Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Cultivation Condition, and Image Acquisition
2.2. Modeling
2.3. Data Augmentation Implementation
2.4. Implementation of Algorithms
2.4.1. CNN Implementation
2.4.2. VGG16 Implementation
2.4.3. VGG19 Implementation
2.5. Optimization and Validation
3. Results and Discussion
3.1. Results Interpretation
3.2. Model Performance Comparison
3.3. Accuracy Evaluation Metrics
3.4. Model Limitations and Strength
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prasad, S.; Singh, P.P. Medicinal plant leaf information extraction using deep features. In Proceedings of the TENCON 2017—2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2722–2726. [Google Scholar]
- Hartz, T.K.; Johnstone, P.; Williams, E.; Smith, R. Establishing lettuce leaf nutrient optimum ranges through DRIS analysis. HortScience 2007, 42, 143–146. [Google Scholar] [CrossRef]
- Tang, Y.T.F. Learn: TensorFlow’s high-level module for distributed machine learning. arXiv 2016, arXiv:1612.04251. [Google Scholar]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, 9–12 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 117–122. [Google Scholar]
- Shijie, J.; Ping, W.; Peiyi, J.; Siping, H. Research on data augmentation for image classification based on convolution neural networks. In Proceedings of the 2017 Chinese automation congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4165–4170. [Google Scholar]
- Pawara, P.; Okafor, E.; Schomaker, L.; Wiering, M. Data augmentation for plant classification. In International Conference on Advanced Concepts for Intelligent Vision Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 615–626. [Google Scholar]
- Pink, D.; KEANE, E.M. Lettuce: Lactuca sativa L. In Genetic Improvement of Vegetable Crops; Elsevier: Amsterdam, The Netherlands, 1993; pp. 543–571. [Google Scholar]
- Eshkabilov, S.; Lee, A.; Sun, X.; Lee, C.W.; Simsek, H. Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars. Comput. Electron. Agric. 2021, 181, 105968. [Google Scholar] [CrossRef]
- Minervini, M.; Giuffrida, M.V.; Perata, P.; Tsaftaris, S.A. Phenotiki: An open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. Plant J. 2017, 90, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Keceli, A.S.; Catal, C.; Yalic, H.Y.; Temucin, H.; Tekinerdogan, B. Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 2019, 158, 20–29. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. ICML 2013, 30, 3. [Google Scholar]
- Fawzi, A.; Samulowitz, H.; Turaga, D.; Frossard, P. Adaptive data augmentation for image classification. In Proceedings of the 2016 IEEE International Conference On Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3688–3692. [Google Scholar]
- Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P. Learning activation functions to improve deep neural networks. arXiv 2014, arXiv:1412.6830. [Google Scholar]
- Ososkov, G.; Goncharov, P. Shallow and deep learning for image classification. Opt. Mem. Neural Netw. 2017, 26, 221–248. [Google Scholar] [CrossRef]
- Ahsan, M.; Nygard, K. Convolutional Neural Networks with LSTM for Intrusion Detection. CATA 2020, 69, 69–79. [Google Scholar]
- Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform. 2017, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Chug, A.; Singh, A.P.; Sharma, S.; Rajvanshi, P. Deep learning-based mobile application for plant disease diagnosis: A proof of concept with a case study on tomato plant. In Applications of Image Processing and Soft Computing Systems in Agriculture; IGI Global: Hershey, PA, USA, 2019; pp. 242–271. [Google Scholar]
- Presnov, E.; Albright, L.; Dayan, E. Methods to estimate and calculate lettuce growth. In III International Symposium on Applications of Modelling as an Innovative Technology in the Agri-Food Chain; ISHS: Leuven, Belgium, 2005; pp. 305–312. [Google Scholar]
- Ahsan, M.; Rahul, G.; Anne, D. Application of a Convolutional Neural Network using transfer learning for tuberculosis detection. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 427–433. [Google Scholar]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Odabas, M.S.; Leelaruban, N.; Simsek, H.; Padmanabhan, G. Quantifying impact of droughts on barley yield in North Dakota, USA using multiple linear regression and artificial neural network. Neural Netw. World 2014, 24, 343. [Google Scholar] [CrossRef] [Green Version]
- Alippi, C.; Disabato, S.; Roveri, M. Moving convolutional neural networks to embedded systems: The alexnet and VGG-16 case. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 212–223. [Google Scholar]
- Arslan, H.; Taşan, M.; Yildirim, D.; Köksal, E.S.; Cemek, B. Predicting field capacity, wilting point, and the other physical properties of soils using hyperspectral reflectance spectroscopy: Two different statistical approaches. Environ. Monit. Assess. 2014, 186, 5077–5088. [Google Scholar] [CrossRef]
- Francis, M.; Deisy, C. Disease detection and classification in agricultural plants using convolutional neural networks—A visual understanding. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1063–1068. [Google Scholar]
- Ahsan, M.; Gomes, R.; Chowdhury, M.; Nygard, K.E. Enhancing Machine Learning Prediction in Cybersecurity Using Dynamic Feature Selector. J. Cybersecur. Priv. 2021, 1, 199–218. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep learning application in plant stress imaging: A review. AgriEngineering 2020, 2, 430–446. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Zhou, H. Breeds classification with deep convolutional neural network. In Proceedings of the 2020 12th International Conference on Machine Learning and Computing, Shenzhen, China, 15–17 February 2020; pp. 145–151. [Google Scholar]
- Samiei, S.; Rasti, P.; Vu, J.L.; Buitink, J.; Rousseau, D. Deep learning-based detection of seedling development. Plant Methods 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Singh, R. A Comparative Study of CNN and AlexNet for Detection of Disease in Potato and Mango leaf. In Proceedings of the 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27–28 September 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 1–6. [Google Scholar]
- GC, S.; Saidul Md, B.; Zhang, Y.; Reed, D.; Ahsan, M.; Berg, E.P.; SUN, X. Using Deep Learning Neural Network in Artificial Intelligence Technology to Classify Beef Cuts. Front. Sens. 2020, 2, 5. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Processing Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Ahmed, A.; Reddy, G. A mobile-based system for detecting plant leaf diseases using deep learning. AgriEngineering 2021, 3, 478–493. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Growing plants without soil by the water-culture method. In Growing Plants without Soil by the Water-Culture Method; University of California: Berkeley, CA, USA, 1938. [Google Scholar]
- Joshi, A.J.; Porikli, F.; Papanikolopoulos, N. Multiclass batch-mode active learning for image classification. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1873–1878. [Google Scholar]
- Kuznichov, D.; Zvirin, A.; Honen, Y.; Kimmel, R. Data augmentation for leaf segmentation and counting tasks in rosette plants. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Asadi, K.; Littman, M.L. An alternative softmax operator for reinforcement learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 243–252. [Google Scholar]
- Oppenheim, D.; Shani, G. Potato disease classification using convolution neural networks. Adv. Anim. Biosci. 2017, 8, 244–249. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, X.; Li, Y. Horse Breed Classification Based on Transfer Learning. In Proceedings of the 2020 4th International Conference on Advances in Image Processing, Chengdu, China, 13–15 November 2020; pp. 42–47. [Google Scholar]
- Denton, A.M.; Mostofa, A.; David, F.; John, N. Multi-scalar analysis of geospatial agricultural data for sustainability. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2139–2146. [Google Scholar]
- Cap, Q.H.; Uga, H.; Kagiwada, S.; Iyatomi, H. Leafgan: An effective data augmentation method for practical plant disease diagnosis. IEEE Trans. Autom. Sci. Eng. 2020, 1–10. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Agrawal, D.; Minocha, S.; Namasudra, S.; Kumar, S. Ensemble Algorithm using Transfer Learning for Sheep Breed Classification. In Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 19–21 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 199–204. [Google Scholar]
- Cometti, N.N.; Martins, M.Q.; Bremenkamp, C.A.; Nunes, J.A. Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Hortic. Bras. 2011, 29, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.; Gomes, R.; Denton, A. Smote implementation on phishing data to enhance cybersecurity. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 531–536. [Google Scholar]
- Gao, F.; Fu, L.; Zhang, X.; Majeed, Y.; Li, R.; Karkee, M.; Zhang, Q. Multiclass fruit-on-plant detection for apple in SNAP system using Faster R-CNN. Comput. Electron. Agric. 2020, 176, 105634. [Google Scholar] [CrossRef]
- Sunoj, S.; Hammed, A.; Igathinathane, C.; Eshkabilov, S.; Simsek, H. Identification, quantification, and growth profiling of eight different microalgae species using image analysis. Algal Res. 2021, 60, 102487. [Google Scholar] [CrossRef]
- Cemek, B.; Ünlükara, A.; Kurunç, A.; Küçüktopcu, E. Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Comput. Electron. Agric. 2020, 174, 105514. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güler, M.; Arslan, H.; Cemek, B.; Erşahin, S. Long-term changes in spatial variation of soil electrical conductivity and exchangeable sodium percentage in irrigated mesic ustifluvents. Agric. Water Manag. 2014, 135, 1–8. [Google Scholar] [CrossRef]
- Liu, C.-W.; Sung, Y.; Chen, B.-C.; Lai, H.-Y. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health 2014, 11, 4427–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dureja, A.; Pahwa, P. Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Pat. Comput. Sci. 2019, 12, 156–161. [Google Scholar] [CrossRef]
- Le, V.N.T.; Ahderom, S.; Alameh, K. Performances of the lbp based algorithm over cnn models for detecting crops and weeds with similar morphologies. Sensors 2020, 20, 2193. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lu, C.; Liang, X.; Gao, J.; Zheng, W.; Wang, T.; Yan, S. Multi-loss regularized deep neural network. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2273–2283. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Rangarajan, A.K.; Purushothaman, R. Disease classification in eggplant using pre-trained VGG16 and MSVM. Sci. Rep. 2020, 10, 2322. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.; Ahsan, M.; Denton, A. Random forest classifier in SDN framework for user-based indoor localization. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 537–542. [Google Scholar]
- Simsek, H. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen. Environ. Technol. 2016, 37, 2879–2889. [Google Scholar] [CrossRef] [PubMed]
Class | Training Sample | Validation Sample | Test Sample | VGG16 Accuracy, % | VGG19 Accuracy, % | CNN Accuracy, % |
---|---|---|---|---|---|---|
Black Seed 0 | 28 | 8 | 8 | 100 | 100 | 100 |
Black Seed 50 | 28 | 8 | 8 | 100 | 100 | 0 |
Black Seed 200 | 31 | 9 | 9 | 100 | 100 | 22.2 |
Black Seed 300 | 30 | 9 | 8 | 100 | 100 | 100 |
Flandria 0 | 28 | 8 | 8 | 100 | 100 | 87.5 |
Flandria 50 | 29 | 9 | 8 | 100 | 100 | 0 |
Flandria 200 | 35 | 10 | 9 | 100 | 100 | 0 |
Flandria 300 | 34 | 10 | 9 | 88.9 | 88.9 | 77.8 |
Rex 0 | 31 | 9 | 9 | 100 | 100 | 77.8 |
Rex 50 | 29 | 9 | 7 | 100 | 100 | 28.6 |
Rex 200 | 31 | 9 | 8 | 87.5 | 87.5 | 12.5 |
Rex 300 | 35 | 10 | 9 | 100 | 88.9 | 100 |
Tacitus 0 | 29 | 9 | 8 | 100 | 100 | 87.5 |
Tacitus 50 | 29 | 9 | 8 | 100 | 100 | 87.5 |
Tacitus 200 | 40 | 12 | 10 | 90 | 100 | 90 |
Tacitus 300 | 31 | 9 | 8 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, M.; Eshkabilov, S.; Cemek, B.; Küçüktopcu, E.; Lee, C.W.; Simsek, H. Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.). Sustainability 2022, 14, 416. https://doi.org/10.3390/su14010416
Ahsan M, Eshkabilov S, Cemek B, Küçüktopcu E, Lee CW, Simsek H. Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.). Sustainability. 2022; 14(1):416. https://doi.org/10.3390/su14010416
Chicago/Turabian StyleAhsan, Mostofa, Sulaymon Eshkabilov, Bilal Cemek, Erdem Küçüktopcu, Chiwon W. Lee, and Halis Simsek. 2022. "Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.)" Sustainability 14, no. 1: 416. https://doi.org/10.3390/su14010416
APA StyleAhsan, M., Eshkabilov, S., Cemek, B., Küçüktopcu, E., Lee, C. W., & Simsek, H. (2022). Deep Learning Models to Determine Nutrient Concentration in Hydroponically Grown Lettuce Cultivars (Lactuca sativa L.). Sustainability, 14(1), 416. https://doi.org/10.3390/su14010416