Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Source and Cultivation Medium
2.2. Photobioreactor Setup and Operation
2.3. Cell Concentration and Productivity
3. Results and Discussion
3.1. Effects of White, Red, and Green Wavelengths and Duration Results on Growth Rate
3.2. Light Wavelength and Duration Results on Biomass Productivity
3.3. Implications of LED on Cost, Biomass Productivity on Transport Biofuels, and Way Forward
4. Conclusions
- White LED light resulted in the highest growth rate and highest biomass productivity. The best light colours for the species studied by order of enhanced productivity are white and red lights. For photoperiod the best order is 24L:0D and 19L:5D for C. vulgaris and S. quadricauda, respectively,
- Green LED light and a long dark period (i.e., 12L:12D) did not show an impressive positive trend in either growth rate or biomass productivity for both microalgae species compared to white and red LEDs and 24L:0D and 19L:5D light durations. It can be concluded that longer dark periods were detrimental to the species mainly under green LED light. Therefore, it is concluded that microalgae have a very short life cycle in the dark under green LED light, and exposure to green wavelength apparently led to slow growth, which would have led stagnation if continued.
- C. vulgaris had shorter duplication time compared to S. quadricauda.
- S. quadricauda thrived the most with a 5 h dark cycle.
- Short periods of darkness (5 h) could be a new strategy to improve biomass productivity under specific light (red). Therefore, under the experimental conditions, the best approach to cultivate both species for enhanced biomass production with short period of darkness was 19L:5D. For commercial process, 5 h of darkness would translate to energy saving over time, when compared to running a 24 h light source. Furthermore, there is not much difference comparing white and red light.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohunakin, O.S.; Adaramola, M.S.; Oyewola, O.M. Wind Energy Evaluation for Electricity Generation Using WECS in Seven Selected Locations in Nigeria. Appl. Energy 2011, 88, 3197–3206. [Google Scholar] [CrossRef]
- Ohunakin, O.S.; Adaramola, M.S.; Oyewola, O.M.; Fagbenle, R.O. Solar Energy Applications and Development in Nigeria: Drivers and Barriers. Renew. Sustain. Energy Rev. 2014, 32, 294–301. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.G. Improvement of Methane Production from P. canaliculata through Mechanical Pretreatment. Renew. Energy 2018, 119, 73–78. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.G. Mechanical Pretreatment of Waste Paper for Biogas Production. Waste Manag. 2017, 68, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-T.; Lai, C.-W.; Wu, B.-W.; Lin, K.-S.; Wu, J.C.S.; Hossain, M.S.A.; Yamauchi, Y.; Wu, K.C.-W. Advances in Bioconversion of Microalgae with High Biomass and Lipid Productivity. J. Taiwan Inst. Chem. Eng. 2017, 79, 37–42. [Google Scholar] [CrossRef]
- Russell, C.; Rodriguez, C.; Yaseen, M. High-Value Biochemical Products & Applications of Freshwater Eukaryotic Microalgae. Sci. Total Environ. 2022, 809, 151111. [Google Scholar] [CrossRef]
- Olabi, A.G. 100% Sustainable Energy. Energy 2014, 77, 1–5. [Google Scholar] [CrossRef]
- Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Olabi, A.G. Optimisation of Tray Drier Microalgae Dewatering Techniques Using Response Surface Methodology. Energies 2018, 11, 2327. [Google Scholar] [CrossRef] [Green Version]
- Shahi, T.; Beheshti, B.; Zenouzi, A.; Almasi, M. Bio-Oil Production from Residual Biomass of Microalgae after Lipid Extraction: The Case of Dunaliella sp. Biocatal. Agric. Biotechnol. 2020, 23, 101494. [Google Scholar] [CrossRef]
- Collotta, M.; Champagne, P.; Mabee, W.; Tomasoni, G.; Leite, G.B.; Busi, L.; Alberti, M. Comparative LCA of Flocculation for the Harvesting of Microalgae for Biofuels Production. Procedia CIRP 2017, 61, 756–760. [Google Scholar] [CrossRef]
- Zhu, L.D.; Li, Z.H.; Hiltunen, E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Res. Int. 2016, 2016, 7–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Olabi, A.G. Microalgae Cultivation Technologies. Encycl. Smart Mater. 2018, 2, 709–731. [Google Scholar] [CrossRef]
- Hadley, K.B.; Bauer, J.; Milgram, N.W. The Oil-Rich Alga Schizochytrium sp. as a Dietary Source of Docosahexaenoic Acid Improves Shape Discrimination Learning Associated with Visual Processing in a Canine Model of Senescence. Prostaglandins Leukot. Essent. Fat. Acids 2017, 118, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for Livestock Diets: A Review. Anim. Feed. Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Onumaegbu, C.; Alaswad, A.; Rodriguez, C.; Olabi, A. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga. Energies 2018, 11, 806. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment Techniques Used in Biogas Production from Grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Olabi, A.G. Developments of Electric Cars and Fuel Cell Hydrogen Electric Cars. Int. J. Hydrog. Energy 2017, 42, 25695–25734. [Google Scholar] [CrossRef] [Green Version]
- OECD; IEA; FAO. Technology Roadmap: How2Guide for Bioenergy Roadmap—Development and Implementation; OECD: Paris, France; IEA: Paris, France; FAO: Rome, Italy, 2017. [Google Scholar]
- Kaewkannetra, P.; Enmak, P.; Chiu, T. The Effect of CO2 and Salinity on the Cultivation of Scenedesmus Obliquus for Biodiesel Production. Biotechnol. Bioprocess Eng. 2012, 17, 591–597. [Google Scholar] [CrossRef]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 Biofixation and Fatty Acid Composition of Scenedesmus Obliquus and Chlorella Pyrenoidosa in Response to Different CO2 Levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Olabi, A.G. Micro-Macroalgae Properties and Applications. Ref. Modul. Mater. Sci. Mater. Eng. 2018. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.G. Waste Paper and Macroalgae Co-Digestion Effect on Methane Production. Energy 2018, 154, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.; Daverey, A.; Lin, J.G. Evolution Retrospective for Alternative Fuels: First to Fourth Generation. Renew. Energy 2014, 69, 114–122. [Google Scholar] [CrossRef]
- Allegra Carbone, D.; Olivieri, G.; Pollio, A.; Melkonian, M. Growth and Biomass Productivity of Scenedesmus Vacuolatus on a Twin Layer System and a Comparison with Other Types of Cultivations. Appl. Microbiol. Biotechnol. 2017, 101, 8321–8329. [Google Scholar] [CrossRef] [PubMed]
- Onumaegbu, C.; Alaswad, A.; Rodriguez, C.; Olabi, A. Modelling and Optimization of Wet Microalgae Scenedesmus Quadricauda Lipid Extraction Using Microwave Pre-Treatment Method and Response Surface Methodology. Renew. Energy 2019, 132, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Maroneze, M.M.; Siqueira, S.F.; Vendruscolo, R.G.; Wagner, R.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. The Role of Photoperiods on Photobioreactors—A Potential Strategy to Reduce Costs. Bioresour. Technol. 2016, 219, 493–499. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, K.L.; Chang, H.Y.; Chang, J.S. Strategies to Improve Oil/Lipid Production of Microalgae in Outdoor Cultivation Using Vertical Tubular-T Ype Photobioreactors. Energy Procedia 2014, 61, 2755–2758. [Google Scholar] [CrossRef] [Green Version]
- Baidya, A.; Akter, T.; Islam, M.R.; Shah, A.; Hossain, M.A.; Salam, M.A.; Paul, S.I. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon 2021, 7, e08525. [Google Scholar] [CrossRef] [PubMed]
- Niizawa, I.; Leonardi, R.J.; Irazoqui, H.A.; Heinrich, J.M. Light Wavelength Distribution Effects on the Growth Rate of Scenedesmus Quadricauda. Biochem. Eng. J. 2017, 126, 126–134. [Google Scholar] [CrossRef]
- Yan, C.; Muñoz, R.; Zhu, L.; Wang, Y. The Effects of Various LED (Light Emitting Diode) Lighting Strategies on Simultaneous Biogas Upgrading and Biogas Slurry Nutrient Reduction by Using of Microalgae Chlorella sp. Energy 2016, 106, 554–561. [Google Scholar] [CrossRef]
- Chiarini, A.; Quadrio, M. The Light/Dark Cycle of Microalgae in a Thin-Layer Photobioreactor. J. Appl. Phycol. 2021, 33, 183–195. [Google Scholar] [CrossRef]
- Santos, K.R.; Mariano, A.B. Determination of Optimal Algae Concentration for Continuous Growth of Scenedesmus sp. in CHU and Modified CHU Media. Rev. Eng. Térmica 2014, 13, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Charles, M.B.; Ryan, R.; Ryan, N.; Oloruntoba, R. Public Policy and Biofuels: The Way Forward? Energy Policy 2007, 35, 5737–5746. [Google Scholar] [CrossRef]
- Gallagher, B.J. The Economics of Producing Biodiesel from Algae. Renew. Energy 2011, 36, 158–162. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from Microalgae: A Critical Evaluation from Laboratory to Large Scale Production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Foley, A.; Olabi, A.G. Renewable Energy Technology Developments, Trends and Policy Implications That Can Underpin the Drive for Global Climate Change. Renew. Sustain. Energy Rev. 2017, 68, 1112–1114. [Google Scholar] [CrossRef] [Green Version]
Algal Species | Specific Growth Rate, µ (day−1) | Photoperiod (L:D) | LED and Intensity (µmol Photon m−2 s−1) | References |
---|---|---|---|---|
C. vulgaris | 3.49 | 24:0 | White (200) | Current work |
S. quadricauda | 2.84 | 24:0 | White (200) | Current work |
S. obliquus | 2.51 | 24:0 | White (30) | [26] |
Tetraselmis sp. | 1.47 | 24:0 | Blue (100) | [26] |
Nannochloropsis sp. | 1.64 | 24:0 | Blue (100) | [26] |
C.vulgaris | 1.26 | 12:12 | Blue (70) | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Olabi, A.G. Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods. Sustainability 2022, 14, 6108. https://doi.org/10.3390/su14106108
Anyanwu RC, Rodriguez C, Durrant A, Olabi AG. Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods. Sustainability. 2022; 14(10):6108. https://doi.org/10.3390/su14106108
Chicago/Turabian StyleAnyanwu, Ruth Chinyere, Cristina Rodriguez, Andy Durrant, and Abdul Ghani Olabi. 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods" Sustainability 14, no. 10: 6108. https://doi.org/10.3390/su14106108