Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability
Abstract
:1. Introduction
- Planning crop irrigation activities (drones monitor a set of four factors involved in determining irrigation needs: the availability of water in the ground, plants’ need for water, degree of humidity, and the efficiency of the irrigation system) [12];
- Monitoring the degree of soil coverage by vegetal residue, which is necessary to implement practices regarding the preservation of soil resources under good conditions [16];
- Monitoring crop maturation for the correct prediction of the optimal harvesting moment [17];
- Monitoring production to plan the necessary number of machines for production harvest, their transportation, and their storage;
- Monitoring illegal activities, forest fires, and other natural disasters [18] (Tiwari, A.; Dixit, A. Unmanned aerial vehicle and geospatial technology pushing the limits of development. Am. J. Eng. Res. 2015, 4, 16–21); and abusive practices (the abusive grazing), respectively.
- Atmospheric humidity;
- Flight altitude;
- the existence of heat emission or reflection sources (during the first phases of vegetation, the soil reflectivity effect may influence images [22]);
- Bad weather conditions, such as wind, rain, or storms, may lead to failed drone missions;
- Low load capacity, which limits the transportation of an integrated sensor system [23];
2. Materials and Methods
- Obtaining permission from the Aeronautic Authority and the Ministry of Defense to overfly at a 100 m altitude a 150 ha area, mentioning takeoff and landing spots;
- Establishing the drone’s flight layouts in the Pix4D application, in view of covering the area of interest. Then, the calculation algorithms generated flight trajectories that the drone had to cover at a 100 m altitude (an altitude determined by the existence of telecommunication antennas higher than 50 m within this zone) so that the pictures taken had a 70% overlap and the flight times were sustained by battery power (around 25 min for a battery);
- Preparing the drone for takeoff required the following flight conditions to be met: favorable weather conditions, with clear skies and wind speeds under 7 m/s, coverage of telecommunication network necessary for data transmission, and adequate GPS signal;
- Close monitoring of the trajectories, flight parameters, and drone positioning at each moment so that, in cases of any dysfunction, action can be taken immediately (immediate return to takeoff position command, engine shutdown, and forced landing in case of imminent danger, avoiding flying over groups of people, or in the proximity of aircraft or vehicles).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Chang. 2021, 167, 120677. [Google Scholar] [CrossRef]
- Huang, Y.; Thomson, S.J.; Hoffmann, W.C.; Lan, V.; Fritz, B.K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int. J. Agricult. Biol. Eng. 2013, 6, 1–10. [Google Scholar]
- Muchiri, N.; Kimathi, S. A review of applications and potential applications of UAV. Proc. Sustain. Res. Innov. Conf. 2016, 280–283. [Google Scholar] [CrossRef]
- Sullivan, D.G.; Fulton, J.P.; Shaw, J.N.; Bland, G. Evaluating the Sensitivity of an Unmanned Thermal Infrared Aerial System to Detect Water Stress in a Cotton Canopy. Trans. ASABE 2007, 50, 1963–1969. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Vera, C.; Aguirre-Munizaga, M.; Jiménez-Icaza, M.; Manobanda-Herrera, N.; Rodríguez-Méndez, A. A Photogrammetry Software as a Tool for Precision Agriculture: A Case Study. In Communications in Computer and Information Science; Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 749. [Google Scholar] [CrossRef]
- Iagăru, P.; Pavel, P.; Iagăru, R. Implementation of the concept Agriculture of Precision a way to improve the Management of Agricultural Enterprises. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 229–233. [Google Scholar]
- Khan, N.; Ray, R.; Sargani, G.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Fertu, C.; Dobrota, L.M.; Balasan, D.L.; Stanciu, S. Monitoring the vegetation of agricultural crops using drones and remote sensing-comparative presentation. Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev. 2021, 21, 249–254. [Google Scholar]
- Mihalache, D.; Vanghele, N.; Petre, A.; Matache, A. The use of drones in modern agriculture. Ann. Univ. Craiova-Agric. Montanology Cadastre Ser. 2021, 50, 349–354. [Google Scholar]
- Sylvester, G. E-Agriculture in Action: Drones for Agriculture; Food and Agriculture Organization of the United Nations And International Telecommunication Union: Bangkok, Thailand, 2018. [Google Scholar]
- Rhoads, F.M.; Yonts, C.D. Irrigation Scheduling for Corn: Why and How. In The National Corn Handbook (NCH); University of Wisconson: Madison, WI, USA, 2000; Available online: http://corn.agronomy.wisc.edu/Management/NCH.aspx (accessed on 17 April 2022).
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Wang, D.-C.; Zhang, G.-L.; Pan, X.-Z.; Zhao, Y.-G.; Zhao, M.-S.; Wang, G.-F. Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference. Pedosphere 2012, 22, 394–403. [Google Scholar] [CrossRef]
- Wang, D.-C.; Zhang, G.-L.; Zhao, M.-S.; Pan, X.; Zhao, Y.-G.; Li, D.-C.; Macmillan, B. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS. PLoS ONE 2015, 10, e0129977. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.G.; Shaw, J.N.; Mask, P.L.; Rickman, D.; Guertal, E.A.; Luvall, J.; Wersinger, J.M. Evaluation of Multispectral Data for Rapid Assessment of Wheat Straw Residue Cover. Soil Sci. Soc. Am. J. 2004, 68, 2007–2013. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Zeller, L. Crop maturity mapping using a lowcost low-altitude remote sensing system. In Proceedings of the 2009 Surveying and Spatial Sciences Institute Biennial International Conference (SSC 2009), Adelaide, Australia, 28 September–2 October 2009. [Google Scholar]
- Tiwari, A.; Dixit, A. Unmanned aerial vehicle and geospatial technology pushing the limits of development. Am. J. Eng. Res. 2015, 4, 16–21. [Google Scholar]
- Swain, K.C.; Thomson, S.J.; Jayasuriya, H. Adoption of an Unmanned Helicopter for Low-Altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop. Trans. ASABE 2010, 53, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; VanDeMark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Young, F.R.; Zeller, L.C.; Cleminson, V. Assessing grain crop attributes using digital imagery acquired from a low-altitude remote controlled aircraft. In Proceedings of the 2003 Spatial Sciences Institute Conference: Spatial Knowledge Without Boundaries (SSC2003), Canberra, Australia, 22–27 September 2003; Spatial Sciences Institute: Los Angeles, CA, USA, 2003; pp. 1–11. [Google Scholar]
- Csajbók, J.; Buday-Bódi, E.; Nagy, A.; Fehér, Z.Z.; Tamás, A.; Virág, I.C.; Bojtor, C.; Forgács, F.; Vad, A.M.; Kutasy, E. Multispectral Analysis of Small Plots Based on Field and Remote Sensing Surveys—A Comparative Evaluation. Sustainability 2022, 14, 3339. [Google Scholar] [CrossRef]
- Almalki, F.; Soufiene, B.; Alsamhi, S.; Sakli, H. A Low-Cost Platform for Environmental Smart Farming Monitoring System Based on IoT and UAVs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Saunders, M.; Lewis, P.; Thornhill, A. Research methods for business students; Pearson: Harlow, UK; Munich, Germany, 2016. [Google Scholar]
- Iagăru, P.; Mărcuță, L.; Iagăru, R.; Mărcuță, A. Sustainable resource management, the source of production integration, biodiversity conservation and socio-cultural values in grasway ecosystems. Rom. Biotechnol. Lett. 2020, 25, 1948–1991. [Google Scholar] [CrossRef]
- Olteanu, G.; Puiu, I.; Bekö, A.; Ghinea, A. Agricultura de Precizie—O Cale Pentru Eficientizarea Producției de Cartof, Sesiunea de Comunicări Științifice “45 de ani de Cercetare-Dezvoltare: Tradiție, Continuitate și Viitor Pentru Agricultura României”; Institutul Național de Cercetare Dezvoltare pentru Cartof și Sfeclă de Zahăr din Brașov: Brașov, Romania, 2012. [Google Scholar]
- Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2019, 21, 955–978. [Google Scholar] [CrossRef]
- Ayamga, M.; Tekinerdogan, B.; Kassahun, A. Exploring the challenges posed by regulations for the use of drones in agricul-ture in the African context. Land 2021, 10, 164. [Google Scholar] [CrossRef]
- Battes, K. Ecologie Generală: Ghid de Lucrări Practice; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2012; Volume 46. [Google Scholar]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.; Vázquez-Peña, M. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F.; et al. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iagăru, P.; Pavel, P.; Iagăru, R.; Șipoș, A. Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability. Sustainability 2022, 14, 6011. https://doi.org/10.3390/su14106011
Iagăru P, Pavel P, Iagăru R, Șipoș A. Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability. Sustainability. 2022; 14(10):6011. https://doi.org/10.3390/su14106011
Chicago/Turabian StyleIagăru, Pompilica, Pompiliu Pavel, Romulus Iagăru, and Anca Șipoș. 2022. "Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability" Sustainability 14, no. 10: 6011. https://doi.org/10.3390/su14106011
APA StyleIagăru, P., Pavel, P., Iagăru, R., & Șipoș, A. (2022). Aerial Monitorization—A Vector for Ensuring the Agroecosystems Sustainability. Sustainability, 14(10), 6011. https://doi.org/10.3390/su14106011