A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein
Abstract
:1. Introduction
How to develop methodologies for building subnational models of highly renewable-based energy systems within the sector-coupled networks?
2. Background
2.1. Modeling Energy Systems Using Oemof
- The energy system describes a graph with flows on its edges by combining necessary components and buses;
- The basic energy system is adapted by defining additional constraints on top of the aforementioned graph logic; and
- Custom components are added to a model by subclassing from the core or creating from scratch.
2.2. Schleswig-Holstein as a Prospective Subnational Region
3. Model Architecture
3.1. Elements and Objective Function
3.2. Development Methodology
- Importing necessary data packages (Python Script)
- Setting up the input datapath (Python Script)
- Setting up the result directory (Python Script)
- Reading input data (Python Script)
- Creating the energy system (Oemof Solph)
- Creating the buses (Oemof Solph)
- Adding buses to the energy system (Oemof Solph)
- Adding components to the energy system (Oemof Tabular)
- Reading demand data (Oemof Tabular)
- Creating the model (Oemof Solph)
- Solve the optimization problem (Oemof Solph)
- Postprocessing of results (Oemof Tabular)
- Writing results (Oemof Tabular)
- Plotting results (Oemof Tabular)
4. Model Validation: Case of Schleswig-Holstein
4.1. Hourly Renewable Profiles and Demand Data
4.2. Capacity and Available Potential
4.3. Cost Data
4.4. Other Input Data
4.5. Scenarios
5. Results
5.1. Supply–Demand Matching
5.2. Scenario Comparison
5.2.1. Capacity Expansion
5.2.2. Investment Cost
5.2.3. Energy Mix
- SH has adequate renewable resources to meet its electricity and building heat demands.
- The onshore wind dominates electricity generation.
- Electric heat pumps, mainly GSHPs, dominate heat generation.
- The batteries offer short-term storage solutions for electricity storage.
- ACAES, H2, and TES are promising storage solutions, especially when renewable energy availability is limited.
- Power-to-heat devices, such as GSHP and ASHP, stand out as prominent heating options besides traditional CHPs.
- TES plays an important role in integrating the power and heat sectors.
- Increasing biomass in the system impacts other technologies’ investment costs and can reduce the overall system cost.
- The optimization reached feasible solutions without utilizing the full potential of many resources. Therefore, the high amount of available potential, especially offshore wind resources, emerges as a promising alternative for powering up other parts of the country, especially Germany’s high energy-consuming industrial southern states.
6. Discussion
7. Conclusions
7.1. Limitations of the Model
- Geothermal, ocean and wave energy, concentrated solar power plants, etc.;
- Industrial process heating demands;
- Transmission line modeling;
- Latent and thermo–chemical heat storages as TES options;
- Interconnection with neighboring regions;
- Modeling of electric vehicles, coupling of the transport sector, and provision of vehicle-to-grid charging;
- Renewable heating options, such as using solar thermal collectors; and
- Demand response management.
7.2. Future Plans and Summary of the Study
- Grid modeling between subnational regions;
- Modeling of process heating components in industries;
- Modeling of district heating components;
- Inclusion of concentrated solar, geothermal, ocean, and wave energy plants;
- Inclusion of latent heat and thermo–chemical heat storage plants;
- Modeling of the transport sector;
- Modeling of demand response activities; and
- Development of a graphical user interface.
- Which combination of plants is suitable for economic operation?
- What added value does sector-coupling of the energy sources bring?
- Which inconsistencies exist in the subregional energy systems?
- What role may dispatchable loads or CHPs play as flexibility options?
- How can regional energy markets be designed?
- Where do key bottlenecks arise in the power grid of a subnational system?
- How can the industry sector be decarbonized?
- What role will storage play in a highly renewable and sector-coupled subnational energy model?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Elaboration |
ACAES | Adiabatic compressed air energy storage |
AEE | Agentur für Erneuerbare Energien (Agency for Renewable Energies) |
AIV | Annual investment cost |
ASHP | Air source heat pump |
bn | Billion |
Capex | Capital expenditure |
CHP | Combined heat and power |
CO2 | Carbon dioxide |
COP | Coefficient of performance |
DHW | Domestic hot water |
el | Electrical |
EU | European Union |
FOM | Fixed operation and maintenance |
GSHP | Ground source heat pump |
GW | Gigawatt |
GWh | Gigawatt-hours |
H2 | Hydrogen |
hr | Hour |
kW | Kilowatt |
kWh | Kilowatt-hours |
Li-ion | Lithium-ion |
LP | Linear Programming |
MILP | Mixed-Integer Linear Programming |
mn | Million |
MW | Megawatt |
MWh | Megawatt-hours |
Oemof | Open Energy Modeling Framework |
NS | North Sea |
OSeEM–SN | Open Sector-coupled Energy Model for Subnational Energy Systems |
PHS | Pumped hydro storage |
PV | Photovoltaic |
Redox | Vanadium Redox Flow |
ROR | Run-of-the-river |
SH | Schleswig-Holstein |
th | Thermal |
TIV | Total investment cost |
TW | Terawatt |
TES | Thermal energy storage |
TWh | Terawatt-hours |
VOM | Variable operation and maintenance |
WACC | Weighted average capital cost |
yr | Year |
References
- European Commission. Paris Agreement, Climate Action—European Commission. 2016. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed on 23 February 2021).
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1596443911913&uri=CELEX:52019DC0640#document2 (accessed on 23 February 2021).
- Robinius, M.; Otto, A.; Heuser, P.; Welder, L.; Syranidis, K.; Ryberg, D.S.; Grube, T.; Markewitz, P.; Peters, R.; Stolten, D. Linking the power and transport sectors—Part 1: The Principle of sector coupling. Energies 2017, 10, 956. [Google Scholar] [CrossRef] [Green Version]
- Fridgen, G.; Keller, R.; Körner, M.-F.; Schöpf, M. A holistic view on sector coupling. Energy Policy 2020, 147, 111913. [Google Scholar] [CrossRef]
- Bernath, C.; Deac, G.; Sensfuß, F. Impact of sector coupling on the market value of renewable energies—A Model-based scenario analysis. Appl. Energy 2021, 281, 115985. [Google Scholar] [CrossRef]
- Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Jiménez Navarro, J.P.; Colombo, E.; Quoilin, S. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020, 267, 115100. [Google Scholar] [CrossRef]
- Martínez-Gordón, R.; Morales-España, G.; Sijm, J.; Faaij, A.P.C. A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region. Renew. Sustain. Energy Rev. 2021, 141, 110857. [Google Scholar] [CrossRef]
- Gusatu, L.F.; Yamu, C.; Zuidema, C.; Faaij, A.A. Spatial analysis of the potentials for offshore wind farm locations in the North Sea region: Challenges and opportunities. ISPRS Int. J. Geo Inf. 2020, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Gorenstein Dedecca, J.; Hakvoort, R.A. A review of the North Seas offshore grid modeling: Current and future research. Renew. Sustain. Energy Rev. 2016, 60, 129–143. [Google Scholar] [CrossRef] [Green Version]
- TNO. Integration of North Sea Energy Systems Saves Billions. 2019. Available online: https://www.tno.nl/en/focus-areas/energy-transition/roadmaps/system-transition/towards-a-reliable-affordable-and-fair-energy-system/energy-conversion-and-storage/integration-of-north-sea-energy-systems-saves-billions/ (accessed on 20 March 2021).
- ENSYSTRA—Energy Systems in Transition EU H2020 Research Project. 2018. Available online: https://ensystra.eu/ (accessed on 20 March 2021).
- Horschig, T.; Thrän, D. Are decisions well supported for the energy transition? A review on modeling approaches for renewable energy policy evaluation. Energy Sustain. Soc. 2017, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Simoes, S.; Zeyringer, M.; Mayr, D.; Huld, T.; Nijs, W.; Schmidt, J. Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria. Renew. Energy 2017, 105, 183–198. [Google Scholar] [CrossRef]
- Kerimray, A.; Suleimenov, B.; De Miglio, R.; Rojas-Solórzano, L.; Amouei Torkmahalleh, M.; Gallachóir, B.P.Ó. Investigating the energy transition to a coal free residential sector in Kazakhstan using a regionally disaggregated energy systems model. J. Clean. Prod. 2018, 196, 1532–1548. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C.; Timilsina, G.R. A review of energy system models. Int. J. Energy Sect. Manag. 2010, 4, 494–518. [Google Scholar] [CrossRef]
- Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (OEMOF)—A new approach to facilitate open science in energy system modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Nagel, J. Modeling optimization problems in the energy sector with OEMOF. In Optimization of Energy Supply Systems: Modelling, Programming and Analysis; Nagel, J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 257–294. [Google Scholar] [CrossRef]
- Hilpert, S.; Günther, S.; Kaldemeyer, C.; Krien, U.; Plessmann, G.; Wiese, F.; Wingenbach, C. Addressing energy system modelling challenges: The Contribution of the Open Energy Modelling Framework (oemof). Preprints 2017. [Google Scholar] [CrossRef]
- Hilpert, S.; Kaldemeyer, C.; Wiese, F.; Plessmann, G. A qualitative evaluation approach for energy system modelling software—Case study results for the Open Energy Modelling Framework (oemof). Energy Sustain. Soc. 2017. [Google Scholar] [CrossRef] [Green Version]
- Maruf, M.N.I. Sector coupling in the North Sea region—A review on the energy system modelling perspective. Energies 2019, 12, 4298. [Google Scholar] [CrossRef] [Green Version]
- Landesportal Schleswig-Holstein, Versorgungsbeitrag der Erneuerbaren Energien. Contribution to the Supply of Renewable Energies. 2021. Available online: http://www.schleswig-holstein.de/DE/Landesregierung/Themen/Energie/Energiewende/Daten/_documents/versorgungsbeitrag.html?nn=34ea8660-9025-4fe4-ab51-2c5a6b2b144b (accessed on 24 February 2021).
- Meyer, B.; Tietje, D.H. Erneuerbare Energien in Zahlen für Schleswig-Holstein, Statistisches Amt für Hamburg und Schleswig-Holstein, Kiel, Germany. 2020. Available online: https://www.schleswig-holstein.de/DE/Landesregierung/Themen/Energie/Energiewende/Daten/pdf/EE_Bilanz_2018.pdf?__blob=publicationFile&v=3 (accessed on 24 February 2021).
- Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Open Models. 2021. Available online: https://wiki.openmod-initiative.org/wiki/Open_Models#List_of_models (accessed on 23 March 2021).
- Pfenninger, S.; Pickering, B. Calliope: A multi-scale energy systems modelling framework. J. Open Source Softw. 2018, 3, 825. [Google Scholar] [CrossRef] [Green Version]
- DESSTINEE Model 2050. 2015. Available online: https://sites.google.com/site/2050desstinee/getting-the-model (accessed on 23 March 2021).
- The Dispa-SET Model. 2019. Available online: http://www.dispaset.eu/en/latest/ (accessed on 23 March 2021).
- Egerer, J. Open Source Electricity Model for Germany (ELMOD-DE); DIW Berlin, German Institute for Economic Research: Berlin, Germany, 2016; Available online: https://ideas.repec.org/p/diw/diwddc/dd83.html (accessed on 23 March 2021).
- Ficus: A (Mixed Integer) Linear Optimisation Model for Local Energy Systems. 2018. Available online: https://ficus.readthedocs.io/en/latest/ (accessed on 23 March 2021).
- LEAP. The Low Emissions Analysis Platform. 2020. Available online: https://leap.sei.org/default.asp (accessed on 23 March 2021).
- KU Leuven. LUSYM: A Unit Commitment Model Formulated as a Mixed-Integer Linear Program. 2015. Available online: https://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wpen2014-7.pdf (accessed on 23 March 2021).
- Medeas. Modeling the Renewable Energy Transition in Europe. 2021. Available online: https://www.medeas.eu/ (accessed on 23 March 2021).
- OSeMOSYS—The Open Source Energy Modelling System. 2021. Available online: https://github.com/OSeMOSYS/OSeMOSYS (accessed on 23 March 2021).
- Svendsen, H.G.; Spro, O.C. PowerGAMA: A new simplified modelling approach for analyses of large interconnected power systems, applied to a 2030 Western Mediterranean case study. J. Renew. Sustain. Energy 2016, 8. [Google Scholar] [CrossRef]
- PyPSA. Python for Power System Analysis. PyPSA. 2021. Available online: https://github.com/PyPSA/PyPSA (accessed on 23 March 2021).
- RETScreen. 2021. Available online: https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 (accessed on 23 March 2021).
- Modelling Overview SIREN Toolkit—Sustainable Energy Now WA. 2014. Available online: https://www.sen.asn.au/modelling_overview (accessed on 23 March 2021).
- Switch Power System Planning Model. GitHub. 2021. Available online: https://github.com/switch-model (accessed on 23 March 2021).
- Dorfner, J. Urbs: A Linear Optimisation Model for Distributed Energy Systems. Chair of Renewable and Sustainable Energy Systems. 2021. Available online: https://github.com/tum-ens/urbs (accessed on 23 March 2021).
- Oemof, Open Energy Modelling Framework. GitHub. 2021. Available online: https://github.com/oemof (accessed on 23 March 2021).
- Krien, U.; Schönfeldt, P.; Launer, J.; Hilpert, S.; Kaldemeyer, C.; Pleßmann, G. Oemof.solph—A model generator for linear and mixed-integer linear optimisation of energy systems. Softw. Impacts 2020, 6, 100028. [Google Scholar] [CrossRef]
- Hilpert, S.; Günther, S.; Söthe, M. Oemof Tabular, Europa-Universität Flensburg, Flensburg, Germany. 2020. Available online: https://github.com/oemof/oemof-tabular (accessed on 8 July 2020).
- Maruf, M.N.I. Open model-based analysis of a 100% renewable and sector-coupled energy system—The case of Germany in 2050. Appl. Energy 2021, 288, 116618. [Google Scholar] [CrossRef]
- Hilpert, S. Effects of decentral heat pump operation on electricity storage requirements in Germany. Energies 2020, 13, 2878. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D.; Kies, A.; Schramm, S.; Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 2018, 160, 720–739. [Google Scholar] [CrossRef] [Green Version]
- Pfenninger, S.; Staffell, I. Renewables.Ninja. 2020. Available online: https://www.renewables.ninja/ (accessed on 22 July 2020).
- Kavvadias, K.; Hidalgo Gonzalez, I.; Zucker, A.; Quoilin, S. Dispa-SET, Energy Modelling Toolkit. 2020. Available online: https://github.com/energy-modelling-toolkit/Dispa-SET (accessed on 22 July 2020).
- Wiese, F.; Schlecht, I.; Bunke, W.-D.; Gerbaulet, C.; Hirth, L.; Jahn, M.; Kunz, F.; Lorenz, C.; Mühlenpfordt, J.; Reimann, J.; et al. Open power system data—Frictionless data for electricity system modelling. Appl. Energy 2019, 236, 401–409. [Google Scholar] [CrossRef] [Green Version]
- ENTSO-e. Power Statistics. 2020. Available online: https://www.entsoe.eu/data/power-stats/ (accessed on 17 July 2020).
- Ruhnau, O. When2Heat Heating Profiles. 2019. Available online: https://data.open-power-system-data.org/when2heat/ (accessed on 31 March 2021). [CrossRef]
- Scaramuzzino, C.; Garegnani, G. Hotmaps Project Data on Potential Biomass—NUTS3 Level. Available online: https://gitlab.com/hotmaps/potential/potential_biomass (accessed on 22 July 2020).
- CSES. Input Data for the ANGUS II Project. 2020. Available online: https://github.com/ZNES-datapackages/angus-input-data (accessed on 6 August 2020).
- Deutsche WindGuard GmbH. 2021. Available online: https://www.windguard.de (accessed on 26 February 2020).
- AEE. Facts and Figures on the Development of Renewable Energies in Individual Federal States. 2020. Available online: https://www.foederal-erneuerbar.de/landesinfo/bundesland (accessed on 22 July 2020).
- Osorio, S.; Pietzcker, R.; Tietjen, O. Documentation of LIMES-EU—A Long-Term Electricity System Model for Europe, 93; Potsdam Institute for Climate Impact: Potsdam, Germany, 2021; Available online: https://www.pik-potsdam.de/en/institute/departments/transformation-pathways/models/limes/model-documentation-v2.37 (accessed on 4 March 2021).
- Vattenfall. Power Plants: Pumpspeicherkraftwerk Geesthacht. 2020. Available online: https://powerplants.vattenfall.com/de/geesthacht (accessed on 26 February 2021).
- Bačelić Medić, Z.; Ćosić, B.; Duić, N. Sustainability of remote communities: 100% renewable island of Hvar. J. Renew. Sustain. Energy 2013, 5, 041806. [Google Scholar] [CrossRef] [Green Version]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney. Energy 2019, 175, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Child, M.; Nordling, A.; Breyer, C. Scenarios for a sustainable energy system in the Åland Islands in 2030. Energy Convers. Manag. 2017, 137, 49–60. [Google Scholar] [CrossRef]
- Gils, H.C.; Simon, S. Carbon neutral archipelago—100% renewable energy supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Delucchi, M.A.; Ingraffea, A.R.; Howarth, R.W.; Bazouin, G.; Bridgeland, B.; Burkart, K.; Chang, M.; Chowdhury, N.; Cook, R.; et al. A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy 2014, 73, 875–889. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Howarth, R.W.; Delucchi, M.A.; Scobie, S.R.; Barth, J.M.; Dvorak, M.J.; Klevze, M.; Katkhuda, H.; Miranda, B.; Chowdhury, N.A.; et al. Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy 2013, 57, 585–601. [Google Scholar] [CrossRef]
- Center for Sustainable Energy Systems (ZNES). Renpass, Renewable Energy Pathway Simulation System. 2015. Available online: https://github.com/znes/renpass (accessed on 23 March 2021).
- Center for Sustainable Energy Systems (ZNES). OpenMod.sh, the Open Energy Model for Schleswig-Holstein. 2018. Available online: https://github.com/znes/openmod.sh (accessed on 23 March 2021).
- Reiner Lemoine Institut. Reegishp, an Oemof Application to Model Local Heat and Power Systems. 2016. Available online: https://github.com/rl-institut/smenos (accessed on 23 March 2021).
- Maruf, M.N.I. OSeEM-SN, Open Sector-Coupled Energy Model for Sub-National Energy Systems, GitHub. 2021. Available online: https://github.com/znes/OSeEM-SN (accessed on 3 March 2021).
Sl. | Tool | Methodology (LP/ MILP) | Hourly Resolution | Sectoral Coverage | Demand Response | Investment Decision Support | Top–Down & Bottom–Up Approach | All Storage Inclusion | Net Transfer Capacity | Commodities (Electricity & Heat) | Inelastic Demand | Supply–Demand Modeling | CO2 Cost | CO2 Emission | Source/ Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Calliope | √ | √ | - | √ | √ | - | √ | √ | √ | √ | √ | √ | √ | [25] |
2 | DESSTinEE | - | √ | - | - | √ | - | - | √ | - | √ | - | √ | √ | [26] |
3 | Dispa-SET | √ | √ | √ | √ | √ | - | √ | √ | √ | √ | √ | √ | √ | [27] |
4 | ELMOD | √ | √ | √ | - | √ | - | √ | - | √ | - | √ | √ | √ | [28] |
5 | ficus | √ | - | √ | - | √ | - | √ | - | √ | √ | √ | √ | √ | [29] |
6 | LEAP | - | - | √ | - | - | √ | √ | - | √ | - | √ | √ | √ | [30] |
7 | LUSYM | √ | √ | - | √ | - | - | √ | - | - | √ | √ | √ | √ | [31] |
8 | MEDEAS | - | - | √ | - | - | - | - | - | √ | - | - | √ | √ | [32] |
9 | OSeMOSYS | √ | √ | - | √ | √ | - | √ | - | - | √ | √ | √ | √ | [33] |
10 | PowerGAMA | √ | √ | - | - | √ | - | √ | - | - | √ | √ | - | - | [34] |
11 | PyPSA | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] |
12 | RETScreen | - | - | - | - | √ | √ | - | - | √ | √ | √ | √ | √ | [36] |
13 | SIREN | - | √ | - | - | - | - | √ | √ | - | √ | √ | - | √ | [37] |
14 | SWITCH | √ | √ | √ | √ | √ | - | √ | √ | - | √ | √ | - | √ | [38] |
15 | urbs | √ | √ | √ | √ | √ | - | √ | √ | √ | √ | - | √ | √ | [39] |
16 | Oemof | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [40] |
Oemof Class | Nodes | Remarks |
---|---|---|
Bus | Electric Bus | Represents grid or network without losses. |
Heat Bus | ||
Fuel Bus | ||
Sink | Electricity | Represents the electricity and building heat demands in the energy system. |
Space Heat | ||
Domestic Hot Water (DHW) | ||
Source | Offshore Wind | Represents the volatile generators of the energy system. |
Onshore Wind | ||
Solar PV | ||
Hydro Run-of-the-river (ROR) | ||
Biomass | Represents the biomass commodities which are fed into the CHP plants. | |
ExtractionTurbineCHP | Combined Heat and Power (CHP) | Represents the heat generators of the energy system. The OSeEM–SN model uses extraction turbines and uses only biomass as the fuel. |
Transformer | Air Source Heat Pump (ASHP) | Complements CHP for meeting heating demands. |
Ground Source Heat Pump (GSHP) | ||
GenericStorage | Li-ion (Li-ion) | Represents batteries. |
Vanadium Redox Flow (Redox) | ||
Adiabatic Compressed Air Energy Storage (ACAES) | Simplified model as Generic Storage. Presents electricity storage. | |
Hydrogen (H2) | ||
Pumped Hydro Storage (PHS) | Storage units with constant inflow and possible spillage. The storage capacity is not expandable. | |
Thermal Energy Storage (TES) | Simplified model as Generic Storage. Presents heat storage in sensible hot water tanks. |
Variables/Parameters | Description | Technology |
---|---|---|
Flow of volatile generator unit | Offshore Wind Onshore Wind Solar PV Hydro ROR | |
Capacity of volatile generator unit | ||
Marginal cost 1 of volatile generator unit [43] | ||
Capacity cost 2 of volatile generator unit [43] | ||
Flow of CHP unit | CHP | |
Capacity of CHP unit | ||
Marginal cost of CHP unit | ||
Capacity cost of CHP unit | ||
Flow of heat pump unit | ASHP GSHP | |
Capacity of heat pump unit | ||
Marginal cost of heat pump unit | ||
Capacity cost of heat pump unit | ||
Flow of storage unit | Li-ion Redox ACAES H2 PHS (No Investment) TES | |
Capacity (power) of storage unit | ||
Storage capacity (energy) of storage unit | ||
Marginal cost of storage unit | ||
Capacity cost (power) of storage unit | ||
Storage capacity cost (energy) of storage unit |
Data | Source | Remarks |
---|---|---|
Wind profiles | Renewables Ninja project [46] | Based on the MERRA-2 dataset. |
Solar PV profiles | ||
Hydro ROR inflow | Dispa-SET project [47] | - |
PHS scaled inflow | ||
Electricity demand | OPSD project [48] | Based on the ENTSO-e statistical database [49]. |
Space heat demand | OPSD project [48] | Based on the When2Heat dataset [50] |
Technology | Existing Capacity | Available Potential |
---|---|---|
Onshore Wind [GWel] | 7 [53] | 1.9 [54] |
Offshore Wind [GWel] | 1.7 [53] | 25.2 1 [55] |
Solar PV [GWel] | 1.6 [54] | 6.7 [54] |
Hydro ROR [MWel] | 2 [54] | 4 [54] |
Biomass & Biogas | 1 GWh [54] | 21.8 PJ [51] |
Li-ion [MWel] | - | 782.5 [52] |
Redox [MWel] | - | 46.5 [52] |
H2 [MWel] | - | 505 [52] |
ACAES [MWel] | - | 1715.5 [52] |
PHS [MWel] | 120 [56] | - |
TES [MWth] | - | 1000 2 |
Technology | Onshore Wind | Offshore Wind | PV | ROR | Biomass | Li-ion | H2 | Redox | PHS | ASHP | GSHP | ACAES | TES |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Capex (€/kW) | 1075 | 2093 | 425 | 3000 | 1951 | 35 | 1000 | 600 | 2000 | 1050 | 1400 | 750 | 0 |
Lifetime (Years) | 25 | 25 | 25 | 50 | 30 | 20 | 22.5 | 25 | 50 | 20 | 20 | 30 | 20 |
WACC | 0.025 | 0.048 | 0.021 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
VOM Cost (€/MWh) | 0 | 0 | 0 | 0 | 11.3 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
FOM Cost (€/kWh) | 35 | 80 | 25 | 60 | 100 | 10 | 10 | 10 | 20 | 36.75 | 49 | 10 | 0.38 |
Storage Capacity Cost (€/kWh) | - | - | - | - | - | 187 | 0.2 | 70 | - | - | - | 40 | 38 |
Carrier Cost (€/MWh) | - | - | - | - | 34.89 | - | - | - | - | - | - | - | - |
Technology | Scenario-Wise Investments | ||
---|---|---|---|
BM-25 | BM-50 | BM-100 | |
Onshore Wind [GWel] | 1.9 | 0 | 0 |
Offshore Wind [GWel] | 0 | 0 | 0 |
Solar PV [GWel] | 6.7 | 4.9 | 2.7 |
Hydro ROR [MWel] | 4 | 4 | 4 |
CHP [GW] | 1 | 1.6 | 1.9 |
GSHP [GWth] | 5 | 3.8 | 3 |
ASHP [GWth] | 1.3 | 2.1 | 3.1 |
Li-ion [MWel] | 782.5 | 782.5 | 782.5 |
Redox [MWel] | 46.5 | 46.5 | 46.5 |
H2 [MWel] | 397 | 0 | 0 |
ACAES [MWel] | 357.1 | 357.1 | 357.1 |
TES [MWth] | 1000 | 460.2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruf, M.N.I. A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein. Sustainability 2021, 13, 3852. https://doi.org/10.3390/su13073852
Maruf MNI. A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein. Sustainability. 2021; 13(7):3852. https://doi.org/10.3390/su13073852
Chicago/Turabian StyleMaruf, Md. Nasimul Islam. 2021. "A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein" Sustainability 13, no. 7: 3852. https://doi.org/10.3390/su13073852
APA StyleMaruf, M. N. I. (2021). A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein. Sustainability, 13(7), 3852. https://doi.org/10.3390/su13073852