Evolution of Wireless Communication to 6G: Potential Applications and Research Directions
Abstract
:1. Introduction
1.1. Paper Motivation
1.2. Paper Contribution
2. Evolution of Mobile Network Architecture
2.1. Core Network (CN) in 5G
2.2. Ran Evolution of Mobile Networks
2.3. Multi-Access Edge Computing (MEC)
2.4. Open-Radio Access Network (O-RAN)
2.5. Network Slicing
2.6. xHaul Architecture
3. Post 2030 Prospective 6G Application Areas
3.1. Experiencing the Personal Edge Intelligence
3.2. Wireless Communication for Automotive Sector
3.3. Internet of Things (IoT) Supported Smart City Services
3.4. Autonomous Ports and Autonomous Manufacturing
3.5. Bio-Cybernetic Based Identity
4. Statistics of the Patents Dedicated to 6G
5. Future 6G Enabling Technologies
5.1. Big data and Deep Learning
5.2. Quantum Communications
6. Key Driving Technologies for 6G
6.1. VLC and terahertz Regime
6.2. THz Challenges
6.3. Molecular Communication
6.4. Bio-Signal Processing
6.5. Blockchain
6.6. Energy Harvesting for Mobile Charging
- (i)
- The energy obtained from an “ambient environment” can be utilized as a potential substitute of energy supply. This can also meet the energy requirements of radio access network(s) (RAN).
- (ii)
- Moreover, radio frequency (RF) interference, “RF interference energy harvesting” has also been considered an option where the “ultra-dense” networks having numerous nodes can potentially produce interference energy.
- (iii)
- The energy produced by “the artificial Jamming and noise” is also considered a resource for energy supply [70].
7. Major Challenges and Research Areas for 6G
7.1. Data Security and User Privacy Challenges
Privacy-Enhancing Computation (PEC)
7.2. Hybrid Radio Networks (RN) and Visible Light Communication (VLC)
7.3. Wireless Networking for Cyber-Physical Systems (CPS)
7.4. Quantum-Based Wireless Systems Design
7.5. Multiple Access and Modulation Techniques
- (i)
- Frequency Division Multiple Access (FDMA);
- (ii)
- Time Division Multiple Access (TDMA);
- (iii)
- Code Division Multiple Access (CDMA); and
- (iv)
- Orthogonal Frequency Division Multiple Access (OFDM).
- (i)
- “frequency selective fading”;
- (ii)
- “co-channel interference”; and
- (iii)
- “impulse noise”.
7.6. Processing of Sensor Data at High Speed
7.7. Satellite Communication
7.8. RF Exposure and Related Human Health Concerns
7.9. Electromagnetic Compatibility
7.10. Reshaping the Developing Economies, Last Mile
7.11. Ethical Responsibilities and User Awareness Programs
8. Machine Learning Technologies as Potential Enablers of 6G Era
- (i)
- “Very high data rates, up to 1 Tbps”;
- (ii)
- “Very high energy efficiency capable of supporting ‘battery-free IoT devices”;
- (iii)
- “Reliable global/terrestrial connectivity”;
- (iv)
- “Massive low-latency control (less than 1 msec E2E latency)”;
- (v)
- “Very broad frequency bands (e.g., 73 GHz–140 GHz and 1 THz–3 THz)”;
- (vi)
- “Ubiquitous always-on broadband global network coverage”;
- (vii)
- “Connected intelligence powered by machine learning”.
8.1. Machine Learning Approaches
8.2. ML/Dl Driven Solutions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | directory of open access journals |
TLA | three letter acronym |
LD | linear dichroism |
References
- Porambage, P.; Gur, G.; Osorio, D.P.M.; Liyanage, M.; Gurtov, A.; Ylianttila, M. The Roadmap to 6G Security and Privacy. IEEE Open J. Commun. Soc. 2021, 2, 1094–1122. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- You, X.; Wang, C.X.; Huang, J.; You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- 6G Flagship Finland. Available online: https://www.oulu.fi/6gflagship/ (accessed on 27 February 2022).
- Hong, W.; Jiang, Z.H.; Yu, C.; Hou, D.; Wang, H.; Guo, C.; Hu, Y.; Kuai, L.; Yu, Y.; Jiang, Z.; et al. The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications. IEEE J. Microwaves 2021, 1, 101–122. [Google Scholar] [CrossRef]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.J.; Liyanage, M. Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Available online: https://news.samsung.com/global/samsungs-6g-white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology (accessed on 27 February 2022).
- Kaur, J.; Khan, M.A.; Iftikhar, M.; Imran, M.; Ul Haq, Q.E. Machine Learning Techniques for 5G and beyond. IEEE Access 2021, 9, 23472–23488. [Google Scholar] [CrossRef]
- Chehimi, M.; Saad, W. Entanglement rate optimization in heterogeneous quantum communication networks. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021. [Google Scholar]
- Mahdi, M.N.; Ahmad, A.R.; Qassim, Q.S.; Natiq, H.; Subhi, M.A.; Mahmoud, M. From 5G to 6g technology: Meets energy, internet-of-things and machine learning: A survey. Appl. Sci. 2021, 11, 8117. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-Latency Federated Learning and Blockchain for Edge Association in Digital Twin Empowered 6G Networks. IEEE Trans. Ind. Inform. 2021, 17, 5098–5107. [Google Scholar] [CrossRef]
- Botsinis, P.; Alanis, D.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Hanzo, L. Quantum Search Algorithms for Wireless Communications. IEEE Commun. Surv. Tutor. 2019, 21, 1209–1242. [Google Scholar] [CrossRef] [Green Version]
- Ozpoyraz, B.; Dogukan, A.T.; Gevez, Y.; Altun, U.; Basar, E. Deep Learning-Aided 6G Wireless Networks: A Comprehensive Survey of Revolutionary PHY Architectures. arXiv 2022, arXiv:2201.03866. [Google Scholar]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Architecture and Technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Alghamdi, R.; Alhadrami, R.; Alhothali, D.; Almorad, H.; Helal, S.; Shalabi, R.; Asfour, R.; Hammad, N.; Shams, A.; Saeed, N.; et al. Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE Access 2020, 8, 202795–202818. [Google Scholar] [CrossRef]
- Letaief, K.B.; Shi, Y.; Lu, J.; Lu, J. Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications. IEEE J. Sel. Areas Commun. 2022, 40, 5–36. [Google Scholar] [CrossRef]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Imran, M.; Han, Z.; Hong, C.S. 6G Wireless Systems: A Vision, Architectural Elements, and Future Directions. IEEE Access 2020, 8, 147029–147044. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. [Google Scholar] [CrossRef]
- 5GIC. 6G Wirelss: A New Strategic Vision; University Of Surrey: Guildford, UK, 2021. [Google Scholar]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. arXiv 2020, arXiv:2012.07753. [Google Scholar] [CrossRef]
- Gupta, M.; Jha, R.K.; Jain, S. Tactile based Intelligence Touch Technology in IoT configured WCN in B5G/6G-A Survey. IEEE Access 2022. [Google Scholar] [CrossRef]
- Bourdoux, A.; Barreto, A.N.; van Liempd, B.; de Lima, C.; Dardari, D.; Belot, D.; Lohan, E.-S.; Seco-Granados, G.; Sarieddeen, H.; Wymeersch, H.; et al. 6G White Paper on Localization and Sensing. arXiv 2020, arXiv:2006.01779. [Google Scholar]
- Long, W.; Chen, R.; Moretti, M.; Zhang, W.; Li, J. A promising technology for 6g wireless networks: Intelligent reflecting surface. J. Commun. Inf. Netw. 2021, 6, 1–16. [Google Scholar]
- Ali, Z.; Giupponi, L.; Miozzo, M.; Dini, P. Multi-Task Learning for Efficient Management of beyond 5G Radio Access Network Architectures. IEEE Access 2021, 9, 158892–158907. [Google Scholar] [CrossRef]
- Vaca-Rubio, C.J.; Ramirez-Espinosa, P.; Kansanen, K.; Tan, Z.-H.; de Carvalho, E. Radio Sensing with Large Intelligent Surface for 6G. arXiv 2021, arXiv:2111.02783. [Google Scholar]
- Zhang, P.; Xu, W.; Gao, H.; Niu, K.; Xu, X.; Qin, X.; Yuan, C.; Qin, Z.; Zhao, H.; Wei, J.; et al. Toward Wisdom-Evolutionary and Primitive-Concise 6G: A New Paradigm of Semantic Communication Networks. Engineering 2022, 8, 60–73. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Niyato, D.; Larsson, E.G.; Popovski, P. 6G mobile networks: Emerging technologies and applications Vision, enabling technologies, and new paradigm shifts. China Commun. 2020, 17, 90–91. [Google Scholar] [CrossRef]
- Parsaeefard, S.; Leon-Garcia, A. Toward Efficient Transfer Learning in 6G. arXiv 2021, arXiv:2107.05728. [Google Scholar]
- Yazar, A. A Waveform Parameter Assignment Framework for 6G With the Role of Machine Learning. IEEE Open J. Veh. Technol. 2020, 1, 156–172. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- De La Oliva, A.; Perez, X.C.; Azcorra, A.; Di Giglio, A.; Cavaliere, F.; Tiegelbekkers, D.; Lessmann, J.; Haustein, T.; Mourad, A.; Iovanna, P. xHaul: Toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel. Commun. 2015, 22, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Katsalis, K.; Arouk, O.; Schmidt, R.; Wang, T.; An, X.; Bauschert, T.; Nikaein, N. Network Slicing for TSN-Based Transport Networks. IEEE Access 2021, 9, 62788–62809. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Saha, R.K.; Nanba, S.; Nishimura, K. Experimental Evaluation of RAN Slicing Architecture with Flexibly Located Functional Components of Base Station According to Diverse 5G Services. IEEE Access 2019, 7, 76470–76479. [Google Scholar] [CrossRef]
- Filali, A.; Nour, B.; Cherkaoui, S.; Kobbane, A. Communication and Computation O-RAN Resource Slicing for URLLC Services Using Deep Reinforcement Learning. arXiv 2022, arXiv:2202.06439. [Google Scholar]
- Bernardos, C.J.; Uusitalo, M.A.; Anton, C.; Artuñedo, D.; Demestichas, P.; Fettweis, G.; Frascolla, V.; Hecker, A.; Kaloxylos, A.; Koumaras, H.; et al. European Vision for the 6G Network Ecosystem; 5G IA: Brussels, Belgium, 2021. [Google Scholar]
- Kekki, A.; Li, A.; Arora, R.; Odgers, A.; Contreras, L.M.; Purkayastha, D.; Fang, Y.; Ranjan, A.; Featherstone, W.; Scarpina, S.; et al. MEC in 5G Networks; ETSI: Côte d’Azur, France, 2018; pp. 1–28. [Google Scholar]
- Habibi, M.A.; Nasimi, M.; Han, B.; Schotten, H.D. A Comprehensive Survey of RAN Architectures Toward 5G Mobile Communication System. IEEE Access 2019, 7, 70371–70421. [Google Scholar] [CrossRef]
- Kuklinski, S.; Tomaszewski, L.; Kolakowski, R. On O-RAN, MEC, SON and Network Slicing integration. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Niknam, S.; Roy, A.; Dhillon, H.; Singh, S.; Banerji, R.; Reed, J.H.; Saxena, N.; Yoon, S. Intelligent O-RAN for Beyond 5G and 6G Wireless Networks. arXiv 2020, arXiv:2005.08374. [Google Scholar]
- Wu, W.; Zhou, C.; Li, M.; Wu, H.; Zhou, H.; Zhang, N.; Shen, X.; Zhuang, W. AI-Native Network Slicing for 6G Networks. IEEE Wirel. Commun. 2021, 29, 96–103. [Google Scholar] [CrossRef]
- Camps-Mur, D.; Gutierrez, J.; Grass, E.; Tzanakaki, A.; Flegkas, P.; Choumas, K.; Giatsios, D.; Beldachi, A.F.; Diallo, T.; Zou, J.; et al. 5G-xHaul: A Novel Wireless-Optical SDN Transport Network to Support Joint 5G Backhaul and Fronthaul Services. IEEE Commun. Mag. 2019, 57, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.S.; Borges, R.M.; Pereira, L.A.M.; Filgueiras, H.R.D.; Alberti, A.M.; Sodre, A.C. Multiband and Photonically Amplified Fiber-Wireless xHaul. IEEE Access 2020, 8, 44381–44390. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, E.; Bennis, M.; Capobianco, M.; Debbah, M.; Ding, A.; Gil-Castiñeira, F.; Jurmu, M.; Karvonen, T.; Kelanti, M.; Kliks, A.; et al. 6G White Paper on EDGE Intelligence. arXiv 2020, arXiv:2004.14850. [Google Scholar]
- 6G Flagship. Key Drivers and Research challenges for Ubiquitous Wireless Intelligence; University of Oulu: Oulu, Finland, 2019. [Google Scholar]
- China Accounts for 40% of 6G Patent Applications: Survey. Available online: https://asia.nikkei.com/Business/Telecommunication/China-accounts-for-40-of-6G-patent-applications-survey (accessed on 13 March 2022).
- Fraga-Lamas, P.; Fernández-Caramés, T.M. A Review on Blockchain Technologies for an Advanced and Cyber-Resilient Automotive Industry. IEEE Access 2019, 7, 17578–17598. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Nakamura, T. 5G Evolution and 6G. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020. [Google Scholar]
- Nguyen, V.L.; Lin, P.C.; Cheng, B.C.; Hwang, R.H.; Lin, Y.D. Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2384–2428. [Google Scholar] [CrossRef]
- Akhtar, M.W.; Hassan, S.A.; Ghaffar, R.; Jung, H.; Garg, S.; Hossain, M.S. The shift to 6G communications: Vision and requirements. Hum.-Centric Comput. Inf. Sci. 2020, 10, 53. [Google Scholar] [CrossRef]
- Han, C.; Wu, Y.; Chen, Z.; Wang, X. terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems. arXiv 2019, arXiv:1912.06040. [Google Scholar]
- Wedage, L.T.; Butler, B.; Balasubramaniam, S.; Koucheryavy, Y.; Jornet, J.M. Climate Change Sensing through terahertz Communications: A Disruptive Application of 6G Networks. arXiv 2021, arXiv:2110.03074. [Google Scholar]
- Samsung. Samsung 6G Vision; Samsung: Suwon, Korea, 2020; Available online: https://research.samsung.com/next-generation-communications (accessed on 13 March 2022).
- Liang, Y.; Lu, C.; Zhao, Y.; Sun, C. Interference-Based Consensus and Transaction Validation Mechanisms for Blockchain-Based Spectrum Management. IEEE Access 2021, 9, 90757–90766. [Google Scholar] [CrossRef]
- Mucchi, L.; Martinelli, A.; Jayousi, S.; Caputo, S.; Pierobon, M. Secrecy capacity and secure distance for diffusion-based molecular communication systems. IEEE Access 2019, 7, 110687–110697. [Google Scholar] [CrossRef]
- Hewa, T.; Gur, G.; Kalla, A.; Ylianttila, M.; Bracken, A.; Liyanage, M. The role of blockchain in 6G: Challenges, opportunities and research directions. 2nd 6G Wirel. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020. [Google Scholar]
- Kumar, T.; Harjula, E.; Ejaz, M.; Manzoor, A.; Porambage, P.; Ahmad, I.; Liyanage, M.; Braeken, A.; Ylianttila, M. BlockEdge: Blockchain-Edge Framework for Industrial IoT Networks. IEEE Access 2020, 8, 154166–154185. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, T. Distributed watchdogs based on blockchain for securing industrial internet of things. Sensors 2021, 21, 4393. [Google Scholar] [CrossRef]
- Wei, Y.; An, Z.; Leng, S.; Yang, K. Connecting AI Learning and Blockchain Mining in 6G Systems. arXiv 2021, arXiv:2104.14088. [Google Scholar]
- Miglani, A.; Kumar, N. Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: A systematic review. Comput. Commun. 2021, 178, 37–63. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saraswat, D.; Dave, A.; Acharya, M.; Tanwar, S.; Sharma, G.; Davidson, I.E. Coalition of 6G and Blockchain in AR/VR Space: Challenges and Future Directions. IEEE Access 2021, 9, 168455–168484. [Google Scholar] [CrossRef]
- Sekaran, R.; Patan, R.; Raveendran, A.; Al-Turjman, F.; Ramachandran, M.; Mostarda, L. Survival Study on Blockchain Based 6G-Enabled Mobile Edge Computation for IoT Automation. IEEE Access 2020, 8, 143453–143463. [Google Scholar] [CrossRef]
- Ramírez-Arroyo, A.; Zapata-Cano, P.H.; Palomares-Caballero, Á.; Carmona-Murillo, J.; Luna-Valero, F.; Valenzuela-Valdés, J.F. Multilayer network optimization for 5G & 6G. IEEE Access 2020, 8, 204295–204308. [Google Scholar]
- Lee, Y.L.; Qin, D.; Wang, L.C.; Sim, G.H. 6G Massive Radio Access Networks: Key Applications, Requirements and Challenges. IEEE Open J. Veh. Technol. 2021, 2, 54–66. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Weighted Sum Power Maximization for Intelligent Reflecting Surface Aided SWIPT. IEEE Wirel. Commun. Lett. 2020, 9, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Huawei. Building a Fully Connected, Intelligent World; Huawei: Shenzhen, China, 2021; pp. 120–121. [Google Scholar]
- 6G—Connecting a Cyber-Physical World. February 2022. Available online: https://www.ericsson.com/en/reports-and-papers/white-papers/a-research-outlook-towards-6g (accessed on 13 March 2022).
- Kim, J.; Kwak, Y.; Jung, S.; Kim, J.H. Quantum scheduling for millimeter-wave observation satellite constellation. In Proceedings of the 17th IEEE VTS Asia Pacific Wireless Communications Symposium, APWCS 2021, Osaka, Japan, 30–31 August 2021. [Google Scholar]
- Sharma, P.; Bhatia, V.; Prakash, S. Securing Optical Networks using Quantum-secured Blockchain: An Overview. arXiv 2021, arXiv:2105.10663. [Google Scholar]
- Trinh, P.V.; Pham, T.V.; Dang, N.T.; Nguyen, H.V.; Ng, S.X.; Pham, A.T. Design and Security Analysis of Quantum Key Distribution Protocol over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver. IEEE Access 2018, 6, 4159–4175. [Google Scholar] [CrossRef]
- Xu, D.; Ren, P. Quantum Learning Based Nonrandom Superimposed Coding for Secure Wireless Access in 5G URLLC. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2429–2444. [Google Scholar] [CrossRef]
- Arul, R.; Raja, G.; Almagrabi, A.O.; Alkatheiri, M.S.; Chauhdary, S.H.; Bashir, A.K. A quantum-safe key hierarchy and dynamic security association for LTE/SAE in 5G scenario. IEEE Trans. Ind. Inform. 2020, 16, 681–690. [Google Scholar] [CrossRef]
- Qadir, Z.; Munawar, H.S.; Saeed, N.; Le, K. Towards 6G Internet of Things: Recent Advances, Use Cases, and Open Challenges. arXiv 2021, arXiv:2111.06596. [Google Scholar]
- Shahraki, A.; Abbasi, M.; Piran, M.J.; Taherkordi, A. A Comprehensive Survey on 6G Networks: Applications, Core Services, Enabling Technologies, and Future Challenges. arXiv 2021, arXiv:2101.12475. [Google Scholar]
- Miller, A.B.; Sears, M.E.; Morgan, L.L.; Davis, D.L.; Hardell, L.; Oremus, M.; Soskolne, C.L. Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front. Public Health 2019, 7, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrimponis, P.; Hosseinzadeh, N.; Khalili, A.; Erkip, E.; Rodwell, M.J.W.; Buckwalter, J.F.; Rangan, S. Towards Energy Efficient Mobile Wireless Receivers above 100 GHz. IEEE Access 2021, 9, 20704–20716. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Electronic Environment. Available online: https://www.electronic.se/en/2020/02/25/how-will-6g-affect-emc/ (accessed on 11 April 2022).
- Alraih, S.; Shayea, I.; Behjati, M.; Nordin, R.; Abdullah, N.F.; Abu-Samah, A.; Nandi, D. Revolution or Evolution? Technical Requirements and Considerations towards 6G Mobile Communications. Sensors 2022, 22, 762. [Google Scholar] [CrossRef]
- Ali, S.; Saad, W.; Rajatheva, N.; Chang, K.; Steinbach, D.; Sliwa, B.; Wietfeld, C.; Mei, K.; Shiri, H.; Zepernick, H.-J.; et al. 6G White Paper on Machine Learning in Wireless Communication Networks. arXiv 2020, arXiv:2004.1387. [Google Scholar]
- Chen, H.; Xiao, M.; Pang, Z. Satellite Based Computing Networks with Federated Learning. IEEE Wirel. Commun. 2021, 29, 78–84. [Google Scholar] [CrossRef]
- Demirhan, U.; Alkhateeb, A. Radar Aided 6G Beam Prediction: Deep Learning Algorithms and Real-World Demonstration. arXiv 2021, arXiv:2111.09676. [Google Scholar]
- Tariq, M.; Naeem, F.; Poor, H.V. Toward Experience-Driven Traffic Management and Orchestration in Digital-Twin-Enabled 6G Networks. arXiv 2022, arXiv:2201.04259. [Google Scholar]
- Jin, Y.; Vannella, F.; Bouton, M.; Jeong, J.; Hakim, E.A. A Graph Attention Learning Approach to Antenna Tilt Optimization. arXiv 2021, arXiv:2112.14843. [Google Scholar]
- Gecgel, S.; Kurt, G.K. Intermittent jamming against telemetry and telecommand of satellite systems and a learning-driven detection strategy. In Proceedings of the WiSec ’21: 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Abu Dhabi, United Arab Emirates, 28 June–2 July 2021. [Google Scholar]
- Khan, L.U.; Tun, Y.K.; Alsenwi, M.; Imran, M.; Han, Z.; Hong, C.S. A Dispersed Federated Learning Framework for 6G-Enabled Autonomous Driving Cars. arXiv 2021, arXiv:2105.09641. [Google Scholar]
Author (s) | Contribution |
---|---|
[5] | mmW millimeter-wave enabling technologies. |
[6] | Developments toward 6G |
[8] | Sixth generation (6G) wireless system and role of ML techniques. |
[9] | Sixth generation (6G) drivers, use cases, usage scenarios, requirements, KPIs, architecture, and enabling technologies. |
[10] | Energy, IoT, and ML in 6G. |
[11] | Digital twins for wireless systems |
[12] | Quantum search algorithms for wireless communications |
[13] | Advancements in a DL-based physical layer (PHY) of 6G. |
[14] | Wireless evolution toward 6G networks and related potential technologies. |
[15] | Optimization frameworks and performance analysis methods for large intelligent surfaces (LIS). |
[16] | Scalable and trustworthy edge AI systems. |
[17] | Technology transformations to define 6G. |
Characteristics | 5G Advanced | 6G |
---|---|---|
Peak data rates | 100 Gbps | 1 Tbps |
Latency | 1 ms | <1 ms |
Frequency bands | Sub 6 GHz, mmWave for fixed access | Sub 6GHz mmWave for mobile access, terahertz band, Non-RF e.g., VLC) |
Device Services | Secure connectivity | Physical interaction in real-time scenarios |
Network Type | SDN, NFV, Slicing | SDN, NFV, Intelligent Cloud, AI-based Slicing, Deep learning |
Computing Techniques | Fog computing, Cloud computing | Quantum computing, Edge computing |
Mobility | 500 Km/h | >700 Km/h |
Technology | D2D communication, Ultra-dense Network, Relaying, Small cell access, NOMA | Visible Llight Communication, Quantum Communication, Hybrid access, Haptic technology |
Application types | Reliable eMMB, URLLC, mMTC, Hybrid | MBRLLC, mURLLC, HCS, MPS |
Architecture | Dense sub-6 GHz small cells with | Cell-free smart surfaces, Temporary hotspots using drones base stations |
Author (s) | Contribution |
---|---|
[33] | Reviewed xHaul architecture related standards and activities. |
[37] | Reviewed “TSN-aware xHaul network” |
[46] | Presented 5G-xHaul architecture features. |
[47] | Presented implementation of a “multiband and photonically amplified fiber-wireless (FiWi)” xHaul. |
Parameters | Frequency Dependence | Effects on 6G THz | THz vs. Microwave and FSO |
---|---|---|---|
Spreading Loss | Quadratic fluctuation with area and “frequency-dependent gains” | Distance Limitation | >microwave, <FSO |
Atmospheric Loss | Frequency-dependent path loss peaks | frequency-dependent spectral windows with varying bandwidth | No perceptible impact on microwave frequencies, oxygen molecules at millimeter wave, water, and oxygen molecules at THz, water, and carbon dioxide molecules at FSO |
Diffuse Scattering and Specular reflection | “Scattering increases” with frequency. Frequency-dependent reflection loss | Limited multi-path sparsity | Stronger than microwave, weaker than FSO |
LoS prob, Diffraction, and Shadowing | Negligible diffraction, shadowing and penetration more losses with frequency increase. Frequency-independent loS probability | Low multi-path high sparsity and dense spatial reuse | more than microwave less than FSO |
Weather Influences | Frequency-dependent airborne particulates scattering | Potential constraints in THz outdoor communications with heavy rain attenuation | >than microwave, <FSO |
Scintillation Effect | Increase with frequency | Constraint in THz space communications | No clear effects at microwave, THz is less susceptible than FSO |
No | Author (s) | Contributions |
---|---|---|
1 | [34] | Presented comparison of “blockchain-based spectrum management” and legacy “centralized approach”. |
2 | [57] | Proposed a novel consensus E-PoW, where MMC in AI training is integrated into the block mining process. |
3 | [58] | Presented a distributed watchdogs based on blockchain for securing IIoT |
4 | [59] | Propose a ‘BlockEdge’ (blockchain edge) framework that combines these two enabling technologies to address some of the critical issues faced by the current IIoT networks. |
5 | [60] | Reviewed blockchain and ML for IoT in 5G and beyond networks. |
6 | [62] | Proposed an “IoT and blockchain-enabled” optimized provenance system for Industry 4.0. |
7 | [63] | Presented an overview of blockchain as potential security solutions “edge computing”. |
8 | [64] | Overviewed the blockchain technologies and protocols that can be used to implement blockchain-backed network asset trading over 5G and Beyond networks. |
9 | [65] | Examined the security problems with blockchain-enabled IoT with a 6G communication network. |
10 | [66] | Designed a new digital twin wireless network model—DTWN. |
S. No | Centralized Spectrum Management Issues | Benefits of Blockchain-Based Spectrum Management |
---|---|---|
01 | Security risks | Distributed storage and encryption methods/algorithms are used for the security of the users’ data |
02 | No incentive approach for spectrum sharing | The incentive mechanism (e.g., virtual currency) can attract nodes for spectrum sharing |
03 | Exposed to the threat of malicious attacks | Validation mechanisms offer security for the transactions |
04 | Low spectrum allocation efficiency | Distributed spectrum management offers effective and improved spectrum allocation |
05 | Expensive maintenance | Cost effective for maintenance as there is no centralized database to be maintained |
No | Parameter | Description | Potential Benefits in AR/VR Applications |
---|---|---|---|
1 | Decentralization | Decentralization of record maintenance eliminating the single-point risk of failure. | Blockchain offers the decentralization of different communication devices. |
2 | Tokenization | Facilitation users to exchange values on different networks. | Blockchain improves financial transactions using digital tokens. |
3 | Immutability | Consensus mechanism enables data storage in distributed ledger form, which provides unalterable and tamper-proof record maintenance. Consensus mechanism also provides the integrity of the end-to-end (E2E) system | Blockchain provides an improved way of sharing/exchanges of audio/video data between server and device in a secure way. |
4 | Scalability | Scalability provides increased transaction load and number of nodes in the network. | Blockchain provides an increase in the transaction size for all blocks for storing and peering data using an interplanetary file system. |
5 | Anonymity | provides trust mechanism among unknown nodes in network | Blockchain enables nodes create unique digital assets that cannot be copied. |
6 | Security | Offers security for possible attack against data by encrypting the data through cryptographic algorithms having no relationship for private and public keys. | Blockchain can offer improved scalability for AR/VR in tactical applications. |
Author (s) | Contribution |
---|---|
[9] | Presents attacks in optical networks and a solution through “quantum- secured blockchain”. |
[46] | Presented a scheduling algorithm for mmWave observation. |
[74] | Studied the problem of optimal distribution of entanglement generation for multiple heterogeneous users in a quantum communication network. |
[75] | Design and security analysis of the QKD protocol over FSO |
[76] | Presents “Quantum Search Algorithms for Wireless Communications |
[12] | Proposed “Quantum Learning Based Nonrandom Superimposed Coding for Secure Wireless Access in 5G URLLC” |
[77] | Studied Quantum security authentication and key management in LTE. |
[78] | Developed an integrated polarization beam splitter (PBS) module with silica planar lightwave circuit technology for use in QKD. |
No | Author (s) | Contribution | Type |
---|---|---|---|
1 | [8] | Proposed a federated learning (DFL) framework for autonomous driving cars. | FL |
2 | [21] | DL-based “radar-aided beam prediction” approaches for mmWave/sub-THz. | DL |
3 | [48] | Proposed a graph attention Q-learning (GAQ) algorithm for tilt optimization | RL |
4 | [72] | Presented FL in LEO-based networks. Reviewed LEO-based SatCom ML technique networks. | FL |
5 | [85] | Proposed an AI0based “digital twin enabled network framework” for 6G networks. | DL |
6 | [87] | Investigated the positioning for autonomous vehicles. | RL |
7 | [86] | Proposed a learning-driven detection scheme using lightweight CNN. | DL |
8 | [88] | A ML approach for intermodulation interference detection in 6G | ML |
9 | [89] | Computer vision-aided beam tracking in millimeter wave deployment | DL |
10 | [90] | Proposed to use a cell-free massive MIMO to ensure stable operation. | FL |
11 | [91] | Designed a DL-based LR channel estimation method—MIMO channel V2X. | DL |
12 | [92] | DL-based load balancing for QoS in 6G | DL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, M.Z.; Memon, S.A.; Hämäläinen, J. Evolution of Wireless Communication to 6G: Potential Applications and Research Directions. Sustainability 2022, 14, 6356. https://doi.org/10.3390/su14106356
Asghar MZ, Memon SA, Hämäläinen J. Evolution of Wireless Communication to 6G: Potential Applications and Research Directions. Sustainability. 2022; 14(10):6356. https://doi.org/10.3390/su14106356
Chicago/Turabian StyleAsghar, Muhammad Zeeshan, Shafique Ahmed Memon, and Jyri Hämäläinen. 2022. "Evolution of Wireless Communication to 6G: Potential Applications and Research Directions" Sustainability 14, no. 10: 6356. https://doi.org/10.3390/su14106356
APA StyleAsghar, M. Z., Memon, S. A., & Hämäläinen, J. (2022). Evolution of Wireless Communication to 6G: Potential Applications and Research Directions. Sustainability, 14(10), 6356. https://doi.org/10.3390/su14106356