Accessing the Influence of User Relationship Bonds on Continuance Intention in Livestream E-Commerce
Abstract
:1. Introduction
2. Theoretical Review and Hypotheses Development
2.1. Theoretical Review
2.2. Hypotheses Development
2.2.1. Financial Bonds and Cumulative Satisfaction
2.2.2. Social Bonds and Cumulative Satisfaction
2.2.3. Structural Bonds and Cumulative Satisfaction
2.2.4. Cumulative Satisfaction and Continuance Intention
2.2.5. Moderating Role of Affective Commitment
3. Research Method
3.1. Measures
3.2. Sample and Data Collection
3.3. Data Analysis Method
4. Analyses and Results
4.1. Confirmatory Factor Analysis
4.2. Discriminant Validity
4.3. Model Fit Degree
4.4. Regression Coefficient
4.5. Moderating Effects Analysis
5. Research Results and Discussion
5.1. Conclusions and Discussion
5.2. Theoretical Contributions
5.3. Practical Implications
5.4. Research Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Statement
Appendix A. Scales
References
- Yang, M.S.; Zhang, W.S.; Ruangkanjanases, A.; Zhang, Y. Understanding the Mechanism of Social Attachment Role in Social Media: A Qualitative Analysis. Front. Psychol. 2021, 12, 720880. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.W.; Meng, H.Y.; Fang, M.J.; Xing, J.J.; Yao, J.G. Social Distancing, Health Concerns, and Digitally Empowered Consumption Behavior Under COVID-19: A Study on Livestream Shopping Technology. Front. Public Health 2021, 9, 748048. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.R.; Ariffin, A.S.; Ali, M.; Chang, K.L. A Hybrid MCDM Model for Live-Streamer Selection via the Fuzzy Delphi Method, AHP, and TOPSIS. Appl. Sci. 2021, 11, 9322. [Google Scholar] [CrossRef]
- Berry, L.L. Relationship Marketing of Services-Growing Interest, Emerging Perspectives. J. Acad. Mark. Sci. 1995, 23, 236–245. [Google Scholar] [CrossRef]
- Berry, L.L.; Shostack, G.L.; Upah, G.D. Marketing. Am. Mark. Assoc. 1995, 983, 25–28. [Google Scholar]
- Meng, L.; Duan, S.; Zhao, Y.J.; Lu, K.; Chen, S.Y. The impact of online celebrity in livestreaming E-commerce on purchase intention from the perspective of emotional contagion. J. Retail. Consum. Serv. 2021, 63, 102733. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Liao, Q. Exploring continued use of mobile shopping channel in China: The effects of active coping and its antecedents. Electron. Commer. Res. 2016, 16, 245–267. [Google Scholar] [CrossRef]
- Bharadwaj, N.; Ballings, M.; Naik, P.A.; Moore, M.; Arat, M.M. A New Livestream Retail Analytics Framework to Assess the Sales Impact of Emotional Displays. J. Mark. 2022, 86, 27–47. [Google Scholar] [CrossRef]
- Yang, M.S.; Hu, S.G.; Kpandika, B.E.; Liu, L. Effects of social attachment on social media continuous usage intention: The mediating role of affective commitment. Hum. Syst. Manag. 2021, 40, 619–631. [Google Scholar] [CrossRef]
- Reichheld, F.F.; Schefter, P. E-loyalty: Your secret weapon on the web. Harv. Bus. Rev. 2000, 78, 105–113. [Google Scholar]
- Peng, Y.H.; Han, H.; Hao, L.G.; Huo, J.L.; Wanf, Y.D. Research on the Influence of Relationship bonds and Customer Commitment on Consumers’ Online Purchase Intention in Live Streaming Marketing. Chin. J. Manag. 2021, 18, 1686–1694. [Google Scholar] [CrossRef]
- Gao, L.L.; Waechter, K.A.; Bai, X. Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study A case of China. Comput. Hum. Behav. 2015, 53, 249–262. [Google Scholar] [CrossRef]
- Bhattaeherjee, A. Understanding information systems continuance: An expectation confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Berry, L.L.; Parasuraman, P.A. Marketing Service-Competing through Quality; The Free Press: New York, NY, USA, 1991. [Google Scholar]
- Palmatier, R.W.; Dant, R.P.; Grewal, D.; Evans, K.R. Factors Influencing the Effectiveness of Relationship Marketing: A Meta-Analysis. J. Mark. 2006, 70, 136–153. [Google Scholar] [CrossRef]
- Huang, C.C.; Fang, S.C.; Huang, S.M.; Chang, S.C.; Fang, S.R. The impact of relational bonds on brand loyalty: The mediating effect of brand relationship quality. Manag. Serv. Qual. 2014, 24, 184–204. [Google Scholar] [CrossRef]
- Lin, N.P.; Weng, J.C.M.; Hsieh, Y.C. Relational Bonds and Customer’s Trust and Commitment-A Study on the Moderating Effects of Web Site Usage. Serv. Ind. J. 2003, 23, 103–124. [Google Scholar] [CrossRef]
- Strauss, J.; Frost, R. E-Marketing, 2nd ed.; Prentice Hall: UpperSaddle River, NJ, USA, 2001. [Google Scholar]
- Peltier, J.W.; Westfall, J.E. Dissecting the HMO–Benefits Managers Relationship: What to Measure and Why. Mark. Health Serv. 2000, 20, 4–13. [Google Scholar]
- Peterson, R.A. Relationship Marketing and the Consumer. J. Acad. Mark. Sci. 1995, 23, 278–281. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Chiu, H.C.; Chiang, M.Y. Maintaining a Committed Online Customer: A Study across Search-Experience-Credence Products. J. Retail. 2005, 81, 75–82. [Google Scholar] [CrossRef]
- Liang, C.J.; Chen, H.J. How to Lengthen, Deepen and Broaden Customer–Firm Relationships with Online Financial Services. J. Financ. Serv. Mark. 2009, 14, 218–231. [Google Scholar] [CrossRef]
- Janoff, B. Click and stick. Progress. Groc. 2000, 79, 61–64. [Google Scholar]
- Harrison-walker, L.J.; Neeley, S.E. Customer Relationship Building on the Internet in B2B Marketing: A Proposed Typology. J. Mark. Theory Pract. 2004, 12, 19–35. [Google Scholar] [CrossRef]
- Chiu, C.M.; Huang, H.Y. Examining the Antecedents of User Gratification and Its Effects on Individuals’ Social Network Services Usage: The Moderating Role of Habit. Eur. J. Inf. Syst. 2015, 24, 411–430. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Rust, R.T.; Lemon, K.N. The Customer Pyramid: Creating and Serving Profitable Customers. Calif. Manag. Rev. 2001, 43, 118–142. [Google Scholar] [CrossRef]
- Leung, T.K.P.; Lai, K.; Chan, R.Y.K.; Wong, Y.H. The Roles of Xinyong and Guanxi in Chinese Relationship Marketing. Eur. J. Mark. 2005, 39, 528–559. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chiu, H.C. The Effects of Relational Bonds on Online Customer Satisfaction. Serv. Ind. J. 2009, 29, 1581–1595. [Google Scholar] [CrossRef]
- Xu, J.; Benbasat, I.; Cenfetelli, R.T. Integrating Service Quality with System and Information Quality: An Empirical Test in the E-Service Context. MIS Q. 2013, 37, 777–794. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, S.; Kim, M.S.; Lee, J.H.; Lim, K.T. Relational bonding strategies in the franchise industry: The moderating role of duration of the relationship. J. Bus. Ind. Mark. 2015, 30, 830–841. [Google Scholar] [CrossRef]
- Thongpapanl, N.; Ashraf, A.R. Enhancing Online Performance through Website Content and Personalization. J. Comput. Inf. Syst. 2011, 52, 3–13. [Google Scholar]
- Fung, T.K. Banking with a Personalized Touch: Examining the Impact of Website Customization on Commitment. J. Electron. Commer. Res. 2008, 9, 296–309. [Google Scholar]
- Voss, C.A. Rethinking Paradigms of Service: Service in a Virtual Environment. Int. J. Oper. Prod. Manag. 2003, 23, 88–104. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Lien, C.H.; Cao, Y.; Zhou, X. Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services. Comput. Hum. Behav. 2017, 68, 403–410. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, L.; Toorn, C.V.; Lai, Y.; Seo, C. Promoting online learners’ continuance intention: An integrated flow framework. Inf. Manag. 2015, 53, 279–295. [Google Scholar] [CrossRef]
- Tarute, A.; Nikou, S.; Gatautis, R. Mobile application driven consumer engagement. Telemat. Inform. 2017, 34, 145–156. [Google Scholar] [CrossRef]
- Susanto, A.; Chang, Y.; Ha, Y. Determinants of continuance intention to use the smartphone banking services. Ind. Manag. Data Syst. 2016, 116, 508–525. [Google Scholar] [CrossRef]
- Lu, J. Are personal innovativeness and social influence critical to continue with mobile commerce? Internet Res. 2014, 24, 134–159. [Google Scholar] [CrossRef]
- Anderson EWSullivan, M. The antecedents and consequences of customer satisfaction for firms. Mark. Sci. 1993, 12, 125–143. [Google Scholar] [CrossRef]
- Bolton, R.N.; Lemon, K.N. A dynamic model of customers’ usage of services: Usage as an antecedent and consequence of satisfaction. J. Mark. Res. 1999, 36, 171–186. [Google Scholar]
- Jones, M.A.; Suh, J. Transaction-specific satisfaction and overall satisfaction: An empirical analysis. J. Serv. Mark. 2000, 14, 147–159. [Google Scholar] [CrossRef]
- Keiningham, T.L.; Aksoy, L.; Malthouse, E.C.; Lariviere, B.; Buoye, A. The cumulative effect of satisfaction with discrete transactions on share of wallet. J. Serv. Manag. 2014, 3, 310–334. [Google Scholar] [CrossRef]
- Kim, S.S.; Son, J.Y. Out of dedication or constraint? a dual model of post-adoption phenomena and its empirical test in the context of online services. Mis Q. 2009, 33, 49–70. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, X.L.; Fang, Y.; Vogel, D. Toward a theory of perceived benefits, affective commitment, and continuance intention in social virtual worlds: Cultural values (indulgence and individualism) matter. Eur. J. Inf. Syst. 2015, 24, 247–261. [Google Scholar] [CrossRef]
- Zhou, Z.; Fang, Y.; Vogel, D.; Jin, X.L.; Zhang, X. Attracted to or locked in? Predicting continuance intention in social virtual world services. J. Manag. Inf. Syst. 2012, 29, 273–306. [Google Scholar] [CrossRef]
- Shin, J.; Chung, K.; Oh, J.; Lee, C. The effect of site quality on repurchase intention in Internet shopping through mediating variables: The case of university students in South Korea. Int. J. Inf. Manag. 2013, 33, 453–463. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y.; Zhang, L.; Chau, P.Y.K. Assessing the effects of service quality and justice on customer satisfaction and the continuance intention of mobile value-added services: An empirical test of a multidimensional model. Decis. Support Syst. 2012, 52, 645–656. [Google Scholar] [CrossRef]
- Thong, J.Y.L.; Hong, S.J.; Tam, K.Y. The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. Hum. Comput. Stud. 2006, 64, 799–810. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford: New York, NY, USA, 2011. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.R.; Lacker, D.F. Structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Torkzadeh, G.; Koufteros, X.; Pflughoeft, K. Confirmatory analysis of computer self-efficacy. Struct. Equ. Model. 2003, 10, 263–275. [Google Scholar] [CrossRef]
- Hancock, G.R.; Nevitt, J. Bootstrapping and the identification of exogenous latent variables within structural equation models. Struct. Equ. Model. 1999, 6, 394–399. [Google Scholar] [CrossRef]
- Bollen, K.A.; Stine, R.A. Bootstrapping goodness-of-fit measure in structural equation models. Sociol. Methods Res. 1992, 21, 205–229. [Google Scholar] [CrossRef]
- Jackson, D.L.; Gillaspy, J.A.; Purc-Stephenson, R. Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychol. Methods 2009, 14, 6–23. [Google Scholar] [CrossRef]
- Cao, J.; Basoglu, K.A.; Sheng, H.; Lowry, P.B. A Systematic Review of Social Networks Research in Information Systems: Building a Foundation for Exciting Future Research. Commun. Assoc. Inf. Syst. 2015, 36, 727–758. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [Green Version]
Variables | Item | Frequency | % | Cumulative % |
---|---|---|---|---|
Gender | male | 241 | 44.14 | 44.14 |
female | 305 | 55.86 | 100 | |
Age | 20 years old (inclusive) or less | 61 | 11.17 | 11.17 |
21~30 years old (inclusive) | 185 | 33.88 | 45.05 | |
31~40 years old(inclusive) | 181 | 33.15 | 78.20 | |
41~50 years old(inclusive) | 87 | 15.94 | 94.14 | |
51 years old (inclusive) or above | 32 | 5.86 | 100 | |
Marriage | Married | 230 | 42.12 | 42.12 |
Unmarried | 316 | 57.88 | 100 | |
Profession | Civil Servants | 142 | 26.01 | 26.01 |
Employees of enterprises | 206 | 37.73 | 63.74 | |
Students | 62 | 11.36 | 75.10 | |
Other | 136 | 24.90 | 100 | |
Education level | High school and below | 80 | 14.65 | 14.65 |
Specialty | 102 | 18.68 | 33.33 | |
Undergraduate | 193 | 35.35 | 68.68 | |
Master’s degree and above | 171 | 31.32 | 100 | |
Consumption level | Below 10,000 NT | 121 | 21.98 | 21.98 |
10,000~20,000 NT | 166 | 30.40 | 52.38 | |
20,001~30,000 NT | 161 | 29.49 | 81.87 | |
30,001 NT or more | 98 | 18.13 | 100 | |
Continuous use time | 6 months and blow | 180 | 32.97 | 32.97 |
6 months to 1 year (inclusive) | 152 | 27.84 | 60.81 | |
1~2 years (inclusive) | 136 | 24.91 | 85.72 | |
Over 3 years | 78 | 14.28 | 100 |
Construct | Item | Unstd. Factor Loading | S.E. | Z-Value | SFT | CR | AVE |
---|---|---|---|---|---|---|---|
Financial bonds (FIB) | FIB1 | 1.000 | 0.747 | 0.846 | 0.648 | ||
FIB2 | 1.042 | 0.061 | 17.044 | 0.765 | |||
FIB3 | 1.241 | 0.071 | 17.500 | 0.895 | |||
Social bonds (SOB) | SOB1 | 1.000 | 0.743 | 0.812 | 0.526 | ||
SOB2 | 1.097 | 0.062 | 17.610 | 0.836 | |||
SOB3 | 0.916 | 0.059 | 15.461 | 0.763 | |||
SOB4 | 0.594 | 0.055 | 10.773 | 0.521 | |||
Structural bonds (STB) | STB1 | 1.000 | 0.658 | 0.821 | 0.539 | ||
STB2 | 0.824 | 0.068 | 12.073 | 0.601 | |||
STB3 | 1.356 | 0.090 | 15.069 | 0.805 | |||
STB4 | 1.327 | 0.092 | 14.481 | 0.844 | |||
Cumulative satisfaction (CUS) | CUS1 | 1.000 | 0.586 | 0.814 | 0.530 | ||
CUS2 | 0.963 | 0.084 | 11.488 | 0.606 | |||
CUS3 | 1.588 | 0.120 | 13.274 | 0.862 | |||
CUS4 | 1.525 | 0.116 | 13.136 | 0.816 | |||
Continuance intention (CI) | CI1 | 1.000 | 0.644 | 0.868 | 0.629 | ||
CI2 | 0.935 | 0.071 | 13.245 | 0.635 | |||
CI3 | 1.287 | 0.075 | 17.194 | 0.916 | |||
CI4 | 1.344 | 0.077 | 17.533 | 0.926 | |||
Affective commitment (AC) | AC1 | 1.000 | 0.759 | 0.803 | 0.506 | ||
AC2 | 0.966 | 0.056 | 17.189 | 0.775 | |||
AC3 | 1.058 | 0.141 | 7.513 | 0.697 | |||
AC4 | 0.911 | 0.138 | 6.585 | 0.602 |
Parameter | Estimate | Bias-Corrected 95% | Percentile 95% | ||
---|---|---|---|---|---|
Lower | Upper | Lower | Upper | ||
FIB<-->SOB | 0.299 | 0.192 | 0.408 | 0.192 | 0.406 |
FIB<-->STB | 0.351 | 0.236 | 0.451 | 0.239 | 0.452 |
FIB<-->CS | 0.289 | 0.175 | 0.406 | 0.175 | 0.404 |
FIB<-->CI | 0.180 | 0.088 | 0.276 | 0.087 | 0.274 |
FIB<-->AC | 0.266 | 0.170 | 0.367 | 0.170 | 0.368 |
SOB<-->STB | 0.583 | 0.493 | 0.663 | 0.494 | 0.664 |
SOB<-->CS | 0.482 | 0.363 | 0.573 | 0.374 | 0.577 |
SOB<-->CI | 0.269 | 0.176 | 0.368 | 0.176 | 0.368 |
SOB<-->AC | 0.375 | 0.270 | 0.474 | 0.261 | 0.467 |
STB<-->CS | 0.591 | 0.509 | 0.674 | 0.510 | 0.674 |
STB<-->CI | 0.336 | 0.246 | 0.428 | 0.245 | 0.426 |
STB<-->AC | 0.587 | 0.496 | 0.677 | 0.489 | 0.671 |
CS<-->CI | 0.551 | 0.454 | 0.651 | 0.455 | 0.652 |
CS<-->AC | 0.608 | 0.521 | 0.701 | 0.520 | 0.693 |
CI<-->AC | 0.390 | 0.292 | 0.490 | 0.286 | 0.487 |
Model Fit | Criteria | Model Fit | Result |
---|---|---|---|
Normed Chi-square(χ2/DF) | <3 | 1.232 | pass |
RMSEA | <0.08 | 0.021 | pass |
SRMR | <0.08 | 0.072 | pass |
TLI (NNFI) | >0.9 | 0.992 | pass |
CFI | >0.9 | 0.993 | pass |
GFI | >0.9 | 0.966 | pass |
AGFI | >0.9 | 0.951 | pass |
Hypotheses | Unstd. | S.E. | Unstd./S.E. | Std. | p |
---|---|---|---|---|---|
Hypothesis 1 | 0.051 | 0.031 | 1.608 | 0.074 | 0.108 |
Hypothesis 2 | 0.134 | 0.041 | 3.272 | 0.198 | *** |
Hypothesis 3 | 0.351 | 0.053 | 6.600 | 0.447 | *** |
Hypothesis 4 | 0.551 | 0.061 | 9.043 | 0.550 | *** |
DV | IV | Estimate | S.E. | Z-Value | p |
---|---|---|---|---|---|
Continuance intention | Cumulative satisfaction | 0.557 | 0.075 | 7.415 | *** |
Affective commitment | 0.064 | 0.044 | 1.460 | 0.144 | |
Cumulative satisfaction × Affective commitment | 0.061 | 0.026 | 2.326 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jong, D.; Tseng, Y.; Wang, T. Accessing the Influence of User Relationship Bonds on Continuance Intention in Livestream E-Commerce. Sustainability 2022, 14, 5979. https://doi.org/10.3390/su14105979
Jong D, Tseng Y, Wang T. Accessing the Influence of User Relationship Bonds on Continuance Intention in Livestream E-Commerce. Sustainability. 2022; 14(10):5979. https://doi.org/10.3390/su14105979
Chicago/Turabian StyleJong, Din, Yafen Tseng, and Tzongsong Wang. 2022. "Accessing the Influence of User Relationship Bonds on Continuance Intention in Livestream E-Commerce" Sustainability 14, no. 10: 5979. https://doi.org/10.3390/su14105979