Sensor Data Fusion as an Alternative for Monitoring Chlorate in Electrochlorination Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EKF | Extended Kalman Filter |
IC | Ion Chromatography |
MDPI | Multidisciplinary Digital Publishing Institute |
SDF | Sensor Data Fusion |
Appendix A. Derivation of the Hypochlorite Concentration
References
- Czarnetzki, L. Aspects of Electrochemical Production of Hypochlorite and Chlorate. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1989. [Google Scholar]
- Li, X.Y.; Diao, H.F.; Fan, F.X.J.; Gu, J.D.; Ding, F.; Tong, A.S.F. Electrochemical wastewater disinfection: Identification of its principal germicidal actions. J. Environ. Eng. 2004, 130, 1217–1221. [Google Scholar] [CrossRef]
- Mostafa, E.; Reinsberg, P.; Garcia-Segura, S.; Baltruschat, H. Chlorine species evolution during electrochlorination on boron-doped diamond anodes: In-situ electrogeneration of Cl2, Cl2O and ClO2. Electrochim. Acta 2018, 281, 831–840. [Google Scholar] [CrossRef]
- Jackson, P.; Dillon, G.; Irving, T.; Stanfield, G. Manual on Treatment for Small Water Supply Systems; Technical Report DETR/DWI 4936/1; Department of the Environment, Transport and the Regions: Buckinghamshire, UK, 2001.
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. Environ. 2015, 166–167, 603–643. [Google Scholar] [CrossRef]
- Saha, J.; Gupta, S. A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection. Ionics 2017, 23, 1903–1913. [Google Scholar] [CrossRef]
- Black & Veatch Corporation. White’s Handbook of Chlorination and Alternative Disinfectants, 5th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Snyder, S. Perchlorate in Drinking-Water. In Background Document WHO/FWC/WSH/16.46; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Cotruvo, J.; Fawell, J.K. Chlorine Dioxide, Chlorite and Chlorate in Drinking-water. In Background Document WHO/FWC/WSH/16.49; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rosemarin, A.; Lehtinen, K.J.; Notini, M.; Mattson, J. Effects of pulp mill chlorate on baltic sea algae. Environ. Pollut. 1994, 85, 3–13. [Google Scholar] [CrossRef]
- van Wijk, D.J.; Hutchinson, T.H. The ecotoxicity of chlorate to aquatic organisms: A critical review. Ecotoxicol. Environ. Saf. 1995, 32, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J.; Arenal, C.A.; Tsao, C.L.; Sample, B.E.; McFarland, C.A.; Johnson, M.S. Wildlife Toxicity Assessment for Perchlorate; Report 87-MA02T6-05D; U.S. Army Center for Health Promotion and Preventive Medicine: Aberdeen, MD, USA, 2007. [Google Scholar]
- Amy, G.; Bull, R.; Craun, G.F.; Siddiqui, M. Disinfectants and Disinfectant By-Products. In Technical Report Environmental Health Criteria 216; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Atwood, J.; van Sprang, C.; Hamilton, M.; Thompson, K.C. Disinfectants and Disinfectant By-Products; Report; Agriculture and Horticulture Development Board: Kenilworth, UK, 2016.
- The European Parliament and the Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast); The European Parliament and the Council of the European Union: Strasbourg, France, 2020. [Google Scholar]
- The European Commission. Commission Recommendation (EU) 2015/682 of 29 April 2015 on the Monitoring of the Presence of Perchlorate in Food; The European Commission: Strasbourg, France, 2015. [Google Scholar]
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M. Soft Sensors for Monitoring and Control of Industrial Processes, 1st ed.; Advances in Industrial Control; Springer: London, UK, 2007. [Google Scholar]
- Hosseini, S.G.; Safshekan, S. Electrochemical detection of chlorate on a novel nano-Au/TiO2NT electrode. Mater. Res. Bull. 2017, 93, 290–295. [Google Scholar] [CrossRef]
- Topcu, C. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite. Talanta 2016, 161, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Topcu, C.; Caglar, S.; Caglar, B.; Coldur, F.; Cubuk, O.; Sarp, G.; Gedik, K.; Bozkurt Cirak, B.; Tabak, A. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035012. [Google Scholar] [CrossRef] [Green Version]
- Salimi, A.; Mamkhezri, H.; Hallaj, R.; Zandi, S. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection. Electrochim. Acta 2007, 52, 6097–6105. [Google Scholar] [CrossRef]
- Salimi, A.; Nasiri, S.; Hadadzadeh, H.; Mohebi, S. Renewable Surface Sol-Gel Derived Carbon Ceramic Electrode Modified with [Ru(NH3)5Cl](PF6)2 Complex: Application to Amperometric Detection of Chlorate. Electroanalysis 2005, 17, 2273–2280. [Google Scholar] [CrossRef]
- Hiiro, K.; Moody, G.; Thomas, J. A chlorate ion-selective electrode based on a poly(vinyl chloride)—Matrix membrane. Talanta 1975, 22, 918–919. [Google Scholar] [CrossRef]
- Sharma, S.K.; Howe, B.M.; Misra, A.K.; Rognstad, M.R.; Porter, J.N.; Acosta-Maeda, T.E.; Egan, M.J. Underwater Time-Gated Standoff Raman Sensor for In Situ Chemical Sensing. Appl. Spectrosc. 2021, 75, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Lenntech. Dulcotest® Sensors for Chlorite. 2019. Available online: https://www.lenntech.com/Data-sheets/Prominent-sensors-chlorite-en-L.pdf (accessed on 16 May 2022).
- NT Sensors, S.L. Perchlorate Ion Electrode (ClO4−). Available online: https://www.ntsensors.com/wp-content/uploads/2021/05/M99_perchlorate.pdf (accessed on 16 May 2022).
- Messaoud, N.B.; Baraket, A.; Dridi, C.; Nooredeen, N.M.; Abbas, M.N.; Bausells, J.; Streklas, A.; Elaissari, A.; Errachid, A. Development of a Perchlorate Chemical Sensor Based on Magnetic Nanoparticles and Silicon Nitride Capacitive Transducer. Electroanalysis 2018, 30, 901–909. [Google Scholar] [CrossRef]
- Braik, M.; Dridi, C.; Ben Ali, M.; Ali, A.; Abbas, M.; Errachid, A. Investigation of structural, optical and electrical properties of a new cobalt phthalocyanine thin films with potential applications in perchlorate sensor. Synth. Met. 2015, 209, 135–142. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Singh, P.; Upadhyay, A. Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands. Sens. Actuators B Chem. 2014, 199, 201–209. [Google Scholar] [CrossRef]
- Gu, B.; Ruan, C.; Wang, W. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Appl. Spectrosc. 2009, 63, 98–102. [Google Scholar] [CrossRef]
- Chairez, I.; Poznyak, A.; Poznyak, T. Reconstruction of dynamics of aqueous phenols and their products formation in ozonation using differential neural network observers. Ind. Eng. Chem. Res. 2007, 46, 5855–5866. [Google Scholar] [CrossRef]
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Mohd Ali, J.; Ha Hoang, N.; Hussain, M.A.; Dochain, D. Review and classification of recent observers applied in chemical process systems. Comput. Chem. Eng. 2015, 76, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.; Chellam, S. Disinfection by-product formation following chlorination of drinking water: Artificial neural network models and changes in speciation with treatment. Sci. Total Environ. 2010, 408, 4202–4210. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Gupta, S. Artificial intelligence based modeling for predicting the disinfection by-products in water. Chemom. Intell. Lab. Syst. 2012, 114, 122–131. [Google Scholar] [CrossRef]
- Lin, H.; Dai, Q.; Zheng, L.; Hong, H.; Deng, W.; Wu, F. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study. Chemosphere 2020, 248, 125999. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shen, J.; Qu, Y.; Chen, H.; Zhou, X.; Hong, H.; Sun, H.; Lin, H.; Deng, W.; Wu, F. Using simple and easy water quality parameters to predict trihalomethane occurrence in tap water. Chemosphere 2022, 286, 131586. [Google Scholar] [CrossRef] [PubMed]
- Hammar, L.; Wranglén, G. Cathodic and anodic efficiency losses in chlorate electrolysis. Electrochim. Acta 1964, 9, 1–16. [Google Scholar] [CrossRef]
- Jung, Y.J.; Baek, K.W.; Oh, B.S.; Kang, J.W. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water Res. 2010, 44, 5345–5355. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chlorine; Technical Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2010.
- Czarnetzki, L.R.; Janssen, L.J.J. Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J. Appl. Electrochem. 1992, 22, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Nakagawara, S.; Goto, T.; Nara, M.; Ozawa, Y.; Hotta, K.; Arata, Y. Spectroscopic Characterization and the pH Dependence of Bactericidal Activity of the Aqueous Chlorine Solution. Anal. Sci. 1998, 14, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Hach Company/Hach Lange GmbH. Temperature Compensation with pH Measurement; Technical Report LIT2007; Hach Company/Hach Lange GmbH: Ames, IO, USA, 2013. [Google Scholar]
- Atwood, J. Chlorine and Its Oxides: Chlorate and Perchlorate Review; Report; Agriculture and Horticulture Development Board: Kenilworth, UK, 2016.
- Solodov, A.; Ochkov, V. Differential Models, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Ylén, J. Measuring, Modelling and Controlling the pH Value and the Dynamic Chemical State. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2001. [Google Scholar]
- Stanford, B.D.; Pisarenko, A.N.; Snyder, S.A.; Gordon, G. Perchlorate, bromate, and chlorate in hypochlorite solutions: Guidelines for utilities. J.-Am. Water Work. Assoc. 2011, 103, 71–83. [Google Scholar] [CrossRef]
- Kalman, R. On the general theory of control systems. IFAC Proc. Vol. 1960, 1, 491–502. [Google Scholar] [CrossRef]
- Kwakernaak, H.; Sivan, R. Linear Optimal Control Systems; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Zhang, D.; Couto, L.D.; Moura, S.J. Electrode-Level State Estimation in Lithium-Ion Batteries via Kalman Decomposition. IEEE Control. Syst. Lett. 2021, 5, 1657–1662. [Google Scholar] [CrossRef]
- Kopp, R.E.; Orford, R.J. Linear regression applied to system identification for adaptive control systems. AIAA J. 1963, 1, 2300–2306. [Google Scholar] [CrossRef]
- Jazwinski, A.H. Stochastic Processes and Filtering Theory; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Gelb, A. Applied Optimal Estimation; MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Hach Company/Hach Lange GmbH. Chlorine, Free and Total, High Range, 6th ed.; Technical Report DOC316.53.01449; Hach Company/Hach Lange GmbH: Ames, IO, USA, 2018. [Google Scholar]
- Khelifa, A.; Moulay, S.; Hannane, F.; Benslimene, S.; Hecini, M. Application of an experimental design method to study the performance of electrochlorination cells. Desalination 2004, 160, 91–98. [Google Scholar] [CrossRef]
- Vacca, A.; Mascia, M.; Palmas, S.; Mais, L.; Rizzardini, S. On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment. J. Chem. Technol. Biotechnol. 2013, 88, 2244–2251. [Google Scholar] [CrossRef]
- Adam, L.C.; Gordon, G. Hypochlorite Ion Decomposition: Effects of Temperature, Ionic Strength, and Chloride Ion. Inorg. Chem. 1999, 38, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
Symbol | Description | Quantity | Unit |
---|---|---|---|
Q | Flow | 9.0 × 10−5 | L/s |
I | Current | 2.3 | C/s |
[OH- | Hydroxide inflow | 1.3 × 10−9 | mol/L |
Symbol | Description | Quantity | Unit |
---|---|---|---|
F | Faraday constant | 96,485 | C/mol |
Cell volume | 0.105 | L | |
Sensor volume | 0.288 | L | |
current efficiency | 0.74 | - | |
current efficiency per concentration | 0.38 | L/mol | |
Electrons transferred per ion produced | 2 [39,40] | - | |
Electrons transferred per ion produced | 3 [42] | - | |
Equilibrium constant - balance | 2.9 × 10−8 [41] | mol/L | |
or to ratio in Reactions (5) and (6) | 3 [42] | - |
Model Parameter | Distribution | Distribution Parameters |
---|---|---|
Gamma | , L/mol | |
Gamma | , L/mol | |
Normal | L, L | |
Normal | L, L | |
Normal | , | |
Normal | L/mol, L/mol | |
Normal | mol/L, mol/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, E.; Wagterveld, M.; Mayer, M.; Stigter, H.; Højris, B.; Li, Y.; Keesman, K. Sensor Data Fusion as an Alternative for Monitoring Chlorate in Electrochlorination Applications. Sustainability 2022, 14, 6119. https://doi.org/10.3390/su14106119
Ross E, Wagterveld M, Mayer M, Stigter H, Højris B, Li Y, Keesman K. Sensor Data Fusion as an Alternative for Monitoring Chlorate in Electrochlorination Applications. Sustainability. 2022; 14(10):6119. https://doi.org/10.3390/su14106119
Chicago/Turabian StyleRoss, Edwin, Martijn Wagterveld, Mateo Mayer, Hans Stigter, Bo Højris, Yang Li, and Karel Keesman. 2022. "Sensor Data Fusion as an Alternative for Monitoring Chlorate in Electrochlorination Applications" Sustainability 14, no. 10: 6119. https://doi.org/10.3390/su14106119