air pollution from urban areas and biomass burning in Brazil. NPJ Clim. Atmos. Sci. 2021, 4, 17. [Google Scholar] [CrossRef]
- Hallema, D.W.; Sun, G.; Caldwell, P.V.; Norman, S.P.; Cohen, E.C.; Liu, Y.; Bladon, K.D.; McNulty, S.G. Burned forests impact water supplies. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.E.; Considine, E.M.; Watson, G.L.; Telesca, D.; Pfister, G.G.; Jerrett, M. Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ. Int. 2019, 129, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Centro de Previsão do Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE). BDQueimadas—Banco de Dados Queimadas. Available online: http://www.cptec.inpe.br/queimadas/ (accessed on 20 January 2019).
- Souza, T.C.O.; Delgado, R.C.; Magistrali, I.C.; Santos, G.L.; Carvalho, D.C.; Teodoro, P.E.; Silva Junior, C.A.; Caúla, R.H. Spectral trend of vegetation with rainfall in events of El Niño-Southern Oscillation for Atlantic Forest biome, Brazil. Environ. Monit. Assess. 2018, 190, 1–14. [Google Scholar] [CrossRef]
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Centro Nacional de Prevenção e Combate aos Incêndios Florestais (Prevfogo). Available online: https://www.ibama.gov.br/prevfogo (accessed on 15 June 2019).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Área da Unidade Territorial: Área Territorial Brasileira. Rio de Janeiro. 2020. Available online: https://www.cidades.ibge.gov.br/brasil/al/panorama (accessed on 20 February 2020).
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Alvalá, R.C.S.; Cunha, A.P.M.A.; Brito, S.S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought monitoring in the Brazilian Semiarid region. An. Acad. Bras. Ciênc. 2017, 89, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.S.; Oliveira-Júnior, J.F.; Santos, P.J.; Correia Filho, W.L.F.; Gois, G.; Blanco, C.J.C.; Teodoro, P.E.; Silva Junior, C.A.; Santiago, D.B.; Souza, E.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño-Southern Oscillation. Int. J. Climatol. 2020, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Didan, K. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod13a1v006/ (accessed on 8 April 2021).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with record for monitoring extremes. Sci. Data 2015, 2, 10–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Gois, G.; Cunha-Zeri, G.; Zeri, M. Rainfall variability over Alagoas under the influences of SST anomalies. Meteorol. Atmos. Phys. 2017, 129, 157–171. [Google Scholar] [CrossRef]
- Fuentes-Santos, I.; Marey-Pérez, M.F.; González-Manteiga, W. Forest fire spatial pattern analysis in Galicia (NW Spain). J. Environ. Manag. 2013, 128, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Pinto Vieira, R.M.S.; Sestini, M.F.; Tomasella, J.; Marchezini, V.; Pereira, G.R.; Barbosa, A.A.; Santos, F.C.; Rodriguez, D.A.; do Nascimento, F.R.; Santana, M.O.; et al. Characterizing spatio-temporal patterns of social vulnerability to droughts, degradation and desertification in the Brazilian Northeast. Environ. Sustain. Indic. 2020, 5, 100016. [Google Scholar] [CrossRef]
- Oliveira-Júnior, J.F.; Correia Filho, W.L.F.; Alves, L.E.R.; Lyra, G.B.; Gois, G.; Silva Junior, C.A.; Santos, P.J.; Sobral, B.S. Fire Foci Dynamics and their relationship with socioenvironmental factors and meteorological systems in the state of Alagoas, Northeast Brazil. Environ. Monit. Assess. 2020, 192, 1–26. [Google Scholar] [CrossRef]
- Pereira Silva, L.; Xavier, A.P.C.; Silva, R.M.; Guimarães Santos, C.A. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Jardim, A.M.R.F.; Araújo Júnior, G.N.; Silva, M.V.; Santos, A.; Silva, J.L.B.; Pandorfi, H.; Oliveira-Júnior, J.F.; Teixeira, A.H.C.; Teodoro, P.E.; Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- CONAB. Séries Históricas de Produção de Grãos. 2018. Available online: http://www.conab.gov.br/conteudos.php?a=1252&t=2 (accessed on 20 March 2018).
- IBGE. Sistema IBGE de Recuperação Automática. Territórios. 2021. Available online: https://sidra.ibge.gov.br/territorio (accessed on 9 April 2021).
- Correia Filho, W.L.F.; Santos, T.V.; Santiago, D.B.; Oliveira-Júnior, J.F.; Amorim, R.F.C. Influence of meteorological variables on reference Evapotranspiration in the State of Alagoas, Brazil, based on multivariate analysis. Model. Earth Syst. Environ. 2021, 7, 2215–2224. [Google Scholar] [CrossRef]
- Rocha Júnior, R.L.; Santos Silva, F.D.; Costa, R.L.; Gomes, H.B.; Gomes, H.B.; Silva, M.C.L.; Pinto, D.D.C.; Herdies, D.L.; Cabral Júnior, J.B.; Pita-Díaz, O. Mudança de Longo Prazo e Regionalização da Evapotranspiração de Referência no Nordeste Brasileiro. Rev. Bras. Meteorol. 2021, 35, 891–902. [Google Scholar] [CrossRef]
- Fritzsons, E.; Mantovani, L.E.; Wrege, M.S. Os biomas e o clima das capitais do Brasil. Rev. Bras. Geo. Fís. 2017, 10, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Correia Filho, W.L.F.; Oliveira Júnior, J.F.; Santiago, D.B.; Terassi, P.M.B.; Teodoro, P.E.; Gois, G.; Blanco, C.J.C.; Souza, P.H.A.; Costa, M.; Santos, P.J. Rainfall variability in the Brazilian northeast biomes and their interactions with meteorological systems and ENSO via CHELSA product. Big Earth Data 2019, 3, 315–337. [Google Scholar] [CrossRef] [Green Version]
- Silva Junior, C.A.; Costa, G.M.; Rossi, F.S.; Vale, J.C.E.; Lima, R.B.; Lima, M.; Oliveira-Júnior, J.F.; Teodoro, P.E.; Santos, R.C. Remote Sensing for Updating The Boundaries Between The Brazilian Cerrado-Amazonia Biomes. Environ. Sci. Policy 2019, 101, 383–392. [Google Scholar] [CrossRef]
- Araújo, M.L.S.; Sano, E.E.; Santos, J.R.N.; Santos, J.S.; Brito Silva, F. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Reis, L.C.; Silva, C.M.S.E.; Bezerra, B.G. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure Appl. Geophys. 2020, 177, 4457–4478. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvalá, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An. Acad. Bras. Ciênc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Kogan, F.; Guo, W. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens. 2016, 30, 161–178. [Google Scholar] [CrossRef]
- Shah, M.; Abbas, A.; Ehsan, M.; Aiber, A.C.; Adhikari, B.; Tariq, M.A.; Ahmed, J.; Júnior, J.F.O.; Yan, J.; Morales, A.M.; et al. Ionospheric-Thermospheric Responses to the August 2018 Geomagnetic Storm over South America from Multiple Satellites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 261–269. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.V.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Ribeiro Neto, G.G.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Shah, M.; Ehsan, M.; Abbas, A.; Ahmed, A.; Jamjareegulgarn, P. Possible Thermal Anomalies Associated With Global Terrestrial Earthquakes During 2000–2019 Based on MODIS-LST. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Shah, M.; Calabia, A.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Shah, M.; Ahmed, A.; Ehsan, M.; Khan, M.; Tariq, M.A.; Calabia, A.; Rahman, Z. Total electron content anomalies associated with earthquakes occurred during 1998–2019. Acta Astronaut. 2020, 175, 268–276. [Google Scholar] [CrossRef]
Fire Foci Homogeneous Groups | Municipalities | Total (Foci)/ Percentual (%) | Average and Standard Deviation | Maximum Monthly |
---|---|---|---|---|
G1 | 1575 | 2,130,317/32.2% | (4.7 ± 6.5) | 32 |
G2 | 144 | 1,459,133/22.0% | (40.6 ± 71.7) | 419 |
G3 | 37 | 815,221/12.3% | (94.7 ± 212.0) | 1453 |
G4 | 15 | 718,370/10.8% | (206.5 ± 448.6) | 2771 |
G5 | 7 | 271,683/4.1% | (187.6 ± 419.3) | 2591 |
G6 | 5 | 385,035/5.8% | (412.7 ± 827.7) | 6417 |
G7 | 5 | 520,072/7.9% | (305.5 ± 594.1) | 8950 |
G8 | 3 | 82,542/1.3% | (196.1 ± 923.0) | 7620 |
G9 | 2 | 96,678/1.5% | (191.8 ± 931.3) | 12,212 |
G10 | 1 | 139,807/2.1% | (554.8 ± 1803.3) | 18,812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira-Júnior, J.F.; Shah, M.; Abbas, A.; Correia Filho, W.L.F.; da Silva Junior, C.A.; de Barros Santiago, D.; Teodoro, P.E.; Mendes, D.; de Souza, A.; Aviv-Sharon, E.; et al. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability 2022, 14, 6935. https://doi.org/10.3390/su14116935
de Oliveira-Júnior JF, Shah M, Abbas A, Correia Filho WLF, da Silva Junior CA, de Barros Santiago D, Teodoro PE, Mendes D, de Souza A, Aviv-Sharon E, et al. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability. 2022; 14(11):6935. https://doi.org/10.3390/su14116935
Chicago/Turabian Stylede Oliveira-Júnior, José Francisco, Munawar Shah, Ayesha Abbas, Washington Luiz Félix Correia Filho, Carlos Antonio da Silva Junior, Dimas de Barros Santiago, Paulo Eduardo Teodoro, David Mendes, Amaury de Souza, Elinor Aviv-Sharon, and et al. 2022. "Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil" Sustainability 14, no. 11: 6935. https://doi.org/10.3390/su14116935