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Abstract: Precision Farming (PF) management strategies are commonly based on
estimations of within-field yield potential, often derived from remotely-sensed products,
e.g., Vegetation Index (VI) maps. These well-established means, however, lack important
information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface
Models (CSMs) enable advanced methods for crop yield prediction. This work utilizes
an Unmanned Aircraft System (UAS) to capture standard RGB imagery datasets for corn
grain yield prediction at three early- to mid-season growth stages. The imagery is processed
into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height
determination at different spatial resolutions. Three linear regression models are tested on
their prediction ability using site-specific (i) unclassified mean heights, (ii) crop-classified
mean heights and (iii) a combination of crop-classified mean heights with according crop
coverages. The models show determination coefficients R2 of up to 0.74, whereas model
(iii) performs best with imagery captured at the end of stem elongation and intermediate
spatial resolution (0.04 m·px−1). Following these results, combined spectral and spatial
modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season
corn yield prediction.



Remote Sens. 2014, 11 10336

Keywords: corn; crop coverage; crop height; crop surface model; CSM, UAS; yield

1. Introduction

Corn (Zea mays L.) biomass and grain yields vary depending on site, climatic conditions and
management decisions. Moreover, variation is likely to occur within fields. Following the idea
of Precision Farming (PF), the identification of within-field spatial and temporal variability shows
potential to support crop management concepts to meet much of the increasing environmental,
economic, market and public pressures on arable agriculture [1]. Management strategies account for
(i) environmental issues by adapting the input factors to the demand of the crop and, thus, avoid
over- or under-application [2,3], (ii) economic issues by calculating within-field net returns [4] and
(iii) possibilities to improve the control and influence of the quality of the product [5].

Yield estimations prior to harvest play a key role in the determination of input factors, like
nutrients, pesticides and water, as well as for the planning of upcoming labor- and cost-intensive
actions, like harvesting, drying and storage. In addition, bioenergy- and other corn-related industries
benefit from these estimations, too [6]. Commonly, farmers use different methods for prediction.
Coarse estimations are built on the farmer’s expert knowledge. Better estimations can be drawn from
destructive sampling procedures in representative areas [7]. Unfortunately, destructive sampling is very
labor-and cost-intensive work. Another approach is using yield maps, providing information about
spatial and temporal variability of yields in previous years [8]. Although yield maps give some hints
at within-field yield potential, they have limitations in explaining current growing conditions. Thus,
reliable information about actual within-field yield estimations is usually drawn from more promising
methods. Besides using linear regression models with additional information on crop management [6] or
weather and soil attributes [9], several studies demonstrate the power of crop growth models to predict
yield [10,11]. Although crop growth models return good estimates, their practical applicability may
be limited due to the need of extensive input data for implementation. On a local and regional level,
remote sensing products are quite common for estimating corn yield [12–14]. For a further increase
in accuracy, some authors also combine actual remote sensing data and crop growth models [15,16].
Consequently, PF data has potential to improve crop development and yield prediction with smart
management strategies and yield models.

With the upcoming of cheap and handy Unmanned Aircraft Systems (UASs), remotely-sensed data
at high spatial and temporal resolutions have become more and more affordable [17]. Many researchers
focus on RGB, multi-, hyper-spectral and thermal imaging techniques for crop monitoring [18–20], crop
and weed discrimination [21,22] or on the generation of Digital Elevation Models (DEMs) [23–26].
Despite that, less research has been conducted on 3D Crop Surface Models (CSMs) [27–29] or on the
possibilities of a combined analysis of both 3D and spectral information [30–32].

This study focuses on modeling of corn grain yield with a combined spectral and spatial analysis
of aerial imagery. Standard imagery, which has been captured by a RGB consumer camera, the most
common sensor used on UASs, serves as the data basis. Although RGB imagery carries limited spectral
information compared to more sophisticated types, like multi-, hyper-spectral and thermal ones, its high
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spatial resolution allows one to create detailed CSMs for further crop investigation [28]. In addition to
that, spectral information from RGB imagery can be used to determine positions of crops and estimate
site-specific crop coverage factors by applying basic methods for crop/non-crop separation [33–35].

Recent studies found a high correlation of corn plant height and corn grain yield at early- to
mid-season growth stages [36–38]. Yin et al. [37] also showed that linear regression models for the
prediction of corn grain yield may be the preferred ones, because of their simplicity. Based on these
findings, this study’s objective was to assess the potential of CSMs to predict corn grain yield at early- to
mid-season growth stages by using mean crop heights and different linear regression models. The
underlying hypotheses were to predict corn grain yield with simple linear regression models, building
on plot-wise mean crop height as the predictor variable. The mean crop heights were generated in two
ways, with and without respect to previously classified crop/non-crop pixels. Additionally, a multiple
linear regression model was set up, including the crop coverage factor as a second predictor variable to
improve prediction accuracy.

2. Materials and Methods

2.1. Experimental Setup

Ihinger Hof (48.74◦N, 8.92◦E), a research station of the University of Hohenheim, was chosen to
serve as an experimental site for a field trial to predict corn grain yield by aerial imagery and crop surface
models. The regional climate is categorized as a temperate climate with an annual average temperature
of 7.9 ◦C and an average precipitation of 690 mm.

Figure 1. Overview of the two-factorial field trial in corn with 64 plots of a size of 36 × 6 m
each. Four sowing densities (8–11 seeds·m−2) were tested at four different levels of nitrogen
fertilization (50, 100, 150 and 200 kg·N·ha−1) in a setup with four replicates.

A two-factorial field trial was laid out in a common randomized split-plot design on 27 May 2013,
with the corn cultivar “NK Ravello”. Four sowing densities (8–11 seeds·m−2) were tested at four
different levels of nitrogen fertilization (50, 100, 150 and 200 kg·N·ha−1) in a setup with four replicates.
This resulted in 64 plots of a size of 36 × 6 m each and a total trial size of 1.38 ha (see Figure 1).
Row spacing was set to 0.75 m, whereas seed spacing was adjusted according to the desired density
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level (0.115–0.158 m). Harvest and determination of corn grain yield with a moisture content of
14% took place on 28 October 2013, with a Global Navigation Satellite System (GNSS)-assisted
combine harvester.

2.2. UAS and Sensor Setup

In this field experiment, a modified MikroKopter (MK) Hexa XL served as the aerial carrier
platform to conduct sensor measurements [39]. Equipped with standard MK navigation sensors (Inertial
Measurement Unit (IMU) and differential GNSS receiver), it is able to perform user-defined waypoint
flights. Assembled with a payload of 1 kg and a lithium polymer battery with a capacity of 5000 mAh,
this UAS operates approximately 10 min at an altitude level of 50 m above ground. With an additionally
integrated Raspberry Pi Model B computer, it merges its navigation information with observations from
attached sensor devices on-the-fly [40,41].

As the imaging sensor, a Canon Ixus 110 IS RGB consumer camera was attached to the UAS [42]. The
camera’s sensor resolution was set to a maximum of 4000 × 3000 pixels to achieve a ground resolution
of approximately 0.02 m·px−1 at a flight altitude of 50 m. The camera was configured to predefined focal
length (5.0 mm), aperture (f/2.8) and exposure time (1/500, 1/800 or 1/1000 s), whereas image triggering
was software-controlled via a USB connection with the Raspberry Pi.

2.3. Measurements

Flight missions were performed on three dates during early- and mid-season crop development
(beginning of stem elongation, end of stem elongation and end of emergence of inflorescence), referring
to Zadoks’ scale’s Z32, Z39 and Z58 [43]. In each mission, aerial images were captured at a scheduled
flight altitude of 50 m with an intended overlap of 80% in-track and 60% cross-track to ensure image
redundancy. All images have been captured with a nadir view of direction, in clear skies and around
noon. Each flight mission produced about 400 images covering all experimental plots with a ground
resolution of approximately 0.02 m·px−1. An overview of the flight missions is given in Table 1.

Table 1. Overview of performed flight missions at Zadoks’ scale’s crop growth stages
Z32, Z39 and Z58 and the number of images for subsequent processing, flight altitude,
approximate image ground resolution, mission time, illumination and wind speed.

Date
Growth
Stage

Images
Scheduled
Altitude

(m)

Ground
Resolution
(m·px−1)

Time Illumination
Wind

(m·s−1)

17/07/2013 Z32 253 50 0.02 11–12 am clear sky 1
01/08/2013 Z39 198 50 0.02 10–11 am clear sky 2
15/08/2013 Z58 268 50 0.02 10–11 am clear sky 2
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2.4. Image Processing

Prior to processing, the selected original images were reduced in resolution to create four additional
datasets of imagery at ground resolutions of 0.04, 0.06, 0.08 and 0.10 m·px−1. These artificial datasets
were used to simulate corn grain yield prediction performance at different spatial resolution levels of
aerial imagery. Regarding the shape and structure of corn, as well as the applied plant spacing of
0.115 to 0.158 m and a row spacing of 0.75 m, the computed ground resolutions lie somewhere within
the leaf and canopy level. As a consequence, high ground resolutions are expected to cover fine structures
(leaf level), whereas low resolutions are expected to cover coarse structures (canopy level). The
following image processing routine was performed for each dataset and crop growth stage individually.

2.4.1. Orthoimage and Digital Elevation Model

Imagery and corresponding UAS navigation information were used to generate orthoimages and
DEMs with the help of the 3D reconstruction software Agisoft PhotoScan 1.0.1 [44]. In a first
step of processing, all selected images were aligned, mosaicked and geo-referenced by the software’s
feature matching and Structure from Motion (SfM) algorithms. In a similar way as the popular
Scale-Invariant Feature Transform (SIFT) approach from Lowe [45], feature detection was performed on
each image to generate descriptors for image correspondence detection. Based on the correspondences
and initial GNSS image locations, the SfM algorithm reconstructed the 3D scene, camera positions and
orientations [46]. In a second step, a DEM was extracted from the 3D scene by applying a natural
neighbor interpolation [47]. This DEM represents the geo-referenced surface of the experimental site
and is based on altitude values relative to the GNSS’ reference ellipsoid. Generally, absolute crop heights
are calculated by subtracting a second DEM, a so-called Digital Terrain Model (DTM), representing the
surface of the ground relative to the same reference ellipsoid as the DEM (see Figure 2).

Figure 2. Visualization of DEM and DTM altitudes relative to a commonly shared
GNSS reference ellipsoid (red surface). While the DEM represents a surface model of
the experimental site (green surface), the DTM represents the surface of the ground. The
DTM was approximated by interpolation of ground classified DEM pixels (yellow surface).
Absolute crop heights are derived by subtraction of the two surface representations.
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Therefore, in a third step, a DTM was inferred from the 3D scene by excluding non-ground pixels,
which have been previously classified using the software’s automatic classification routine. To ensure
the classification of real ground points, the point cloud was subdivided into cells of 7 × 7 m, and each
cell’s lowest point was used for triangulation of a coarse initial DTM. After that, the initial DTM was
densified by checking whether each remaining point meets the following two requirements: the vertical
distance to the DTM-surface lies within a predefined buffer of 0.03 m, and at least one of the vectors
to a ground-classified point intersects the DTM-plane with less than a predefined angle of 15◦. In a last
step, a mosaicked orthoimage, DEM and DTM were exported to three individual GeoTiff raster files for
subsequent processing.

2.4.2. Crop Surface Model and Vegetation Indices

Further processing was performed with the statistical computation software, R [48–50]. The exported
GeoTiff raster files were combined to a single raster stack object containing red, green, blue, DEM
and DTM information as individual raster layers. A CSM raster layer was generated by pixel-wise
subtraction of DTM layer altitudes from DEM layer altitudes and was added to the raster stack object.

In addition to that, three simple Vegetation Indices (VIs) were derived from the RGB bands containing
the pixels’ greenness information in relation to their redness and/or blueness. The Excess Green
Index (ExG), Vegetation Index Green (VIg), which is sometimes also referred to as the Normalized
Green-Red Difference Index (NGRDI), and an adapted broadband variant of the Plant Pigment
Ratio (PPRb) were selected as appropriate VIs to approach a detailed separation of crop and soil
pixels [33,34,51,52]. Table 2 lists these VIs’ calculation formulas, which were performed on the raster
stack object individually.

Table 2. Vegetation indices applied on the RGB images for pixel based crop/soil separation.
The Excess Green Index (ExG) accounts for a combination of green and red, as well as green
and blue reflection differences. The Vegetation Index Green (VIg) (sometimes also referred
to as the Normalized Green-Red Difference Index (NGRDI)) represents a normalized green
and red difference, whereas the adapted broadband variant of the Plant Pigment Ratio (PPRb)
makes use of a normalized green and blue difference.

Index
Reference

Explanation Formula

ExG
Woebbecke et al. [33]

& Meyer et al. [51]

Excess Green Index 2×Rgreen −Rred −Rblue

VIg
Gitelson et al. [34]

Vegetation Index Green
Rgreen −Rred

Rgreen +Rred

PPRb
based on Metternicht [52]

Plant Pigment Ratio
Rgreen −Rblue

Rgreen +Rblue
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2.4.3. Plot-Wise Feature Extraction

Features were extracted by a self-developed automatic routine. First, field trial plot information was
imported as a polygonal shapefile. For this analysis, plot size was reduced to rectangles of 9 × 6 m
around the original plots’ centers to account for plot boundary effects, e.g., sowing or fertilization
inaccuracies. Second, a shapefile containing harvested corn yield information was imported, and mean
corn yields were determined for each individual plot. Third, mean plot heights were calculated using
height information from the CSM layer. Fourth, for each VI layer, all pixels that fall inside a plot were
extracted, and five different thresholds were computed on the selected pixels’ aggregated histogram
based on the method of Ridler and Calvard [53] and Kort [50]. Consequently, VI layer pixels were
classified as non-crop pixels in the case that the pixels’ values were below the defined thresholds and as
crop pixels in the case that they were above the defined thresholds, respectively (see Figure 3).

Figure 3. VI-based Ridler thresholding by the example of a 4 × 4 m sub-sample of plot 413
with a sowing density of 11 seeds·m−2 and nitrogen application of 50 kg·N·ha−1. The upper
left corner shows the RGB orthoimage, which is displayed at a ground resolution of 0.04 m
and at crop growth stage Z39. The second image in the upper row shows the ExG layer,
which was derived from the RGB orthoimage. Based on the ExG layer’s histogram, five
different thresholds were computed. Threshold r3 is the original Ridler threshold, whereas
the other thresholds represent four variations on the Ridler method (upper right corner). The
remaining images show the ExG layer’s classification (green = crop, yellow = soil) based on
the five thresholds. In this example, threshold r3 and r4 seem to classify best. Thresholds r1
and r2 seem to overestimate crop coverage, while r5 seems to underestimate crop coverage.
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Fifth, for each VI layer and its five identified thresholds, mean plot heights were calculated using
the CSM layer height information solely from crop-classified pixels (see Figure 4). Sixth, for each VI
layer and its five identified thresholds, plot crop coverage was computed by dividing the number of
crop-classified pixels by the total number of pixels in each plot.

Figure 4. Mean crop height computation using the example of a 4 × 4 m sub-sample of plot
413 with a sowing density of 11 seeds·m−2 and nitrogen application of 50 kg·N·ha−1. The
lower part of the figure shows a stack of the RGB orthoimage and the ExG layer classification
based on threshold r4 at a ground resolution of 0.04 m and at crop growth stage Z39. The
upper part shows the corresponding CSM layer height information as a 3D representation,
colored by the ExG-classification. Mean crop height was calculated by the crop-classified
CSM layer heights only and is displayed as a semi-transparent plane.

2.5. Modeling Strategy

In the last step of processing, the extracted features were used to model corn grain yield with three
different strategies. Based on the findings of Yin et al. [37] that all investigated regression models predict
sufficiently well, standard linear regression models were set up for prediction. Assuming that Yi is the
harvested corn grain yield, H irs is the i-th mean plot height, regardless of any pixel classification, at the
r-th ground resolution level and the s-th growth stage, whereas b0 and b1 are the regression coefficients.
Equation (1) shows a simple linear regression model for corn grain yield prediction, forming strategy S1.

Yi = (b0 + b1 ×H irs) + εirs (1)
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Strategy S2 was laid out in the same way as strategy S1, except H irstv representing the i-th mean plot
height calculated from pixels, which were classified as crop by using the v-th VI layer and the t-th Ridler
threshold estimate at the r-th ground resolution and s-th growth stage (Equation (2)).

Yi = (b0 + b1 ×H irstv) + εirstv (2)

The third strategy S3 is a multiple linear regression approach, extending strategy S2. This approach
accounts for a second predictor variable Cirstv representing the i-th plot crop coverage factor, which was
computed by the v-th VI layer, and the t-th Ridler threshold estimate at the r-th ground resolution and
the s-th growth stage (Equation (3)).

Yi = (b0 + b1 ×H irstv + b2 × Cirstv) + εirstv (3)

While the first two strategies follow the approach of Yin et al. [37], strategy S3 also considers the
crop coverage factor as an additional predictor for expected corn grain yield.

2.6. Statistical Analysis

Statistical analysis was conducted with the statistical computation software, R. The field trial was
analyzed as a mixed model using a standard two-way analysis of variance (ANOVA) approach. All
modeling strategies for corn grain yield prediction were tested with and without classification-based
mean crop heights at all crop growth stages, ground resolutions, Ridler threshold estimates and deduced
crop coverage factors. The prediction accuracy of the different modeling strategies was assessed by
using R2 determination coefficient values as quality indicators. Spatial visualization of predicted and
harvested corn grain yield was carried out using the geographical information system QGIS [54].

3. Results and Discussion

3.1. Field Trial

The ANOVA showed a significant influence of nitrogen fertilization on corn grain yield. Significant
influences of sowing density, as well as of the interaction of both factors were not detected. The
non-significant influence of sowing density was not expected, but might have been caused by the small
variability in the range of sowing density levels of 8–11 seeds·m−2. Detailed results are not presented in
the following.

3.2. Image Processing

The 3D reconstruction software, Agisoft PhotoScan 1.0.1, was able to perform image alignment
and 3D scene reconstruction for all imagery datasets. Geo-referencing was based on camera location
information, derived from GNSS and IMU data. Orthoimage, DEM and DTM computation succeeded
for all imagery datasets. Resulting orthoimage ground resolution was at the level of input image ground
resolution. As dense point cloud reconstruction is a very hardware-demanding task, the imagery used
for DEM and DTM generation was downscaled by a factor of two to save processing time. Although
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DEM and DTM were exported with the corresponding orthophoto’s ground resolution, the underlying
dense point cloud was built with less detail than theoretically possible.

As the produced DTMs are based on the interpolation of previously classified ground points, this
method is generally prone to misclassification at dense crop stands and canopy closure. In these
situations, only a small amount of ground points will be visible at all, weakening the reliability of
the interpolation results. Moreover, some of the classified points may not represent the “real” ground,
leading to an underestimation of crop heights. In a homogeneous field, a correction factor could
compensate for this underestimation. In an inhomogeneous field, the correction factor would not be
constant anymore. To avoid these problems, it is recommended to produce DTMs at sowing stage,
without the need for classification and interpolation of large gaps.

Geo-referencing accuracy was assessed by the help of 24 Ground Control Points (GCPs), which were
installed permanently and measured with RTK-GNSS equipment. Heavy rainfalls in July silted many
of the GCPs. In addition, others have been destroyed by intensive mechanical weed control in between
the corn strips. Unfortunately, the GCPs were not renewed before performing flight missions at Z39
and Z58. As a consequence, imagery from these stages lack accurate GCP information. Thus, accuracy
assessment was performed on Z32 imagery, only.

Table 3. Resulting root mean squared errors (m) (RMSE) at ground control point (GCP)
locations for indirectly (GCP-based) and directly (GNSS- and IMU-based) geo-referenced
imagery at Z32 for all image ground resolutions.

Geo- Coordinate Ground Resolution (m·px−1)
Reference Component 0.02 0.04 0.06 0.08 0.10

GCPs
Horizontal 0.058 0.063 0.084 0.089 0.082
Vertical 0.068 0.059 0.051 0.046 0.075

GNSS Horizontal 0.430 0.375 0.399 0.409 0.376
& IMU Vertical 0.303 0.273 0.283 0.320 0.379

In addition to direct (GNSS- and IMU-based) geo-referencing, indirect (GCP-based) geo-referencing
was conducted on Z32 imagery for enhanced CSM quality assessment. Table 3 lists the resulting root
mean squared errors of a comparison of measured and computed GCP coordinates for both methods and
all image ground resolutions at Z32. As expected, indirectly geo-referenced imagery showed smaller
residuals than the directly geo-referenced one. Horizontal RMSEs for indirectly geo-referenced imagery
ranged from 0.058 to 0.089 m, whereas vertical RMSEs ranged from 0.046 to 0.075 m. In contrast
to that, horizontal RMSEs for directly geo-referenced imagery ranged from 0.375 to 0.430 m, whereas
vertical RMSEs ranged from 0.273 to 0.379 m. The accuracies of both methods are in accordance with
the findings of Turner et al. [55] and Ruiz et al. [56], although vertical accuracy performs slightly better
than expected. GCP-based accuracy assessment for directly geo-referenced imagery at Z39 and Z58 was
not performed. Nevertheless, comparison of identifiable field boundaries with those of Z32 did not show
excessive horizontal accuracy errors for all resolutions.

The developed R-routine managed to calculate CSMs, VIs and all threshold variants for every imagery
dataset. CSM quality was assessed by comparison of mean plot heights at Z32, derived from accurate
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and indirectly geo-referenced imagery, with those derived from less accurate and directly geo-referenced
imagery. Table 4 shows the resulting root mean squared errors for plot height comparisons, ranging from
0.024 m for high resolution imagery to 0.008 m for low resolution imagery. With a difference of 0.20 m
in between the highest and lowest mean plot height at Z32, direct geo-referencing shows little influence
on mean plot height computation. Unfortunately, independent reference measurements, e.g., manual
height measurements, 3D laser scanning datasets or CSMs, derived by other SfM software packages,
were not available to assess absolute CSM accuracy. Therefore, subsequent analyses and results are
proven for this dataset, only.

Table 4. Resulting root mean squared errors (m) (RMSE) of comparing mean plot
heights calculated from indirectly (GCP-based) and directly (GNSS- and IMU-based)
geo-referenced imagery at Z32 for all image ground resolutions.

Coordinate Ground Resolution (m·px−1)
Value Component 0.02 0.04 0.06 0.08 0.10

Plot Height Vertical 0.024 0.010 0.009 0.010 0.008

Horizontal alignment errors of directly geo-referenced imagery strongly influence the results of
automatic feature extraction. To account for misalignment, the polygonal shapefile, containing this
field trial’s plot information, was realigned individually for all imagery at all growth stages and image
ground resolutions.

The computed original Ridler thresholds r3 were regarded as suitable for automatic separation of crop
and soil, as well as most of the threshold variants r2 and r4. In contrast to that, threshold variants r1 and
r5 showed results of crop overestimation at threshold r1 and underestimation at threshold r5, respectively
(see e.g., Figure 3). However, mean plot heights H irstv and crop coverage factors Cirstv were computed
for all strategies at every threshold level r1−5 for subsequent comparison of prediction performance.

3.3. Modeling Strategy

All results of the applied corn grain yield prediction strategies are summarized in Table 5, whereas
Figure 5 visualizes the most important findings. Strategy S3 was evaluated for collinearity of its predictor
variables, mean crop height and crop coverage. Critical collinearity at any crop growth stage was not
found. As all strategies built on data from one growing period, leave-one-out cross-validation was
conducted to evaluate each model’s predictive quality. Table 6 shows the resulting root mean squared
errors of prediction (RMSEP), ranging from 0.67 to 1.28 t·ha−1 (8.8% to 16.9%).

Crop growth stage Z32 was neglected in Figure 5, as none of the strategies resulted in R2

determination coefficient values higher than 0.56. As crops were still small and stems were beginning to
elongate, crops’ leaves were not overlapping at this point in time. Lacking canopy closure, the prediction
models had to account for information contained at the leaf level. Therefore, imagery with highest
resolutions of 0.02 and 0.04 m·px−1 performed best and showed significant R2 values. In contrast, lower
resolution datasets did not provide much detail, resulting in low R2 values. Strategy S3 was generally
able to significantly improve prediction accuracies of strategies S1 and S2 for all VIs by adding the crop
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coverage factor as the second predictor variable. Although the highest resolution imagery of 0.02 m·px−1

performed best at this stage, even higher resolutions may be more appropriate for CSM and, thus, mean
plot height generation. Reaching maximum R2 values of 0.56 and considering additional environmental
impacts on crop growth during the growing season, none of the applied strategies was assessed to be
reliable for early-season corn grain yield prediction.

Figure 5. Resulting determination coefficients R2 of modeling strategies S1−3 for all VIs and
aerial image ground resolutions at crop growth stages Z39 and Z58. Grey values represent
R2 values for strategy S1, whereas black values represent strategy S2 at Ridler threshold r3

and colored values represent strategy S3 at Ridler threshold r3, respectively. In addition to
the R2 values of strategies S2 and S3 at Ridler threshold r3, minimum and maximum R2

values of the four remaining threshold variants are indicated as range bars for every aerial
image ground resolution individually.
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Table 5. The resulting determination coefficients R2 of the prediction of corn grain yield by
applying strategies S1−3 for all combinations of VIs, aerial image ground resolutions, crop
growth stages and computed Ridler thresholds. Significance codes for predictor variable crop
height are represented as ∗ in superscript, whereas significance codes for predictor variable
crop coverage factor are represented as ∗ in subscript (appearing only in strategy S3).

Ground Res. (m·px−1) ExG VIg PPRb

Z Sx rx 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

Z32 S1 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗ 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗ 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗

Z32 S2 r1 0.54∗∗∗0.27∗∗∗0.12∗∗ 0.05 0.09∗ 0.53∗∗∗0.25∗∗∗0.11∗∗ 0.05 0.08∗ 0.46∗∗∗0.25∗∗∗0.11∗∗ 0.05 0.09∗

Z32 S2 r2 0.55∗∗∗0.24∗∗∗0.11∗∗ 0.04 0.08∗ 0.55∗∗∗0.21∗∗∗0.09∗ 0.03 0.07∗ 0.47∗∗∗0.21∗∗∗0.08∗ 0.03 0.08∗

Z32 S2 r3 0.55∗∗∗0.23∗∗∗0.08∗ 0.03 0.08∗ 0.46∗∗∗0.16∗∗∗0.05 0.02 0.05 0.46∗∗∗0.18∗∗∗0.05 0.02 0.07∗

Z32 S2 r4 0.53∗∗∗0.20∗∗∗0.06∗ 0.02 0.06∗ 0.36∗∗∗0.11∗∗ 0.02 0.01 0.04 0.42∗∗∗0.14∗∗ 0.03 0.01 0.04

Z32 S2 r5 0.51∗∗∗0.17∗∗∗0.04 0.01 0.05 0.25∗∗∗0.09∗ 0.01 0.01 0.05 0.37∗∗∗0.09∗ 0.02 0.00 0.03

Z32 S3 r1 0.54∗∗∗0.30∗ 0.21∗ 0.20∗∗ 0.21∗∗ 0.53∗∗∗0.25∗ 0.13 0.07 0.10 0.52∗∗∗∗∗ 0.30∗∗ 0.19∗ 0.13∗ 0.18∗
Z32 S3 r2 0.55∗∗∗0.36∗∗∗ 0.32∗∗∗0.31∗∗∗0.33∗∗∗0.56

∗∗∗0.31∗∗∗ 0.23∗∗ 0.19∗∗∗0.21∗∗ 0.53∗∗∗∗∗ 0.35∗∗∗∗0.27∗∗∗0.23∗∗∗0.27∗∗∗
Z32 S3 r3 0.55∗∗∗0.38∗∗∗∗0.35∗∗∗0.34∗∗∗0.38∗∗∗0.52

∗∗∗
∗∗ 0.37∗∗∗∗0.32∗∗∗0.31∗∗∗0.34∗∗∗0.52

∗∗∗
∗∗ 0.37∗∗∗∗0.33∗∗∗0.30∗∗∗0.33∗∗∗

Z32 S3 r4 0.55∗∗∗0.37∗∗∗∗0.33∗∗∗0.32∗∗∗0.38∗∗∗0.47
∗∗∗
∗∗∗0.35

∗
∗∗∗0.31∗∗∗0.32∗∗∗0.37∗∗∗0.50

∗∗∗
∗∗ 0.36∗∗∗∗0.32∗∗∗0.30∗∗∗0.33∗∗∗

Z32 S3 r5 0.52∗∗∗0.33∗∗∗∗0.29∗∗∗0.29∗∗∗0.34∗∗∗0.41
∗∗∗
∗∗∗0.31

∗
∗∗∗0.28∗∗∗0.29∗∗∗0.36∗∗∗0.46

∗∗∗
∗∗ 0.33∗∗∗∗0.30∗∗∗0.29∗∗∗0.32∗∗∗

Z39 S1 0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S2 r1 0.60∗∗∗0.69∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.57∗∗∗0.69∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r2 0.62∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.61∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r3 0.63∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.60∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r4 0.64∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.67∗∗∗0.61∗∗∗0.57∗∗∗0.61∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r5 0.64∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.66∗∗∗0.60∗∗∗0.56∗∗∗0.62∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S3 r1 0.60∗∗∗0.69∗∗∗0.69∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.60∗∗∗0.59∗∗∗0.69∗∗∗0.68∗∗∗0.63∗∗∗0.60∗∗∗

Z39 S3 r2 0.65∗∗∗∗ 0.71∗∗∗0.70∗∗∗0.64∗∗∗0.60∗∗∗0.62∗∗∗0.70∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.71∗∗∗0.69∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S3 r3 0.68∗∗∗∗∗ 0.72∗∗∗0.72∗∗∗∗∗ 0.67∗∗∗∗∗ 0.63∗∗∗∗∗ 0.63∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.60∗∗∗0.71∗∗∗0.69∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S3 r4 0.69∗∗∗∗∗ 0.73∗∗∗∗ 0.73∗∗∗∗∗ 0.69∗∗∗∗∗∗0.66
∗∗∗
∗∗∗0.64

∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.61∗∗∗0.72∗∗∗0.70∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S3 r5 0.70∗∗∗∗∗∗0.73
∗∗∗
∗ 0.74∗∗∗∗∗∗0.70

∗∗∗
∗∗∗0.68

∗∗∗
∗∗∗0.64

∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.62∗∗∗0.71∗∗∗0.70∗∗∗∗ 0.64∗∗∗0.60∗∗∗

Z58 S1 0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗

Z58 S2 r1 0.59∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.68∗∗∗0.59∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r2 0.55∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.56∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r3 0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r4 0.49∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.67∗∗∗0.63∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r5 0.46∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.66∗∗∗0.62∗∗∗0.68∗∗∗0.63∗∗∗0.63∗∗∗0.66∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S3 r1 0.60∗∗∗0.69∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.68∗∗∗0.59∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.69∗∗∗

Z58 S3 r2 0.55∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.56∗∗∗0.69∗∗∗0.65∗∗∗0.66∗∗∗0.69∗∗∗

Z58 S3 r3 0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.69∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.69∗∗∗

Z58 S3 r4 0.53∗∗∗∗ 0.69∗∗∗0.65∗∗∗0.66∗∗∗0.69∗∗∗0.66∗∗∗∗ 0.69∗∗∗0.66∗∗∗0.65∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S3 r5 0.54∗∗∗∗∗ 0.69∗∗∗0.66∗∗∗0.67∗∗∗0.68∗∗∗0.66∗∗∗∗∗ 0.70∗∗∗∗ 0.66∗∗∗∗ 0.65∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Significance Codes R2H(sig.height)
R2

C(sig.coverage)
∗∗∗ : p < 0.001 ∗∗ : p < 0.01 ∗ : p < 0.05

Z39 was identified as the crop growth stage with the best prediction performance. Figure 5 points out
the most interesting findings. Generally, all VIs performed well, although the best results were achieved
using ExG. High and intermediate ground resolutions of 0.04 and 0.06 m·px−1 showed R2 values of
up to 0.74 for strategy S3. However, strategy S3 improved results for ExG only. VIg and PPRb did
not show significant improvements. Strategy S2 outperformed strategy S1 for resolutions of 0.02 and
0.04 m·px−1, whereas at intermediate and low ground resolutions, strategies S1 and S2 did not differ in
prediction accuracy. Coarse VI layer information and the beginning of canopy closure seemed to level
out differences of simple plot mean height computation and the classification-based one. Unexpectedly,
the highest resolution of 0.02 m·px−1 performed worse than high/intermediate resolutions. Although
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strategies S2 and S3 significantly improved prediction using ExG, highest resolution strategies appeared
to be prone to higher noise and a scale effect, as the level of resolution leads to analysis in between leaf
and canopy level. As a consequence, CSM and classification results may be biased.

Table 6. The resulting root mean squared errors of prediction (RMSEP) of the leave-one-out
cross-validation for evaluation of the predictive quality of applying strategies S1−3 for all
combinations of VIs, aerial image ground resolutions, crop growth stages and computed
Ridler thresholds.

Ground Res. (m·px−1) ExG VIg PPRb

Z Sx rx 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

Z32 S1 0.93 1.11 1.20 1.25 1.21 0.93 1.11 1.20 1.25 1.21 0.93 1.11 1.20 1.25 1.21

Z32 S2 r1 0.88 1.11 1.21 1.25 1.21 0.89 1.13 1.21 1.25 1.22 0.94 1.12 1.21 1.25 1.21

Z32 S2 r2 0.86 1.13 1.21 1.25 1.22 0.87 1.15 1.22 1.26 1.23 0.93 1.14 1.22 1.25 1.22

Z32 S2 r3 0.87 1.14 1.23 1.26 1.22 0.95 1.17 1.24 1.26 1.24 0.94 1.16 1.24 1.26 1.23

Z32 S2 r4 0.88 1.15 1.24 1.26 1.23 1.03 1.20 1.26 1.27 1.24 0.98 1.19 1.26 1.27 1.24

Z32 S2 r5 0.90 1.17 1.25 1.27 1.24 1.11 1.22 1.27 1.27 1.24 1.02 1.21 1.27 1.28 1.26

Z32 S3 r1 0.90 1.10 1.16 1.17 1.15 0.90 1.14 1.23 1.26 1.23 0.91 1.10 1.19 1.23 1.19

Z32 S3 r2 0.88 1.04 1.07 1.08 1.06 0.87 1.08 1.14 1.16 1.15 0.91 1.07 1.13 1.16 1.13

Z32 S3 r3 0.88 1.02 1.05 1.05 1.02 0.90 1.03 1.07 1.08 1.05 0.91 1.04 1.08 1.10 1.07

Z32 S3 r4 0.88 1.03 1.06 1.07 1.03 0.95 1.05 1.08 1.07 1.03 0.93 1.04 1.08 1.09 1.07

Z32 S3 r5 0.90 1.07 1.10 1.09 1.06 1.00 1.08 1.10 1.09 1.04 0.96 1.07 1.09 1.10 1.07

Z39 S1 0.83 0.73 0.74 0.79 0.83 0.83 0.73 0.74 0.79 0.83 0.83 0.73 0.74 0.79 0.83

Z39 S2 r1 0.83 0.71 0.73 0.80 0.83 0.83 0.73 0.74 0.80 0.83 0.85 0.72 0.74 0.80 0.83

Z39 S2 r2 0.80 0.70 0.73 0.80 0.83 0.81 0.70 0.74 0.80 0.83 0.83 0.71 0.74 0.80 0.83

Z39 S2 r3 0.79 0.70 0.73 0.80 0.83 0.79 0.70 0.74 0.80 0.84 0.81 0.70 0.74 0.80 0.83

Z39 S2 r4 0.78 0.69 0.73 0.80 0.84 0.78 0.70 0.75 0.81 0.85 0.81 0.70 0.74 0.80 0.83

Z39 S2 r5 0.77 0.69 0.74 0.80 0.84 0.78 0.70 0.76 0.82 0.86 0.80 0.70 0.74 0.80 0.83

Z39 S3 r1 0.84 0.72 0.74 0.81 0.85 0.84 0.73 0.74 0.80 0.83 0.84 0.73 0.75 0.80 0.83

Z39 S3 r2 0.78 0.71 0.73 0.79 0.83 0.81 0.71 0.75 0.81 0.84 0.84 0.70 0.74 0.81 0.85

Z39 S3 r3 0.75 0.69 0.70 0.76 0.79 0.80 0.71 0.76 0.81 0.84 0.83 0.69 0.73 0.80 0.84

Z39 S3 r4 0.73 0.68 0.68 0.73 0.76 0.79 0.70 0.75 0.81 0.84 0.81 0.69 0.73 0.80 0.83

Z39 S3 r5 0.71 0.67 0.68 0.72 0.74 0.78 0.70 0.75 0.81 0.85 0.81 0.70 0.73 0.79 0.83

Z58 S1 0.82 0.72 0.77 0.77 0.74 0.82 0.72 0.77 0.77 0.74 0.82 0.72 0.77 0.77 0.74

Z58 S2 r1 0.85 0.72 0.76 0.76 0.73 0.79 0.72 0.77 0.77 0.73 0.85 0.71 0.76 0.76 0.73

Z58 S2 r2 0.89 0.71 0.76 0.76 0.73 0.79 0.72 0.77 0.77 0.73 0.89 0.71 0.76 0.76 0.73

Z58 S2 r3 0.93 0.71 0.76 0.76 0.73 0.80 0.72 0.77 0.77 0.74 0.91 0.71 0.76 0.76 0.73

Z58 S2 r4 0.96 0.71 0.76 0.76 0.73 0.80 0.72 0.78 0.77 0.74 0.93 0.71 0.76 0.76 0.73

Z58 S2 r5 0.98 0.71 0.76 0.76 0.74 0.82 0.72 0.78 0.77 0.75 0.93 0.72 0.76 0.76 0.73

Z58 S3 r1 0.85 0.72 0.77 0.77 0.74 0.80 0.73 0.78 0.78 0.74 0.86 0.72 0.77 0.76 0.72

Z58 S3 r2 0.90 0.72 0.77 0.77 0.74 0.80 0.73 0.78 0.78 0.74 0.90 0.72 0.77 0.76 0.72

Z58 S3 r3 0.94 0.72 0.77 0.76 0.73 0.79 0.72 0.77 0.78 0.74 0.92 0.72 0.77 0.76 0.73

Z58 S3 r4 0.93 0.72 0.77 0.75 0.73 0.78 0.71 0.76 0.77 0.74 0.93 0.72 0.77 0.76 0.73

Z58 S3 r5 0.92 0.72 0.76 0.75 0.73 0.78 0.71 0.76 0.76 0.74 0.93 0.72 0.77 0.77 0.73

At Z58, results were strongly influenced by the occurrence of canopy closure. Hence, neither strategy
S2 nor strategy S3 were able to significantly improve the corn grain yield prediction performance of
strategy S1. Moreover, highest resolution strategies showed similar patterns as in Z39. Except using
VIg, imagery at a ground resolution of 0.02 m·px−1 seemed to underlay CSM and misclassification as
in Z39. All other resolutions performed comparatively well, independent of applied strategy and VI.
Although, these resolutions did not reach the maximum R2 values of Z39, they were still considered as
suitable for prediction.
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Figure 6. Spatial illustration of plot-wise distribution of harvested corn grain yield (top),
corn grain yield predicted by strategy S3 at crop growth stage Z39, with ExG at Ridler
threshold r4 and an aerial image ground resolution of 0.04 m·px−1 (middle) and the resulting
prediction error of this strategy (bottom). For this strategy, the total root mean squared error
of prediction (RMSEP) equals 0.68 t·ha−1 (8.8%).

Table 7 summarizes the key findings. The most suitable resolution and modeling strategy depends on
the crop growth stage. Due to row-based cultivation of corn and missing canopy closure, early growth
stages require very high resolution imagery for accurate CSM computation and classification-based
separation of crop and soil. Therefore, strategies S2 and S3 result in higher R2 values than strategy S1

(R2 ≤ 0.56). With ongoing crop development and beginning canopy closure, high resolution imagery
and crop/soil classification gets less and less important. Highest resolution imagery showed a significant
reduction of prediction accuracy at mid-season growth stages. All other imagery resolutions performed
almost equally well (approximately 0.60 ≤ R2 ≤ 0.70) at all strategies S1−3 within these stages. Best
prediction results were achieved by applying strategy S2 and especially strategy S3 at Z39 (R2 ≤ 0.74).
Although strategy S3 proved to have good performance at this specific growth stage, further investigation
of the influence of crop coverage factor Cirstv on the prediction results of this multiple linear regression
strategy seems of great interest.
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Table 7. Overview of the best performing parameters for early- to mid-season corn
grain yield prediction at different crop growth stages. So far, the increase in prediction
performance in strategy S3 appears to underlay an unknown factor. Therefore, strategy S3 is
listed in brackets.

Growth Stage

Z32 Z39 Z58

Ground Resolution highest/high high/intermediate high/intermediate/low
Vegetation Index ExG ExG VIg
Prediction Strategy S2 / (S3) S2 / (S3) S1 / S2 / (S3)

These findings indicate the best corn grain yield prediction at mid-season crop growth stages Z39 and
Z58. They are in accordance with the findings of Yin et al. [37]. Nevertheless, none of the strategies
showed results comparable to the best predictions of Yin et al. [37]. Depending on the growth stage and
crop rotation system, Yin et al. [37] stated significant determination coefficients of 0.25 ≤ R2 ≤ 0.89,
whereas low R2 values were achieved at early-season growth stages, only.

Applying strategy S3 at Z39, Figure 6 visualizes plot-wise prediction results and compares them to
the harvested corn grain yield. Using ExG at Ridler threshold r4 and an aerial image ground resolution
of 0.04 m·px−1, the total RMSEP equals 0.68 t·ha−1 (8.8%). Although this strategy performed best, the
ANOVA of the field trial’s input factors did not show significant influence of sowing density on corn
grain yield. As strategy S3 utilizes computed crop coverage Cirstv as the estimator for sowing/stand
density, the increase in prediction performance seems to underlay another factor, correlated with Cirstv.
Other combinations of strategy S3 and VIg/PPRb did not show improved results compared to strategy S2.

4. Conclusions

This work shows the potential of exploiting spectral and spatial information from UAS-based RGB
imagery for predicting corn grain yield in early- to mid-season crop growth stages. RGB imagery
was used to compute crop surface models and to extract crop height information. In combination with
RGB-based VI information, three different linear regression models were tested for the prediction of corn
grain yield with R2 determination coefficients of up to 0.74 and RMSEP ranging from 0.67 to 1.28 t·ha−1

(8.8% to 16.9%).
Generally, all tested VIs performed almost equally well at any crop growth stage. The same applies

to tested classification thresholds r2−4. Although some of the more extreme thresholds r1 and r5

showed satisfying results, these thresholds cannot be recommended, because of potential over- or
under-estimation of crop coverage.

The most suitable resolution and modeling strategy depends on the crop growth stage. Due to
row-based cultivation of corn and missing canopy closure, early growth stages require very high
resolution imagery for accurate CSM computation and classification-based separation of crop and soil.
Compared to using simple unclassified mean crop heights (S1), prediction results significantly improve,
when accounting for additional crop/soil classification information (S2 and S3). With ongoing crop
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development and beginning canopy closure, high resolution imagery gets less and less important,
sometimes even disadvantageous, due to higher noise. Good prediction results are achieved at
intermediate resolutions by considering crop coverage as the second predictor variable (S3). With the
completion of canopy closure, neither high resolution imagery nor crop/soil classification show potential
to further improve prediction. Concluding these findings, combined spectral and spatial modeling, based
on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.
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