Using WaTEM/SEDEM to Model the Effects of Crop Rotation and Changes in Land Use on Sediment Transport in the Vrchlice Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Watershed
2.2. WaTEM/SEDEM Model Description
2.3. Input Data
2.4. Calibration and Sensitivity Analysis
2.5. The Effects of Crop Rotation, Farmland Fragmentation, and Changes in Land Use
2.5.1. The Effects of Crop Rotation
2.5.2. The Effect of Farmland Fragmentation
2.5.3. The Effects of Changes in Land Use
3. Results
3.1. Calibration and Sensitivity Analysis
3.2. The Effects of Crop Rotation, Farmland Fragmentation, and Changes in Land Use
3.2.1. The Effects of Crop Rotation
3.2.2. The Effect of Farmland Fragmentation
3.2.3. The Effects of Changes in Land Use
3.3. A Comparison of All Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devátý, J.; Dostál, T.; Hösl, R.; Krása, J.; Strauss, P. Effects of historical land use and land pattern changes on soil erosion—Case studies from Lower Austria and Central Bohemia. Land Use Policy 2019, 82, 674–685. [Google Scholar] [CrossRef]
- Stych, P.; Kabrda, J.; Bicik, I.; Lastovicka, J. Regional Differentiation of Long-Term Land Use Changes: A Case Study of Czechia. Land 2019, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Pavelková, R.; Frajer, J.; Havlíček, M.; Netopil, P.; Rozkošný, M.; David, V.; Dzuráková, M.; Bořivoj Šarapatka, B. Historical ponds of the Czech Republic: An example of the interpretation of historic maps. J. Maps 2016, 12, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Bábek, O.; Sedláček, J.; Lenďáková, Z.; Elznicová, J.; Tolaszová, J.; Pacina, J. Historical pond systems as long-term composite archives of anthropogenic contamination in the Vrchlice River, Czechia. Anthropocene 2021, 33, 100283. [Google Scholar] [CrossRef]
- Sladeckova, A.; Zacek, L. Technological and hygienic consequences of reservoirs eutrophication in the Czech Republic. Water Sci. Technol. 1998, 37, 2. [Google Scholar] [CrossRef]
- Dorgam, M.M. Effects of Eutrophication. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 29–44. Available online: https://link.springer.com/chapter/10.1007/978-94-007-7814-6_3 (accessed on 4 April 2022).
- Krása, J.; Dostál, T.; Jáchymová, B.; Bauer, M.; Devátý, J. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs—Watershed analyses using WaTEM/SEDEM. Environ. Res. 2019, 171, 470–483. [Google Scholar] [CrossRef]
- The Ministry of Agriculture of the Czech Republic. Zákon č. 541/2020 Sb., o Odpadech § 70. 2022. Available online: https://eagri.cz/public/web/mze/legislativa/pravni-predpisy-mze/tematicky-prehled/Legislativa-ostatni_uplna-zneni_zakon-2020-541.html (accessed on 10 January 2022).
- Baxa, M.; Šulcová, J.; Kröpfelová, L.; Pokorný, J.; Potužák, J. The quality of sediment in shallow water bodies—Long-term screening of sediment in Czech Republic. A new perspective of nutrients and organic matter recycling in agricultural landscapes. Ecol. Eng. 2019, 127, 151–159. [Google Scholar] [CrossRef]
- Rederer, L.; Ferbar, P. Vodárenská nádrž Vrchlice. Povodí Labe, Hradec Králové. 2017. Available online: http://www.pla.cz/planet/public/dokumenty/publikace/2017_Vodarenske_zdroje.pdf (accessed on 10 January 2022).
- Krasa, J.; Dostal, T.; Van Rompaey, A.; Vaska, J.; Vrana, K. Reservoirs’ siltation measurements and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena 2005, 64, 348–362. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G.; Desmet, P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000, 15, 579–591. [Google Scholar] [CrossRef]
- Van Rompaey, A.; Verstraeten, G.; Van Oost, K.; Govers, G.; Poesen, J. Modelling mean annual sediment yield using a distributed approach. Earth Surf. Processes Landf. 2001, 26, 1221–1236. [Google Scholar] [CrossRef]
- Verstraeten, G.; Van Oost, K.; Van Rompaey, A.; Poesen, J.; Govers, G. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use Manag. 2002, 18, 386–394. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Verstraeten, G.; de Vente, J.; Ocakoglu, F. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology 2011, 130, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Batista, P.V.G.; Davies, J.; Silva, M.L.N.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Van Rompaey, A.; Krasa, J.; Dostal, T. Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy 2007, 24, 576–583. [Google Scholar] [CrossRef]
- VUMOP, v.v.i.; eKatalog BPEJ. Application. Czech Ministry of Agriculture. Praha. 2019. Available online: https://bpej.vumop.cz/ (accessed on 20 December 2021).
- Broža, V.; Černý, I.; Drozd, K.; Feierabend, V.; Gottwaldová, V.; Chlub, A.; Kučera, V.; Paul, J.; Paták, J.; Převrátilová, A.; et al. Vodní dílo Vrchlice; Státní zemědělské nakladatelství: Praha, Czech Republic, 1977. [Google Scholar]
- Krása, J. Hodnocení Erozních Procesů ve Velkých Povodích za Podpory GIS. Ph.D. Thesis, Czech Technical University in Prague, Praha, Czech Republic, 2004. Available online: http://storm.fsv.cvut.cz/data/files/osobni%20stranky/Krasa%20Josef/Dizertace_krasa.pdf (accessed on 15 December 2021).
- ČÚZK: Digital Terrain Model of the Czech Republic of the 4th Generation (DMR4G). Map Sheet. State Administration of Land Surveying Cadastre. 2010. Available online: https://geoportal.cuzk.cz/(S(tim0zgvqzhjhkqzxtzr04a0p))/Default.aspx?mode=TextMeta&side=vyskopis&metadataID=CZ-CUZK-DMR4G-V&head_tab=sekce-02-gp&menu=301 (accessed on 10 November 2021).
- ČÚZK: Fundamental Base of Geographic Data of the Czech Republic (ZABAGED). Map Sheet. State Administration of Land Surveying Cadastre. 2010. Available online: https://geoportal.cuzk.cz/(S(erlbntt4rzdlbt41aoz5f0ha))/Default.aspx?mode=TextMeta&text=dSady_zabaged&side=zabaged&menu=24 (accessed on 10 November 2021).
- The Ministry of Agriculture of the Czech Republic: Land Parcel Identification System (LPIS). Database. The Ministry of Agriculture of the Czech Republic. 2022. Available online: https://eagri.cz/public/web/en/mze/soil/lpis/ (accessed on 10 November 2021).
- ČÚZK: Orthophoto of the Czech Republic. Map Sheet. State Administration of Land Surveying Cadastre. 2010. Available online: https://geoportal.cuzk.cz/(S(ef535ko4of4r2bvd23iscf41))/Default.aspx?mode=TextMeta&side=ortofoto&metadataID=CZ-CUZK-ORTOFOTO-R&productid=63410&mapid=83&menu=231 (accessed on 10 November 2021).
- Vopravil, J.; Janeček, M.; Tippl, M. Revised soil erodibility K-factor for soils in the Czech Republic. Soil Water Res. 2007, 2, 1–9. Available online: http://www.agriculturejournals.cz/publicFiles/00093.pdf (accessed on 10 November 2021). [CrossRef] [Green Version]
- The State Land Office of the Czech Republic: Bonitovaná půdně ekologická jednotka (BPEJ). The State Land Office of the Czech Republic. 2019. Available online: https://www.spucr.cz/bpej/celostatni-databaze-bpej (accessed on 10 November 2021).
- Krása, J.; Středová, H.; Dostál, T.; Novotný, I. Rainfall erosivity research on the territory of the Czech Republic. In Mendel a Bioklimatologie; Rožnovský, J., Litschmann, T., Eds.; Brno, Czech Republic, 2014; Available online: http://www.cbks.cz/SbornikBrno14/Krasa.pdf (accessed on 10 November 2021).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. In Agriculture Handbook; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978. [Google Scholar]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Notebaert, B.; Vaes, B.; Verstraeten, G.; Govers, G.; Leuven, K.U.; Physical and Regional Geography Research Group. WaTEM/SEDEM version 2006. Manual. 2006. Available online: https://ees.kuleuven.be/geography/modelling/watemsedem2006/manual_watemsedem_122011.pdf (accessed on 1 November 2021).
- Brune, G.M. Trap efficiency of reservoirs. Eos Trans. Am. Geophys. Union 1953, 34, 407–418. [Google Scholar] [CrossRef]
- Sýkora, J.; Dostál, T.; Hanel, M.; Dočkal, M.; Koudelka, P.; Havlíček, V.; Heřmanovský, M. Povodí nádrže Vrchlice—Vodní Zdroje a Jejich Perspektiva; Technical Report of Project VaV/630/4/02; Ministry of the Environment: Prague, Czech Republic, 2020. [Google Scholar]
- Dostal, T.; Krása, J.; Vaska, J.; Vrana, K. Shrnutí Hlavních Principů Vytváření Modelů Erozních a Transportních Procesů z Povodí Vodních Nádrží: Aplikace v Povodí VN Vrchlice; Technical Report; Czech Technical University in Prague: Prague, Czech Republic, 2002. [Google Scholar]
- Krasa, J.; Dostal, T.; Vrana, K.; Plocek, J. Predicting spatial patterns of sediment delivery and impacts of land-use scenarios on sediment transport in Czech catchments. Land Degrad. Dev. 2009, 21, 367–375. [Google Scholar] [CrossRef]
- Czech Statistical Office. Harvest Estimates. Czech Statistical Office. 2021. Available online: https://www.czso.cz/csu/czso/ari/harvest-estimates-september-2020 (accessed on 15 January 2022).
- Noreika, N.; Winterová, J.; Li, T.; Krása, J.; Dostál, T. The Small Water Cycle in the Czech Landscape: How Has It Been Affected by Land Management Changes Over Time? Sustainability 2021, 13, 3757. [Google Scholar] [CrossRef]
- Borrelli, P.; Van Oost, K.; Meusburger, K.; Alewell, C.; Lugato, E.; Panagos, P. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environ. Res. 2018, 161, 291–298. [Google Scholar] [CrossRef] [PubMed]
- De Vente, J.; Poesen, J.; Arabkhedri, M.; Verstraeten, G. The sediment delivery problem revisited. Prog. Phys. Geogr. 2007, 31, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Robin, J.; Guerin, M.; Arthaud, F.; Vallod, D. Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica 2013, 43, 210–218. [Google Scholar] [CrossRef]
- Winterova, J. Sediment transport in Vrchlice Reservoir Watershed. Master’s Diploma Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2020. Available online: https://dspace.cvut.cz/handle/10467/93140 (accessed on 10 January 2022). (In Czech).
- Government of the Czech Republic: Policy Statement of the Government. 2022. Available online: https://www.vlada.cz/en/jednani-vlady/policy-statement/policy-statement-of-the-government-193762/ (accessed on 16 February 2022).
Crop | Cover Percentage | C Factor |
---|---|---|
wheat | 32 | 0.12 |
barley | 15 | 0.17 |
corn | 17 | 0.72 |
arable fodder | 9 | 0.02 |
rapeseed | 22 | 0.22 |
oilseed | 5 | 0.6 |
Effects | Represented Period | Varying Input Parameter |
---|---|---|
Crop rotation | pre-Communist | |
Communist | C factor for crops | |
Post-Communist | ||
Farmland fragmentation | With FF * (pre-Communist) | C factor maps, parcel map |
Without FF * (Communist, post-Communist) | ||
Changes in land use | Pre-Communist | |
Early Communist | parcel maps | |
Late Communist | ||
Post-Communist |
Crop | Pre-Communist | Communist | C Factor |
---|---|---|---|
winter wheat | 15% | 35% | 0.12 |
spring barley | 15% | 30% | 0.15 |
potatoes | 20% | 10% | 0.44 |
oats | 25% | 15% | 0.10 |
rye | 25% | 10% | 0.17 |
Parameter | Method | Minimum | Selected | Maximum |
---|---|---|---|---|
PTEF crop lands PTEF forests and pastures PC crop lands | Recommended * | 0 | 0 | 0 |
Recommended * | 25 | 75 | 100 | |
Adjusted | 0 | 10 | 40 | |
PC forests and pastures | Adjusted | 10 | 20 | 100 |
KTC low | Adjusted | 10 | 150 | 250 |
KTC high | Adjusted | 20 | 250 | 400 |
KTC limit | Recommended * | 0.1 |
Name | Modeled Deposition (Tons/Year) | Measured Deposition (Tons/Year) |
---|---|---|
Hamersky 1 | 3130 | 3825 |
Steklik 2 | 881 | 817 |
Navesky 3 | 92 | 131 |
Jesterny 4 | 282 | 640 |
Pracny 5 | 67 | 427 |
Vackar 6 | 45 | 470 |
Novy Opatovicky 7 | 81 | 835 |
Mlynsky 8 | 103 | 1288 |
Crop rotation | Total Sediment Production | Total Sediment Yield | Total River Export |
---|---|---|---|
Pre-communist | 41,370 | 15,320 | 20 |
Communist | 34,940 | 13,860 | 10 |
Post-communist | 55,170 | 18,120 | 30 |
Crop Rotation | Vrchlice | Hamersky | Steklik | Navesky |
---|---|---|---|---|
Pre-communist | 1593 | 2629 | 742 | 78 |
Communist | 1443 | 2378 | 671 | 71 |
Post-communist | 1890 | 3130 | 882 | 92 |
Crop Rotation | Total Sediment Production | Total Sediment Yield | Total River Export |
---|---|---|---|
With FF | 15,290 | 6000 | 260 |
Without FF | 19,240 | 7020 | 330 |
Land Use | Total Sediment Production | Total Sediment Yield | Total Pond Deposition | Total River Export |
---|---|---|---|---|
Pre-communist | 47,460 | 17,620 | 7160 | 1590 |
Early communist | 51,010 | 19,010 | 4690 | 4920 |
Late communist | 60,640 | 22,230 | 11,880 | 70 |
Post-communist | 55,170 | 18,120 | 9690 | 30 |
Pilsky | Vrchlice | Hamersky | Steklik | Navesky | |
---|---|---|---|---|---|
Land use/basin size in km2 | 97 | 97 | 79 | 12 | 2 |
Pre-communist | 147 | -* | 3091 | 845 | 26 |
Early communist | -* | -* | -* | 1010 | 77 |
Late communist | -* | 2488 | 3490 | 1164 | 75 |
Post-communist | -* | 1890 | 3130 | 882 | 92 |
Land Use | ||||||
---|---|---|---|---|---|---|
Post- Communist | Late Communist | Early Communist | Pre- Communist | Post-Communist + Farmland Fragmentation | ||
Crop rotation | Post-communist Communist | 18,115 | 22,230 | 19,010 | 17,620 | 15,398 |
13,856 | -* | -* | -* | -* | ||
Pre-communist | 15,322 | -* | -* | -* | -* |
Land Use | ||||||
---|---|---|---|---|---|---|
Post- Communist | Late Communist | Early Communist | Pre- Communist | Post-Communist + Farmland Fragmentation | ||
Crop rotation | Post-communist Communist | 3130 | 3490 | -** | 3091 | 2660 |
2378 | -* | -* | -* | -* | ||
Pre-communist | 2629 | -* | -* | -* | -* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winterová, J.; Krása, J.; Bauer, M.; Noreika, N.; Dostál, T. Using WaTEM/SEDEM to Model the Effects of Crop Rotation and Changes in Land Use on Sediment Transport in the Vrchlice Watershed. Sustainability 2022, 14, 5748. https://doi.org/10.3390/su14105748
Winterová J, Krása J, Bauer M, Noreika N, Dostál T. Using WaTEM/SEDEM to Model the Effects of Crop Rotation and Changes in Land Use on Sediment Transport in the Vrchlice Watershed. Sustainability. 2022; 14(10):5748. https://doi.org/10.3390/su14105748
Chicago/Turabian StyleWinterová, Julie, Josef Krása, Miroslav Bauer, Nina Noreika, and Tomáš Dostál. 2022. "Using WaTEM/SEDEM to Model the Effects of Crop Rotation and Changes in Land Use on Sediment Transport in the Vrchlice Watershed" Sustainability 14, no. 10: 5748. https://doi.org/10.3390/su14105748