Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore
Abstract
:1. Introduction
2. Literature Review of Management Practices and Their Effects on SOC Dynamics during Rural–Urban Transformations
2.1. Crop Choice and Diversification
2.2. Application of Crop Residues and Mulching
2.3. Use of Organic Manures and Fertilizers
2.4. Water Management
2.5. Tillage
3. Materials and Methods
3.1. Analysis of Published Data on Fertilization’s Effects on SOC Dynamics in India
3.1.1. Study Selection
3.1.2. Data Analysis
3.2. Analysis of Survey Data on Farmers’ Agricultural Practices in the Urbanizing Region of Bangalore
3.2.1. Study Site
3.2.2. Data Collection
3.2.3. Data Analysis
4. Results
4.1. Fertilization Management’s Effects on Soil Organic Carbon (SOC) in Maize and Finger Millet Cropping Systems in India
4.2. Management Practices in the Urbanizing Region of Bangalore
4.3. Decision-Making in the Urbanizing Region of Bangalore
5. Discussion
5.1. Crop Choice
5.2. Irrigation
5.3. Mineral Fertilizer and FYM
5.4. Mulching and Minimum Tillage
5.5. Limitations and Necessary Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cropping System | Irrigation | Conventional Tillage (CT) | Reduced Tillage (RT) | No Tillage (NT) | Significant Effects on SOC for Treatments | Reference |
---|---|---|---|---|---|---|
Rice–barley Rainy season and beginning dry season | Rainfed | X | X | X | Aboveground harvest residues withdrawn: RT > NT > CT; aboveground harvest residues retained: RT > CT > NT | [89] |
Soybean–pigeon pea; soybean–wheat; maize–pigeon pea; maize–gram Dry and rainy seasons | Rainfed | X | X | X | RT > NT > CT | [68] |
Maize–okra Rainy season and beginning dry season | Rainfed | X | X | X | NT + weed mulching > RT + weed burial > CT + weed removal | [66] |
Sorghum–mung Bean (one every year) Rainy season | Rainfed | X | X | - | No tillage effect | [50] |
Soybean wheat Dry and rainy seasons | Partially irrigated | X | X | X | NT > RT > CT | [67] |
Maize–wheat–green gram Dry and rainy seasons | Irrigated | X | - | X | In macro- and micro-aggregates NT > CT | [90] |
Maize–maize–field pea Dry and rainy seasons | Partially irrigated | X | - | X | NT > CT | [91] |
Rice–maize–cowpea Dry and rainy seasons | Irrigated | X | X | - | RT > CT | [85] |
Rice–Rice Dry and rainy seasons | Irrigated | X | X | X | RT > NT > CT | [92] |
Soybean–wheat Dry and rainy seasons | Not applied | - | X | X | Depth 0–5: NT > RT; Depth 5–15: RT > NT | [93] |
No. | Compared Fertilization Practices | Main Crop | Number of Crops in a Rotation | Initial SOC (g kg−1) | Clay (%) | pH | Annual Rainfall (mm) | Location (India) | Duration (Years) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | Min; added min and FYM | F. millet | 3 | N/A | 31 | 8.5 | N/A | Coimbatore | 29 | [56] |
2 | Min; FYM; added min and FYM | F. millet | 1 | 3.3 | N/A | 5 | 666 | Bangalore | 20 | [48] |
3 | Min; FYM; added min and FYM | F. millet | 2 | 3.3 | N/A | 5 | 666 | Bangalore | 20 | [48] |
4 | Min; FYM; complementary min and FYM | F. millet | 3 | 4 | N/A | 5.2 | 922.7 | Bangalore | 10 | [77] |
5 | Min | F. millet | 3 | 5.5 | N/A | N/A | N/A | Bangalore | 10 | [44] |
6 | Min; FYM; added min and FYM | Maize | 2 | N/A | 60 | 9 | N/A | Bellary | 23 | [56] |
7 | Min; added min and FYM | Maize | 2 | 4.4 | 14 | 8.3 | 650 | New Dehli | 44 | [94] |
8 | Min; complementary min and FYM | Maize | 2 | 4 | 25 | 7.7 | 650 | New Dehli | 4 | [95] |
9 | Min; complementary min and FYM | Maize | 2 | 4.2 | N/A | 7.5 | 658 | Rajasthan | 6 | [52] |
Category | Crop |
---|---|
Cereals | |
Jowar/sorghum/jola | |
Maize | |
Paddy/rice | |
Ragi/finger millet | |
Small millet | |
Wheat | |
Pulses | |
Avare/lablab | |
Bengal gram/chickpea | |
Black gram | |
Cluster beans | |
Cowpea/alasunde | |
Green gram/mung bean/masur/tharguni | |
Ground nut/peanut | |
Horse gram/hulli kalu/hurali/urali kal | |
Masoor | |
Tur/ahar/red gram/pigeon pea/cajanus cajan/togari | |
Velvet bean | |
Vegetables | |
Amaranth, amaranthus | |
Beans/field bean | |
Beet root | |
Bitter gourd/haagalakaayi | |
Brinjal/eggplant | |
Cabbage | |
Capsicum | |
Carrot | |
Cauliflower | |
Chikidikaayi/bean/vine | |
Chilli, green chilli | |
Cucumber | |
Dantu (leafy vegetable) | |
Drumstick/moringa | |
Garlic | |
Harave soppu (leafy vegetable) | |
Ivy gourd/thondekayi | |
Ladiesfinger/okra | |
Maize (sweet/baby corn) | |
Onion | |
Potato/allu/aloo | |
Pumpkin | |
Raddish | |
Ridge gourd/hire gida hee/irekai/heere kayi | |
Sabbbakki/dillseed (leafy vegetable) | |
Snake gourd | |
Soregida/bottle gourd | |
Spinach/palak | |
Tomato | |
Turnip | |
Fruits | |
Arecanut | |
Banana | |
Coconut | |
Grapes | |
Guava | |
Jackfruit/halasina | |
Lemon/citrus | |
Mango | |
Papaya | |
Pomegranate | |
Sapota | |
Herbs and spices | |
Basil, basil leaves | |
Castor | |
Coriander | |
Curry leaf/curry leaves | |
Dill | |
Fenugreek/menthya | |
Ginger | |
Huchellu/nitella | |
Mustard | |
Niger seed | |
Sesamum | |
Flowers | |
Batha flower | |
Button flower | |
Chanduvva flower/marigold | |
Chrysanthemum | |
Crossandra flower | |
Flower general | |
Gladiolus | |
Gerbera | |
Jasmine | |
Kakada flower | |
Rose | |
Sunflower | |
Fodder | |
Napier grass | |
Non-food commercial | |
Acacia | |
Eucalyptus/nilagiri tree | |
Forest/timber | |
Mulberry | |
Ornamental plants | |
Palm | |
Silk | |
Silver oak | |
Teak | |
Sugar cane | |
Lawn/turf grass |
Mulching/Crop Residues/Cover Crops | Farmyard Manure | Minimum/No Tillage | |
---|---|---|---|
Decision-Maker Characteristics | |||
Female (1 = yes) | −0.044 (0.037) | −0.045 (0.051) | −0.087 * (0.053) |
Age (years) | −0.005 *** (0.001) | −0.002 (0.002) | 0.001 (0.002) |
Education (years) | −0.004 (0.004) | −0.007 (0.005) | −0.012 ** (0.005) |
Household Characteristics | |||
Non-marginal caste (1 = yes) | −0.031 (0.037) | 0.062 (0.053) | −0.113 ** (0.056) |
No. of adults (HH members ≥ 15 years) | 0.006 (0.006) | 0.009 (0.008) | −0.015 (0.010) |
Durable assets owned (count) | −0.001 (0.002) | 0.002 (0.003) | 0.016 *** (0.003) |
Off-farm income (1 = yes) | 0.046 * (0.028) | −0.005 (0.041) | 0.046 (0.042) |
Dairy (1 = yes) | −0.045 (0.032) | 0.185 *** (0.044) | 0.012 (0.050) |
Livestock (1 = yes) | 0.045 (0.028) | 0.138 *** (0.041) | −0.057 (0.043) |
Owned borewell (1 = yes) | 0.107 *** (0.033) | −0.026 (0.048) | 0.070 (0.050) |
Location | |||
Rural–urban index (SSI) 1 | 0.215 ** (0.093) | −0.092 (0.131) | 0.331 ** (0.136) |
Northern transect (1 = yes) | 0.008 (0.030) | 0.050 (0.045) | 0.129 *** (0.045) |
Plot Characteristics | |||
Plot size (ha) | 0.003 (0.011) | −0.042 * (0.026) | 0.041 (0.025) |
Marketing crop from plot (1 = yes) | 0.129 *** (0.036) | 0.061 (0.051) | 0.046 (0.052) |
Cereals plot (1 = yes) | 0.114 *** (0.037) | 0.107 * (0.058) | 0.322 *** (0.056) |
Pulses plot (1 = yes) | 0.130 *** (0.029) | 0.018 (0.045) | 0.008 (0.047) |
Vegetable plot (1 = yes) | 0.077 * (0.042) | 0.110 (0.076) | 0.111 (0.075) |
Fruit plot (1 = yes) | 0.114 *** (0.039) | 0.097 (0.068) | 0.072 (0.064) |
Flower plot (1 = yes) | −0.128 (0.106) | −0.024 (0.131) | 0.089 (0.133) |
Herbs and spices plot (1 = yes) | −0.171 ** (0.083) | 0.035 (0.089) | −0.033 (0.101) |
Non-food commercial plot (1 = yes) | −0.017 (0.052) | −0.041 (0.073) | 0.038 (0.076) |
Fodder plot (1 = yes) | −0.073 (0.058) | 0.124 (0.079) | 0.054 (0.076) |
N | 558 | 558 | 558 |
Pseudo R2 | 0.197 | 0.0889 | 0.102 |
Wald chi2 | 70.32 | 58.39 | 72.04 |
Log pseudolikelihood | −176.9 | −326.6 | −341.4 |
References
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global Meta-Analysis of the Relationship between Soil Organic Matter and Crop Yields. SOIL 2019, 5, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Ramankutty, N. Hidden Linkages between Urbanization and Food Systems. Science 2016, 352, 943–945. [Google Scholar] [CrossRef] [PubMed]
- Bouroncle, C.; Imbach, P.; Rodríguez-Sánchez, B.; Medellín, C.; Martinez-Valle, A.; Läderach, P. Mapping Climate Change Adaptive Capacity and Vulnerability of Smallholder Agricultural Livelihoods in Central America: Ranking and Descriptive Approaches to Support Adaptation Strategies. Clim. Chang. 2017, 141, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Gbetibouo, G.A.; Ringler, C.; Hassan, R. Vulnerability of the South African Farming Sector to Climate Change and Variability: An Indicator Approach: Vulnerability of the South African Farming Sector to Climate Change and Variability. Nat. Resour. Forum 2010, 34, 175–187. [Google Scholar] [CrossRef]
- Parker, L.; Bourgoin, C.; Martinez-Valle, A.; Läderach, P. Vulnerability of the Agricultural Sector to Climate Change: The Development of a Pan-Tropical Climate Risk Vulnerability Assessment to Inform Sub-National Decision Making. PLoS ONE 2019, 14, e0213641. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Geneletti, D.; Nagendra, H. Spatial Assessment of Climate Change Vulnerability at City Scale: A Study in Bangalore, India. Land Use Policy 2016, 58, 514–532. [Google Scholar] [CrossRef]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and Its Implications for Food and Farming. Phil. Trans. R. Soc. B 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration in India. Clim. Chang. 2004, 65, 20. [Google Scholar] [CrossRef]
- Oelbermann, M.; Paul Voroney, R.; Gordon, A.M. Carbon Sequestration in Tropical and Temperate Agroforestry Systems: A Review with Examples from Costa Rica and Southern Canada. Agric. Ecosyst. Environ. 2004, 104, 359–377. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.-L. Soil Carbon Stock Changes in Tropical Croplands Are Mainly Driven by Carbon Inputs: A Synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Yadvinder-Singh; Bijay-Singh; Timsina, J. Crop Residue Management for Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2005; Volume 85, pp. 269–407. ISBN 978-0-12-000783-7. [Google Scholar]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-Examination to Identify the True and the False. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Liu, D.L.; Zeleke, K.T.; Wang, B.; Macadam, I.; Scott, F.; Martin, R.J. Crop Residue Incorporation Can Mitigate Negative Climate Change Impacts on Crop Yield and Improve Water Use Efficiency in a Semiarid Environment. Eur. J. Agron. 2017, 85, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Patil, V.S.; Thomas, B.K.; Lele, S.; Eswar, M.; Srinivasan, V. Adapting or Chasing Water? Crop Choice and Farmers’ Responses to Water Stress in Peri-Urban Bangalore, India: ADAPTING OR CHASING WATER? Irrig. Drain. 2019, 68, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Kurgat, B.K.; Ngenoh, E.; Bett, H.K.; Stöber, S.; Mwonga, S.; Lotze-Campen, H.; Rosenstock, T.S. Drivers of Sustainable Intensification in Kenyan Rural and Peri-Urban Vegetable Production. Int. J. Agric. Sustain. 2018, 16, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Steinhübel, L.; von Cramon-Taubadel, S. Somewhere in between Towns, Markets and Jobs—Agricultural Intensification in the Rural–Urban Interface. J. Dev. Stud. 2021, 57, 669–694. [Google Scholar] [CrossRef]
- Lee, D.R. Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Narayana, M.R. Globalization and Urban Economic Growth: Evidence for Bangalore, India: Debates and Developments. Int. J. Urban Reg. Res. 2011, 35, 1284–1301. [Google Scholar] [CrossRef]
- Kraas, F.; Mertins, G. Megacities and Global Change. In Megacities; Kraas, F., Aggarwal, S., Coy, M., Mertins, G., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 1–6. ISBN 978-90-481-3416-8. [Google Scholar]
- Rao, P.P.; Birthal, P.S.; Joshi, P.K.; Kar, D. Agricultural Diversification towards High-Value Commodities and Role of Urbanisation in India. In Agricultural Diversification and Smallholders in South Asia; Joshi, P.K., Gulati, A., Cummings, R., Jr., Eds.; Academic Foundation: New Delhi, India, 2007; pp. 243–270. [Google Scholar]
- Sudhira, H.S.; Nagendra, H. Local Assessment of Bangalore: Graying and Greening in Bangalore—Impacts of Urbanization on Ecosystems, Ecosystem Services and Biodiversity. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 75–91. ISBN 978-94-007-7087-4. [Google Scholar]
- Ramachandra, T.V.; Sellers, J.; Bharath, H.A.; Setturu, B. Micro Level Analyses of Environmentally Disastrous Urbanization in Bangalore. Environ. Monit Assess 2019, 191, 787. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil Organic Matter as Sole Indicator of Soil Degradation. Environ. Monit Assess 2017, 189, 176. [Google Scholar] [CrossRef]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic Distribution of Major Crops across the World: Global Crop Distribution. Glob. Biogeochem. Cycles 2004, 18, 1–27. [Google Scholar] [CrossRef]
- Drechsel, P.; Zimmermann, U. Factors Influencing the Intensification of Farming Systems and Soil-nutrient Management in the Rural-urban Continuum of SW Ghana. Z. Pflanzenernähr. Bodenk. 2005, 168, 694–702. [Google Scholar] [CrossRef]
- Seneviratne, G.; Van Holm, L.H.J.; Kulasooriya, S.A. Quality of Different Mulch Materials and Their Decomposition and N Release under Low Moisture Regimes. Biol. Fertil. Soils 1997, 26, 136–140. [Google Scholar] [CrossRef]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic Inputs for Soil Fertility Management in Tropical Agroecosystems: Application of an Organic Resource Database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef]
- Moran-Rodas, V.E.; Chavannavar, S.V.; Joergensen, R.G.; Wachendorf, C. Microbial Response of Distinct Soil Types to Land-Use Intensification at a South-Indian Rural-Urban Interface. Plant Soil 2022, 473, 389–405. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going Underground: Root Traits as Drivers of Ecosystem Processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Manjaiah, K.M.; Voroney, R.P.; Sen, U. Soil Organic Carbon Stocks, Storage Profile and Microbial Biomass under Different Crop Management Systems in a Tropical Agricultural Ecosystem. Biol. Fertil. Soils 2000, 32, 273–278. [Google Scholar] [CrossRef]
- Mapa, R.B.; Gunasena, H.P.M. Effect of Alley Cropping on Soil Aggregate Stability of a Tropical Alfisol. Agrofor. Syst. 1995, 32, 237–245. [Google Scholar] [CrossRef]
- Tian, G.; Kang, B.T.; Kolawole, G.O.; Idinoba, P.; Salako, F.K. Long-Term Effects of Fallow Systems and Lengths on Crop Production and Soil Fertility Maintenance in West Africa. Nutr. Cycl. Agroecosyst. 2005, 71, 139–150. [Google Scholar] [CrossRef]
- Follain, S.; Walter, C.; Legout, A.; Lemercier, B.; Dutin, G. Induced Effects of Hedgerow Networks on Soil Organic Carbon Storage within an Agricultural Landscape. Geoderma 2007, 142, 80–95. [Google Scholar] [CrossRef]
- Radrizzani, A.; Shelton, H.M.; Dalzell, S.A.; Kirchhof, G. Soil Organic Carbon and Total Nitrogen under Leucaena Leucocephala Pastures in Queensland. Crop Pasture Sci. 2011, 62, 337. [Google Scholar] [CrossRef]
- Nath, A.J.; Brahma, B.; Sileshi, G.W.; Das, A.K. Impact of Land Use Changes on the Storage of Soil Organic Carbon in Active and Recalcitrant Pools in a Humid Tropical Region of India. Sci. Total Environ. 2018, 624, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.S.; Somasundaram, J.; Mandal, K.G.; Hati, K.M. Enhancing Water and Phosphorus Use Efficiency Through Moisture Conservation Practices and Optimum Phosphorus Application in Rainfed Maize–Chickpea System in Vertisols of Central India. Agric. Res. 2018, 7, 176–186. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Lal, R.; Kundu, S.; Babu, M.B.B.P.; Venkateswarlu, B.; Singh, A.K. Soil Carbon Sequestration in Rainfed Production Systems in the Semiarid Tropics of India. Sci. Total Environ. 2014, 487, 587–603. [Google Scholar] [CrossRef]
- Seneviratne, G. Litter Quality and Nitrogen Release in Tropical Agriculture: A Synthesis. Biol. Fertil. Soils 2000, 31, 60–64. [Google Scholar] [CrossRef]
- Bhardwaj, R.L. Effect of Mulching on Crop Production under Rainfed Condition—A Review. Agri. Rev. 2013, 34, 188. [Google Scholar] [CrossRef]
- Lal, R. Managing Soil Water to Improve Rainfed Agriculture in India. J. Sustain. Agric. 2008, 32, 51–75. [Google Scholar] [CrossRef]
- Manna, M.C.; Ghosh, P.K.; Acharya, C.L. Sustainable Crop Production Through Management of Soil Organic Carbon in Semiarid and Tropical India. J. Sustain. Agric. 2003, 21, 85–114. [Google Scholar] [CrossRef]
- Prasad, C.S.; Anandan, S.; Gowda, N.K.S.; Schlecht, E.; Buerkert, A. Managing Nutrient Flows in Indian Urban and Peri-Urban Livestock Systems. Nutr. Cycl. Agroecosyst. 2019, 115, 159–172. [Google Scholar] [CrossRef]
- Thilakarathna, M.; Raizada, M. A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa. Agronomy 2015, 5, 262–290. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Amede, T. Integrated Soil Fertility and Plant Nutrient Management in Tropical Agro-Ecosystems: A Review. Pedosphere 2017, 27, 662–680. [Google Scholar] [CrossRef]
- Sathish, A.; Ramachandrappa, B.K.; Shankar, M.A.; Srikanth Babu, P.N.; Srinivasarao, C.; Sharma, K.L. Long-Term Effects of Organic Manure and Manufactured Fertilizer Additions on Soil Quality and Sustainable Productivity of Finger Millet under a Finger Millet-Groundnut Cropping System in Southern India. Soil Use Manag. 2016, 32, 311–321. [Google Scholar] [CrossRef]
- Anand, K.G.V.; Kubavat, D.; Trivedi, K.; Agarwal, P.K.; Wheeler, C.; Ghosh, A. Long-Term Application of Jatropha Press Cake Promotes Seed Yield by Enhanced Soil Organic Carbon Accumulation, Microbial Biomass and Enzymatic Activities in Soils of Semi-Arid Tropical Wastelands. Eur. J. Soil Biol. 2015, 69, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.L.; Grace, J.K.; Srinivas, K.; Venkateswarlu, B.; Korwar, G.R.; Sankar, G.M.; Mandal, U.K.; Ramesh, V.; Bindu, V.H.; Madhavi, M.; et al. Influence of Tillage and Nutrient Sources on Yield Sustainability and Soil Quality under Sorghum–Mung Bean System in Rainfed Semi-arid Tropics. Commun. Soil Sci. Plant Anal. 2009, 40, 2579–2602. [Google Scholar] [CrossRef]
- Nayak, P.; Patel, D.; Ramakrishnan, B.; Mishra, A.K.; Samantaray, R.N. Long-Term Application Effects of Chemical Fertilizer and Compost on Soil Carbon under Intensive Rice–Rice Cultivation. Nutr. Cycl. Agroecosyst. 2009, 83, 259–269. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Kundu, S.; Kumpawat, B.S.; Kothari, A.K.; Sodani, S.N.; Sharma, S.K.; Abrol, V.; Ravindra Chary, G.; Thakur, P.B.; Yashavanth, B.S. Soil Organic Carbon Dynamics and Crop Yields of Maize (Zea Mays)–Black Gram (Vigna Mungo) Rotation-Based Long Term Manurial Experimental System in Semi-Arid Vertisols of Western India. Trop. Ecol. 2019, 60, 433–446. [Google Scholar] [CrossRef]
- Chianu, J.N.; Chianu, J.N.; Mairura, F. Mineral Fertilizers in the Farming Systems of Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef] [Green Version]
- Banger, K.; Toor, G.S.; Biswas, A.; Sidhu, S.S.; Sudhir, K. Soil Organic Carbon Fractions after 16-Years of Applications of Fertilizers and Organic Manure in a Typic Rhodalfs in Semi-Arid Tropics. Nutr. Cycl. Agroecosyst. 2010, 86, 391–399. [Google Scholar] [CrossRef]
- Yagi, R.; Ferreira, M.E.; da Cruz, M.C.P.; Barbosa, J.C.; Araújo, L.A.N. de Soil Organic Matter as a Function of Nitrogen Fertilization in Crop Successions. Sci. Agric. 2005, 62, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Vineela, C.; Wani, S.P.; Srinivasarao, C.; Padmaja, B.; Vittal, K.P.R. Microbial Properties of Soils as Affected by Cropping and Nutrient Management Practices in Several Long-Term Manurial Experiments in the Semi-Arid Tropics of India. Appl. Soil Ecol. 2008, 40, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Lu, C.; Melillo, J.; Ren, W.; Huang, Y.; Xu, X.; Liu, M.; Zhang, C.; Chen, G.; Pan, S.; et al. Food Benefit and Climate Warming Potential of Nitrogen Fertilizer Uses in China. Environ. Res. Lett. 2012, 7, 44020. [Google Scholar] [CrossRef]
- Sojka, R.E.; Bjorneberg, D.L.; Strelkoff, T.S. Irrigation-Induced Erosion. In Agronomy Monographs; Lascano, R.J., Sojka, R.E., Eds.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2007; pp. 237–275. ISBN 978-0-89118-264-1. [Google Scholar]
- Environmental Management & Policy Research Institute. State of Environment Report Karnataka. 2015. Available online: https://karunadu.karnataka.gov.in/forestsecretariat/Downloads/SoER_2015.pdf (accessed on 8 January 2021).
- Patil, S.L.; Sheelavantar, M.N. Effect of Cultural Practices on Soil Properties, Moisture Conservation and Grain Yield of Winter Sorghum (Sorghum Bicolar L. Moench) in Semi-Arid Tropics of India. Agric. Water Manag. 2004, 64, 49–67. [Google Scholar] [CrossRef]
- Patil, S. Urbanisation and New Agroecologies. Econ. Political Wkly. 2018, 53, 71–77. [Google Scholar]
- Kulkarni, T.; Gassmann, M.; Kulkarni, C.M.; Khed, V.; Buerkert, A. Deep Drilling for Groundwater in Bengaluru, India: A Case Study on the City’s Over-Exploited Hard-Rock Aquifer System. Sustainability 2021, 13, 12149. [Google Scholar] [CrossRef]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, Crop Residue, and Nutrient Management Effects on Soil Organic Carbon in Rice-Based Cropping Systems: A Review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Conservation Technology Information Center (CTIC). Tillage Type Definitions. 2002. Available online: https://www.mssoy.org/uploads/files/ctic.pdf (accessed on 1 March 2022).
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R. A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2018; Volume 150, pp. 185–230. ISBN 978-0-12-815175-4. [Google Scholar]
- Pandey, C.B.; Chaudhari, S.K.; Dagar, J.C.; Singh, G.B.; Singh, R.K. Soil N Mineralization and Microbial Biomass Carbon Affected by Different Tillage Levels in a Hot Humid Tropic. Soil Tillage Res. 2010, 110, 33–41. [Google Scholar] [CrossRef]
- Kushwa, V.; Hati, K.M.; Sinha, N.K.; Singh, R.K.; Mohanty, M.; Somasundaram, J.; Jain, R.C.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K. Long-Term Conservation Tillage Effect on Soil Organic Carbon and Available Phosphorous Content in Vertisols of Central India. Agric. Res. 2016, 5, 353–361. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, V.N.; Biswas, A.K.; Somasundaram, J. Soil Organic Carbon, Dehydrogenase Activity and Fluorescein Diacetate as Influenced by Contrasting Tillage and Cropping Systems in Vertisols of Central India. JEB 2018, 39, 1047–1053. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org (accessed on 2 March 2022).
- Directorate of Census Operations Karnataka. District Census Handbook Bangalore. District Census Handbook Bangalore. Village and Town Directory. (Series 30 PART XII-A). Government of India 2011a. Available online: https://censusindia.gov.in/2011census/dchb/2918_PART_A_DCHB_BANGALORE.pdf (accessed on 6 January 2021).
- Population Stat. Bangalore, India Population. Available online: https://populationstat.com/india/bangalore (accessed on 9 September 2021).
- Sudhira, H.S.; Ramachandra, T.V.; Subrahmanya, M.H.B. Bangalore. Cities 2007, 24, 379–390. [Google Scholar] [CrossRef]
- Directorate of Census Operations Karnataka. District Census Handbook Bangalore Rural. Village and Town Directory (Series-30 Part XII-A). Government of India. 2011. Available online: https://censusindia.gov.in/2011census/dchb/2929_PART_A_DCHB_BANGALORE%20RURAL.pdf (accessed on 6 January 2021).
- Directorate of Census Operations Karnataka. District Census Handbook Ramanagara. Village and Town Directory (Series-30 Part XII-A). Government of India. 2011. Available online: https://censusindia.gov.in/2011census/dchb/2930_PART_A_DCHB_RAMANAGARA.pdf (accessed on 6 January 2021).
- Hoffmann, E.; Jose, M.; Nölke, N.; Möckel, T. Construction and Use of a Simple Index of Urbanisation in the Rural–Urban Interface of Bangalore, India. Sustainability 2017, 9, 2146. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; ISBN 0-262-29679-9. [Google Scholar]
- Prasad, J.V.N.S.; Rao, C.S.; Srinivas, K.; Jyothi, C.N.; Venkateswarlu, B.; Ramachandrappa, B.K.; Dhanapal, G.N.; Ravichandra, K.; Mishra, P.K. Effect of Ten Years of Reduced Tillage and Recycling of Organic Matter on Crop Yields, Soil Organic Carbon and Its Fractions in Alfisols of Semi Arid Tropics of Southern India. Soil Tillage Res. 2016, 156, 131–139. [Google Scholar] [CrossRef]
- Bon, H.; Parrot, L.; Moustier, P. Sustainable Urban Agriculture in Developing Countries. A Review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Pingali, P. Westernization of Asian Diets and the Transformation of Food Systems: Implications for Research and Policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in Soil Quality Indicators under Long-Term Sewage Irrigation in a Sub-Tropical Environment. Environ. Geol. 2009, 56, 1237–1243. [Google Scholar] [CrossRef]
- Koluvek, P.K.; Tanji, K.K.; Trout, T.J. Overview of Soil Erosion from Irrigation. J. Irrig. Drain. Eng. 1993, 119, 929–946. [Google Scholar] [CrossRef]
- Fernandez-Gomez, R.; Mateos, L.; Giraldez, J.V. Furrow Irrigation Erosion and Management. Irrig. Sci. 2004, 23, 123–131. [Google Scholar] [CrossRef]
- de Bruin, S.; Dengerink, J.; van Vliet, J. Urbanisation as Driver of Food System Transformation and Opportunities for Rural Livelihoods. Food Sec. 2021, 13, 781–798. [Google Scholar] [CrossRef]
- Pradhan, S.; Niti, G.; Jain, A.; Patel, N. Sustainable Agriculture in India 2021: What We Know and How to Scale up; Council on Energy, Environment and Water: New Delhi, India, 2021. [Google Scholar]
- Neogi, S.; Bhattacharyya, P.; Roy, K.S.; Panda, B.B.; Nayak, A.K.; Rao, K.S.; Manna, M.C. Soil Respiration, Labile Carbon Pools, and Enzyme Activities as Affected by Tillage Practices in a Tropical Rice–Maize–Cowpea Cropping System. Environ. Monit. Assess. 2014, 186, 4223–4236. [Google Scholar] [CrossRef]
- Damania, R.; Berg, C.; Russ, J.; Federico Barra, A.; Nash, J.; Ali, R. Agricultural Technology Choice and Transport. Am. J. Agric. Econ. 2017, 99, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Minten, B.; Koru, B.; Stifel, D. The Last Mile(s) in Modern Input Distribution: Pricing, Profitability, and Adoption. Agric. Econ. 2013, 44, 629–646. [Google Scholar] [CrossRef]
- Vandercasteelen, J.; Minten, B.; Tamru, S. Urban Proximity, Access to Value Chains, and Dairy Productivity in Ethiopia. Agric. Econ. 2021, 52, 665–678. [Google Scholar] [CrossRef]
- Kushwaha, C.P.; Tripathi, S.K.; Singh, K.P. Soil Organic Matter and Water-Stable Aggregates under Different Tillage and Residue Conditions in a Tropical Dryland Agroecosystem. Appl. Soil Ecol. 2001, 16, 229–241. [Google Scholar] [CrossRef]
- Modak, K.; Biswas, D.R.; Ghosh, A.; Pramanik, P.; Das, T.K.; Das, S.; Kumar, S.; Krishnan, P.; Bhattacharyya, R. Zero Tillage and Residue Retention Impact on Soil Aggregation and Carbon Stabilization within Aggregates in Subtropical India. Soil Tillage Res. 2020, 202, 104649. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Babu, S.; Mohapatra, K.P.; Lal, R.; Rajkhowa, D. Potential of Conservation Tillage and Altered Land Configuration to Improve Soil Properties, Carbon Sequestration and Productivity of Maize Based Cropping System in Eastern Himalayas, India. Int. Soil Water Conserv. Res. 2021, 9, 279–290. [Google Scholar] [CrossRef]
- Yadav, G.; Datta, R.; Imran Pathan, S.; Lal, R.; Meena, R.; Babu, S.; Das, A.; Bhowmik, S.; Datta, M.; Saha, P.; et al. Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza Sativa L.)–Rice System in North Eastern Region of India. Sustainability 2017, 9, 1816. [Google Scholar] [CrossRef] [Green Version]
- Lenka, S.; Lenka, N.K.; Singh, R.C.; Manna, M.C.; Misra, A.K.; Rautaray, S.K. Tillage and Manure Induced Changes in Carbon Storage and Carbon Management Index in Soybean–Wheat Cropping System in the Vertisols of Central India. Natl. Acad. Sci. Lett. 2015, 38, 461–464. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Meena, M.C.; Dwivedi, B.S.; Singh, G.; Agnihotri, R.; Sharma, C. Long-Term Fertilization Effects on Soil Organic Carbon Sequestration in an Inceptisol. Soil Tillage Res. 2018, 177, 134–144. [Google Scholar] [CrossRef]
- Verma, B.C.; Datta, S.P.; Rattan, R.K.; Singh, A.K. Monitoring Changes in Soil Organic Carbon Pools, Nitrogen, Phosphorus, and Sulfur under Different Agricultural Management Practices in the Tropics. Environ. Monit. Assess. 2010, 171, 579–593. [Google Scholar] [CrossRef]
Treatment 1 | Input Range (kg ha−1) | Mean Input (kg ha−1) | No. of Experiments | Studies (%) with Treatment Effect on SOC Content | ||||
---|---|---|---|---|---|---|---|---|
F. Millet | Maize | F. Millet | Maize | F. Millet | Maize | F. Millet | Maize | |
Mineral fertilization (Min) | 50 N 50 P 25 K | 60–120 N 26–60 P 40–50 K | 50 N 50 P 25 K | 100 N 39 P 45 K | 5 | 4 | 60% | 50% |
Farmyard manure (FYM) | 50 N | 31 N | 50 N | 31 N | 3 | 1 | 100% | 0% |
Complementary Min and FYM | 25 N (Min) + 25 N (FYM) | 25–90 N (Min) + 25–30 N (FYM) | 25 N (Min) + 25 N (FYM) | 41 N (Min) + 28 N (FYM) | 1 | 2 | 100% | 100% |
Added Min and FYM | 50 N (Min) + 50 N (FYM) | 100–120 N (Min) + 25–31 N (FYM) | 50 N (Min) + 50 N (FYM) | 110 N (Min) + 28 N (FYM) | 3 | 2 | 100% | 100% |
Mean | Std. dev. | Min | Max | |
---|---|---|---|---|
Irrigation (1 = yes) | 0.365 | 0.482 | 0 | 1 |
Conservation Practices | ||||
Minimum/no tillage (1 = yes) | 0.483 | 0.500 | 0 | 1 |
Mulching/crop residues/cover crops (1 = yes) | 0.160 | 0.367 | 0 | 1 |
Farmyard manure (1 = yes) | 0.660 | 0.474 | 0 | 1 |
Crop Choice | ||||
Cereals (1 = yes) | 0.856 | 0.351 | 0 | 1 |
Pulses (1 = yes) | 0.472 | 0.500 | 0 | 1 |
Vegetables (1 = yes) | 0.149 | 0.357 | 0 | 1 |
Fruits (1 = yes) | 0.191 | 0.393 | 0 | 1 |
Flowers (1 = yes) | 0.041 | 0.200 | 0 | 1 |
Herbs and spices (1 = yes) | 0.072 | 0.259 | 0 | 1 |
Non-food commercial (1 = yes) | 0.160 | 0.367 | 0 | 1 |
Fodder (1 = yes) | 0.146 | 0.354 | 0 | 1 |
Lawn/turf grass (1 = yes) | 0.019 | 0.138 | 0 | 1 |
Mean | Std. dev. | Min | Max | |
---|---|---|---|---|
Decision-maker Characteristics | ||||
Female (1 = yes) | 0.235 | 0.424 | 0 | 1 |
Education (years) | 5.878 | 5.057 | 0 | 20 |
Age (years) | 50.028 | 13.160 | 22 | 90 |
Household Characteristics | ||||
No. of adults (HH members ≥ 15 years) | 3.854 | 1.841 | 1 | 19 |
Non-marginal caste (1 = yes) | 0.790 | 0.408 | 0 | 1 |
Durable assets owned (count) | 11.992 | 6.026 | 0 | 48 |
Off-farm income (1 = yes) | 0.588 | 0.493 | 0 | 1 |
Farm Characteristics Farm size (ha) | 0.881 | 1.293 | 0 | 13 |
Dairy (1 = yes) | 0.696 | 0.461 | 0 | 1 |
Livestock (1 = yes) | 0.403 | 0.491 | 0 | 1 |
Owned borewell (1 = yes) | 0.229 | 0.421 | 0 | 1 |
Market integration (1 = yes) | 0.420 | 0.494 | 0 | 1 |
Location | ||||
Rural–urban index (SSI) 1 | 0.712 | 0.148 | 0 | 1 |
Northern transect (1 = yes) | 0.541 | 0.499 | 0 | 1 |
Mean | Std. dev. | Min | Max | |
---|---|---|---|---|
Mineral | 0.371 | 0.484 | 0 | 1 |
Mineral and FYM | 0.330 | 0.471 | 0 | 1 |
Mineral and organic | 0.196 | 0.397 | 0 | 1 |
Mineral, organic, and FYM | 0.077 | 0.267 | 0 | 1 |
FYM | 0.008 | 0.088 | 0 | 1 |
Cereals | Pulses | Vegetables | Fruits | Flowers | Herbs and Spices | Non-Food Commercial | Fodder | |
---|---|---|---|---|---|---|---|---|
Decision-Maker Characteristics | ||||||||
Female (1 = yes) | −0.030 (0.044) | 0.061 (0.066) | 0.016 (0.043) | 0.067 (0.046) | 0.066 ** (0.028) | −0.057 (0.048) | −0.052 (0.047) | |
Age (years) | −0.001 (0.002) | 0.001 (0.002) | −0.002 (0.001) | 0.003 ** (0.002) | −0.000 (0.001) | 0.001 (0.001) | −0.002 (0.002) | 0.001 (0.001) |
Education (years) | −0.003 (0.004) | −0.003 (0.006) | 0.006 (0.004) | 0.010 ** (0.004) | −0.005 ** (0.002) | −0.001 (0.003) | −0.006 (0.004) | −0.004 (0.004) |
Household Characteristics | ||||||||
Non-marginal caste (1 = yes) | −0.053 (0.048) | −0.059 (0.067) | −0.011 (0.041) | 0.042 (0.047) | −0.030 (0.023) | −0.082 *** (0.028) | 0.157 *** (0.060) | 0.052(0.048) |
No. of adults (HH members ≥ 15 years) | 0.011 (0.011) | −0.014 (0.016) | −0.010 (0.010) | −0.019 * (0.010) | −0.002 (0.003) | 0.000 (0.005) | 0.000 (0.010) | −0.014 (0.009) |
Durable assets owned (count) | 0.002 (0.003) | 0.005 (0.005) | 0.002 (0.003) | 0.008 *** (0.003) | 0.003 * (0.001) | 0.001 (0.002) | −0.002 (0.003) | 0.002 (0.003) |
Off-farm income (1 = yes) | −0.013 (0.034) | 0.034 (0.055) | −0.031 (0.031) | −0.069 * (0.037) | −0.003 (0.017) | 0.018 (0.027) | 0.019 (0.035) | −0.025 (0.032) |
Farm Characteristics | ||||||||
Farm size (ha) | 0.089 *** (0.034) | 0.021 (0.021) | 0.023 *** (0.009) | 0.012 (0.012) | −0.005 (0.007) | 0.019 ** (0.008) | 0.025 * (0.014) | 0.004 (0.012) |
Dairy (1 = yes) | −0.025 (0.041) | 0.168 *** (0.057) | 0.066 * (0.038) | 0.017 (0.041) | −0.013 (0.023) | 0.016 (0.027) | 0.058 (0.044) | |
Livestock (1 = yes) | 0.036 (0.036) | 0.070 (0.054) | 0.004 (0.032) | 0.001 (0.035) | 0.008 (0.018) | 0.014 (0.029) | 0.036 (0.036) | 0.071 ** (0.036) |
Market integration (1 = yes) | −0.158 *** (0.036) | −0.064 (0.057) | 0.199 *** (0.036) | 0.128 *** (0.036) | 0.101 *** (0.030) | 0.051 * (0.027) | 0.166 *** (0.037) | 0.031 (0.038) |
Owned borewell (1 = yes) | −0.151 *** (0.039) | −0.170 *** (0.066) | 0.105 *** (0.034) | 0.185 *** (0.036) | 0.040 ** (0.020) | 0.001 (0.030) | −0.002 (0.041) | 0.148 *** (0.037) |
Location | ||||||||
Rural–urban index (SSI) 1 | 0.002 (0.126) | −0.191 (0.187) | −0.244 ** (0.121) | 0.051 (0.134) | 0.030 (0.060) | −0.047 (0.084) | 0.042 (0.128) | 0.065 (0.153) |
Northern transect (1 = yes) | 0.087 ** (0.035) | 0.106 ** (0.053) | −0.107 *** (0.032) | −0.147 *** (0.034) | 0.075 *** (0.025) | −0.121 *** (0.030) | 0.081 ** (0.036) | −0.181 *** (0.036) |
N | 362 | 362 | 362 | 362 | 362 | 362 | 362 | 362 |
Pseudo R2 | 0.194 | 0.0652 | 0.351 | 0.313 | 0.338 | 0.232 | 0.174 | 0.215 |
Wald chi2 | 54.61 | 27.58 | 86.61 | 83.47 | 47.57 | 42.05 | 60.85 | 50.26 |
Log pseudolikelihood | −120.0 | −234.0 | −98.95 | −121.1 | −41.33 | −71.79 | −131.6 | −118.3 |
Decision-Maker Characteristics | |
Female (1 = yes) | −0.046 (0.029) |
Age (years) | −0.001 (0.001) |
Education (years) | −0.004 (0.003) |
Household Characteristics | |
Non-marginal caste (1 = yes) | −0.051 (0.035) |
No. of adults (HH members ≥ 15 years) | −0.004 (0.005) |
Durable assets owned (count) | 0.004 (0.002) |
Off-farm income (1 = yes) | −0.080 *** (0.027) |
Farm Characteristics | |
Farm size (ha) | 0.027 ** (0.011) |
Dairy (1 = yes) | 0.130 *** (0.031) |
Livestock (1 = yes) | 0.059 ** (0.026) |
Market integration (1 = yes) | 0.119 *** (0.027) |
Owned borewell (1 = yes) | 0.203 *** (0.035) |
Cereals (1 = yes) | −0.154 *** (0.039) |
Pulses (1 = yes) | −0.101 *** (0.026) |
Fruit (1 = yes) | 0.053 * (0.027) |
Vegetables (1 = yes) | 0.114 *** (0.036) |
Herbs and spices (1 = yes) | −0.126 *** (0.049) |
Non-food commercial (1 = yes) | 0.010 (0.032) |
Fodder (1 = yes) | 0.151 *** (0.045) |
Location | |
Rural–urban index (SSI) 1 | −0.054 (0.082) |
Northern transect (1 = yes) | −0.126 *** (0.030) |
N | 362 |
Pseudo R2 | 0.755 |
Wald chi2 | 103.0 |
Log pseudolikelihood | −58.19 |
Mulching/Crop Residues/Cover Crops | Farmyard Manure | Minimum/No Tillage | |
---|---|---|---|
Decision-Maker Characteristics | |||
Female (1 = yes) | −0.014 (0.047) | −0.113 ** (0.057) | −0.047 (0.066) |
Age (years) | −0.004 ** (0.002) | −0.002 (0.002) | 0.001 (0.002) |
Education (years) | −0.003 (0.005) | −0.007 (0.006) | −0.012 ** (0.006) |
Household Characteristics | |||
Non-marginal caste (1 = yes) | −0.026 (0.047) | 0.045 (0.060) | −0.107 (0.066) |
No. of adults (HH members ≥ 15 years) | −0.004 (0.012) | −0.009 (0.013) | −0.033 ** (0.016) |
Durable assets owned (count) | −0.002 (0.003) | 0.004 (0.004) | 0.020 *** (0.005) |
Off-farm income (1 = yes) | 0.092 ** (0.037) | 0.054 (0.049) | 0.039 (0.054) |
Farm Characteristics | |||
Farm size (ha) | 0.017 (0.010) | −0.016 (0.022) | 0.035 * (0.021) |
Dairy (1 = yes) | −0.006 (0.042) | 0.192 *** (0.048) | 0.057 (0.059) |
Livestock (1 = yes) | 0.032 (0.035) | 0.099 ** (0.050) | 0.044 (0.055) |
Market integration (1 = yes) | 0.135 *** (0.044) | 0.017 (0.058) | −0.020 (0.062) |
Owned borewell (1 = yes) | 0.064 (0.043) | 0.075 (0.070) | 0.118 (0.073) |
Cereals (1 = yes) | 0.043 (0.057) | 0.203 *** (0.079) | 0.086 (0.083) |
Pulses (1 = yes) | 0.142 *** (0.035) | 0.027 (0.049) | −0.093 * (0.053) |
Vegetables (1 = yes) | 0.084 * (0.049) | 0.144 * (0.082) | −0.086 (0.085) |
Fruit (1 = yes) | 0.106 ** (0.045) | 0.099 (0.076) | 0.071 (0.074) |
Flowers (1 = yes) | 0.011 (0.151) | 0.014 (0.136) | |
Herbs and spices (1 = yes) | −0.134 * (0.077) | 0.078 (0.092) | −0.129 (0.106) |
Non-food commercial (1 = yes) | 0.046 (0.046) | 0.112 (0.071) | −0.111 (0.073) |
Fodder (1 = yes) | −0.080 (0.057) | 0.123 (0.084) | −0.123 (0.084) |
Location | |||
Rural–urban index (SSI) 1 | 0.162 (0.121) | −0.055 (0.165) | 0.387 ** (0.175) |
Northern transect (1 = yes) | 0.014 (0.038) | 0.090 * (0.055) | 0.060 (0.059) |
N | 362 | 362 | 362 |
Pseudo R2 | 0.214 | 0.158 | 0.0939 |
Wald-chi2 | 69.35 | 70.07 | 47.38 |
Log pseudolikelihood | −125.2 | −195.3 | −227.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moran-Rodas, V.E.; Preusse, V.; Wachendorf, C. Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore. Sustainability 2022, 14, 5775. https://doi.org/10.3390/su14105775
Moran-Rodas VE, Preusse V, Wachendorf C. Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore. Sustainability. 2022; 14(10):5775. https://doi.org/10.3390/su14105775
Chicago/Turabian StyleMoran-Rodas, Virna Estefania, Verena Preusse, and Christine Wachendorf. 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore" Sustainability 14, no. 10: 5775. https://doi.org/10.3390/su14105775