Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region
Abstract
:1. Introduction
- (Q1)
- Based on which criteria (key motivation, planning, governance) do decision-makers evaluate smart city projects? Which are relevant stakeholder groups for setting up smart city projects?
- (Q2)
- How do decision-makers evaluate technology choices in the energy and mobility fields? Are these seen as plug-and-play components, which are transferrable from one city to the other?
- (Q3)
- What factors do decision-makers perceive as working for or against smart city projects?
2. Material and Methods
2.1. Overview of the Research Concept
2.2. Qualitative Review
2.3. Design of Survey
- overview of the smart city project and motivation to engage with it;
- planning, governance, and actors;
- technology choices in the energy and mobility fields; and
- drivers and barriers to the implementation of the project.
2.4. Quantitative Analysis of Data
2.4.1. Intra-Group (MENA Cities and German Cities)
- I.
- descriptive statistical analysis (median, standard deviation),
- II.
- intra-class correlation coefficient (ICC) tests to check consistency among surveyed experts from the same city, and
- III.
- summarization of open questions to identify strengths and weaknesses of the projects.
2.4.2. Inter-Group (MENA Cities versus German Cities)
- I.
- Mann–Whitney U-Test to compare the averages of the two independent groups;
- II.
- correlations analysis: items for governance, technology use, drivers and barriers were tested against each other at aggregate and detailed levels using Kendall’s tau rank, preferred over Spearman’s rank for small sample sizes [74]; and
- III.
- cluster analysis to examine where cities show similarities or divergences, and so opportunities for mutual learning.
3. Results
3.1. External Assessment of German and MENA Smart City Projects
3.2. Internal Assessment
3.2.1. Assessment of Surveyed Items
3.2.2. Alignment of Stakeholders
3.3. Comparing MENA and German City Projects
3.3.1. Similarity of Perceptions on Key Items
3.3.2. Correlation Analysis
3.3.3. Cluster Analysis
4. Discussion
4.1. Perception of Motivation and Relevant Stakeholders
4.2. Assessment of Technology Choices in the Energy and Mobility Fields
4.3. Implementation: Drivers and Barriers
4.4. Limitations of This Study
5. Conclusions: Potential for Mutual Learning
- I.
- Conserving resources and adapting to climate change are central motives for smart-city development and can serve as leitmotifs for mutual exchange.
- II.
- Despite an apparent dichotomy between national MENA projects focusing on new construction and local German projects focusing on renovation, local actors in both regions exercise strong influence over technology choices.
- III.
- When articulating energy strategies, decision-makers see supporting renewables and energy efficiency as a combined win-win solution. Cooperation can and should start here. In contrast, mobility solutions are assessed quite differently. This shows strong potential for mutual exchange, but probably at a later stage in the process.
- IV.
- Contrary to some voices in literature, our screening shows that technologies within smart city projects are not plug-and-play components. Rather, each project relies on context-specific solutions that consider national, regional and local factors.
- V.
- A set of similar barriers apply across cities. Here again, cooperation on measures to overcome these barriers seems a promising field of mutual learning.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations DESA. World Urbanization Prospects 2018; UN: New York, NY, USA, 2018. [Google Scholar]
- BBSR. Wachsende und Schrumpfende Städte in Deutschland. Available online: https://www.bbsr.bund.de/BBSR/DE/Raumbeobachtung/InteraktiveAnwendungen/WachsendSchrumpfend/wachsend_schrumpfend_node.html (accessed on 15 July 2019).
- Griffiths, S. A review and assessment of energy policy in the Middle East and North Africa region. Energy Policy 2017, 102, 249–269. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Boteler, B.; Amerighi, O. European smart home market development: Public views on technical and economic aspects across the United Kingdom, Germany and Italy. Energy Res. Soc. Sci. 2014, 3, 65–77. [Google Scholar] [CrossRef]
- Troy, A. The Very Hungry City: Urban Energy Efficiency and the Economic Fate of Cities; Yale Press: London, UK, 2012. [Google Scholar]
- Halleux, V. Briefing: Energy Union: The Regional and Local Dimension PE 568.356. 2015. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568356/EPRS_BRI(2015)568356_EN.pdf (accessed on 25 February 2016).
- Eurostat. Greenhouse Gas Emission Statistics-Emission Inventories; Eurostat: Luxembourg, 2019. [Google Scholar]
- Bertelsmann Stiftung. Bertelsmann Stiftung’s Transformation Index (BTI). 2020. Available online: http://www.bti-project.org (accessed on 10 December 2020).
- Florczyk, A.; Corbane, C.; Schiavina, M.; Pesaresi, M.; Maffenini, L.; Melchiorri, M.; Politis, P.; Sabo, F. GHS Urban Centre Database 2015, Multitemporal and Multidimensional Attributes, R2019A. European Commission, Joint Research Centre (JRC) [Dataset]. Available online: https://data.jrc.ec.europa.eu/dataset/53473144-b88c-44bc-b4a3-4583ed1f547e (accessed on 20 August 2020).
- Charfeddine, L.; Al-Malk, A.; Al Korbi, K. Is it possible to improve environmental quality without reducing economic growth: Evidence from the Qatar economy. Renew. Sustain. Energy Rev. 2018, 82, 25–39. [Google Scholar] [CrossRef]
- Willis, K.S.; Aurigi, A. (Eds.) The Routledge Companion to Smart Cities; Routledge: Abingdon, Oxon, UK; New York, NY, USA, 2020; ISBN 9781138036673. [Google Scholar]
- Anthopoulos, L.G. Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick? 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 3319570153. [Google Scholar]
- Abellá-García, A.; Ortiz-de-Urbina-Criado, M.; De-Pablos-Heredero, C. The Ecosystem of Services Around Smart Cities: An Exploratory Analysis. Procedia Comput. Sci. 2015, 64, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Lytras, M.; Visvizi, A. Information management as a dual-purpose process in the smart city: Collecting, managing and utilizing information. Int. J. Inf. Manag. 2021, 56, 102224. [Google Scholar] [CrossRef]
- Van Zoonen, L. Privacy concerns in smart cities. Gov. Inf. Q. 2016, 33, 472–480. [Google Scholar]
- Poletti, C.; Michieli, M. Smart cities, social media platforms and security: Online content regulation as a site of controversy and conflict. City Territ. Archit. 2018, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Snyder, L. Masdar City: The Source of Inspiration or Uneconomical Spending? Masdar Institute: Abu Dhabi, United Arab Emirates, 2009. [Google Scholar]
- Anonymous. Abu Dhabi’s Masdar Project: Dazzling? Or Just a Mirage? Electr. J. 2009, 22, 4–5. [Google Scholar] [CrossRef]
- Cugurullo, F. Exposing smart cities and eco-cities: Frankenstein urbanism and the sustainability challenges of the experimental city. Environ. Plan. A 2018, 50, 73–92. [Google Scholar] [CrossRef]
- Martin, C.J.; Evans, J.; Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Chang. 2018, 133, 269–278. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Viitanen, J.; Kingston, R. Smart cities and green growth: Outsourcing democratic and environmental resilience to the global technology sector. Environ. Plan. A 2014, 46, 803–819. [Google Scholar] [CrossRef] [Green Version]
- Wachsmuth, D.; Angelo, H. Green and gray: New ideologies of nature in urban sustainability policy. Ann. Am. Assoc. Geogr. 2018, 108, 1038–1056. [Google Scholar] [CrossRef]
- Monfaredzadeh, T.; Krueger, R. Investigating Social Factors of Sustainability in a Smart City. Procedia Eng. 2015, 118, 1112–1118. [Google Scholar] [CrossRef] [Green Version]
- Jedliński, M. The Position of Green Logistics in Sustainable Development of a Smart Green City. Procedia Soc. Behav. Sci. 2014, 151, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Sicilia, Á.; Madrazo, L.; Massetti, M.; Plazas, F.L.; Ortet, E. An energy information system for retrofitting smart urban areas. Energy Procedia 2017, 136, 85–90. [Google Scholar] [CrossRef]
- Pincetl, S. Cities in the age of the Anthropocene: Climate change agents and the potential for mitigation. Anthropocene 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Letnik, T.; Marksel, M.; Luppino, G.; Bardi, A.; Božičnik, S. Review of policies and measures for sustainable and energy efficient urban transport. Energy 2018, 163, 245–257. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M. Smart city development as an ICT-driven approach to urban sustainability. In Untangling Smart Cities; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–55. ISBN 9780128154779. [Google Scholar]
- Kramers, A.; Höjer, M.; Lövehagen, N.; Wangel, J. Smart sustainable cities–Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Bouzguenda, I.; Alalouch, C.; Fava, N. Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustain. Cities Soc. 2019, 50, 101627. [Google Scholar] [CrossRef]
- Nilssen, M. To the smart city and beyond? Developing a typology of smart urban innovation. Technol. Soc. Chang. 2019, 142, 98–104. [Google Scholar] [CrossRef]
- Addanki, S.C.; Venkataraman, H. Greening the economy: A review of urban sustainability measures for developing new cities. Sustain. Cities Soc. 2017, 32, 1–8. [Google Scholar] [CrossRef]
- Stübinger, J.; Schneider, L. Understanding Smart City—A Data-Driven Literature Review. Sustainability 2020, 12, 8460. [Google Scholar] [CrossRef]
- Dameri, R.P. Searching for Smart City definition: A comprehensive proposal. IJCT 2013, 11, 2544–2551. [Google Scholar] [CrossRef]
- Fernandez-Anez, V. (Ed.) Stakeholders Approach to Smart Cities: A Survey on Smart City Definitions; International conference on smart cities; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Anthopoulos, L.G. Understanding the smart city domain: A literature review. In Transforming City Governments for Successful Smart Cities; Rodríguez-Bolívar, M.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–21. ISBN 978-3-319-03166-8. [Google Scholar]
- Cocchia, A. Smart and Digital City: A Systematic Literature Review. In Smart City: How to Create Public and Economic Value with High Technology in Urban Space; Dameri, R.P., Rosenthal-Sabroux, C., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 13–43. ISBN 978-3-319-06160-3. [Google Scholar]
- LugoSantiago, J.A. Techno City. In Leadership and Strategic Foresight in Smart Cities; LugoSantiago, J.A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 63–68. ISBN 978-3-030-49019-5. [Google Scholar]
- Praharaj, S.; Han, H. Cutting through the clutter of smart city definitions: A reading into the smart city perceptions in India. City Cult. Soc. 2019, 18, 100289. [Google Scholar] [CrossRef]
- European Commission. Smart Cities. Available online: https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en (accessed on 8 February 2021).
- Muente-Kunigami, A.; Mulas, V. Smart Cities. Available online: https://www.worldbank.org/en/topic/digitaldevelopment/brief/smart-cities (accessed on 15 July 2019).
- Berg, J.C. Sharing Cities: A Case for Truly Smart and Sustainable Cities. New Political Sci. 2017, 39, 417–419. [Google Scholar] [CrossRef]
- Al-Thani, S.; Skelhorn, C.; Amato, A.; Koc, M.; Al-Ghamdi, S. Smart Technology Impact on Neighborhood Form for a Sustainable Doha. Sustainability 2018, 10, 4764. [Google Scholar] [CrossRef] [Green Version]
- Patrão, C.; Moura, P.; Almeida, A.T.d. Review of Smart City Assessment Tools. Smart Cities 2020, 3, 55. [Google Scholar] [CrossRef]
- Caird, S.P.; Hallett, S.H. Towards evaluation design for smart city development. J. Urban Design 2019, 24, 188–209. [Google Scholar] [CrossRef]
- Anthopoulos, L. Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities 2017, 63, 128–148. [Google Scholar] [CrossRef]
- Pop, M.-D.; Proştean, O. A Comparison Between Smart City Approaches in Road Traffic Management. Proc. Soc. Behav. Sci. 2018, 238, 29–36. [Google Scholar] [CrossRef]
- Dameri, R.P.; Benevolo, C.; Veglianti, E.; Li, Y. Understanding smart cities as a glocal strategy: A comparison between Italy and China. Technol. Forecast. Soc. Chang. 2019, 142, 26–41. [Google Scholar] [CrossRef]
- Deloite. Insights Smart Cities. Available online: https://www2.deloitte.com/ye/en/pages/strategy/articles/smart-cities-where-to-go.html (accessed on 15 July 2019).
- PMR-Persistence Market Research Pvt. Ltd. Global Smart Cities Market. Available online: https://www.prnewswire.com/news-releases/global-smart-cities-market-to-reach-us-3482-trillion-by-2026-apej-to-outpace-north-america-609626355.html (accessed on 15 July 2019).
- Allam, Z.; Newman, P. Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities 2018, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Al-Tamini, T. Visioning “smart city” across the Gulf Cooperation Council (GCC) countries. Foresight 2018, 20, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Ramady, M.A. The GCC Economies; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-1610-4. [Google Scholar]
- Asif, M. Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE. Renew. Sustain. Energy Rev. 2016, 55, 1267–1273. [Google Scholar] [CrossRef]
- Ringel, M.; Laidi, R.; Djenouri, D. Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany. Energies 2019, 12, 1537. [Google Scholar] [CrossRef] [Green Version]
- Bisello, A.; Vettorato, D.; Stephens, R.; Elisei, P. Smart and Sustainable Planning for Cities and Regions; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-44898-5. [Google Scholar]
- Ringel, M.; Schlomann, B.; Krail, M.; Rohde, C. Towards a green economy in Germany?: The role of energy efficiency policies. Appl. Energy 2016, 179, 1293–1303. [Google Scholar] [CrossRef]
- Stratigea, A.; Papadopoulou, C.; Panagiotopoulou, M. Tools and technologies for the planning of smart cities. J. Urban Technol. 2015, 22, 43–62. [Google Scholar] [CrossRef]
- Walravens, N. Qualitative indicators for smart city business models: The case of mobile services and applications. Telecommun. Policy 2015, 39, 218–240. [Google Scholar] [CrossRef]
- Vidiasova, L.; Kachurina, P.; Cronemberger, F. Smart Cities Prospects from the Results of the World Practice Expert Benchmarking. Procedia Comput. Sci. 2017, 119, 269–277. [Google Scholar] [CrossRef]
- TU Wien; University of Ljubliana; TU Delft. Smart Cities-Ranking of European Medium-Sized Cities; TU Delft: Delft, The Netherlands, 2007. [Google Scholar]
- Phondani, P.C.; Bhatt, A.; Elsarrag, E.; Alhorr, Y.M.; El-Keblawy, A. Criteria and indicator approach of global sustainability assessment system for sustainable landscaping using native plants in Qatar. Ecol. Indic. 2016, 69, 381–389. [Google Scholar] [CrossRef]
- Escolar, S.; Villanueva, F.J.; Santofimia, M.J.; Villa, D.; Toro, X.d.; López, J.C. A Multiple-Attribute Decision Making-based approach for smart city rankings design. Technol. Soc. Chang. 2018. [Google Scholar] [CrossRef]
- Fraunhofer Gesellschaft. Morgenstadt-City of the Future. Innovation Areas. Available online: https://www.morgenstadt.de/en.html (accessed on 15 July 2019).
- Akande, A.; Cabral, P.; Gomes, P.; Casteleyn, S. The Lisbon ranking for smart sustainable cities in Europe. Sustain. Cities Soc. 2019, 44, 475–487. [Google Scholar] [CrossRef]
- Stanković, J.; Džunić, M.; Džunić, Ž.; Marinković, S. A multi-criteria evaluation of the European cities’ smart performance: Economic, social and environmental aspects. Zb. Rad. Ekon. Fak. Rij. 2017, 35, 519–550. [Google Scholar] [CrossRef]
- Matsuo, Y. Historical Trends and Long-Term Outlook for Energy Supply and Demand in the United Arab Emirates and the Effects of Energy Conservation Technologies. Available online: https://eneken.ieej.or.jp/data/6115.pdf (accessed on 16 February 2021).
- Löbsinger-Kägi, E.; Weiss Sampietro, T.; Eschenauer, U.; Carabias-Hütter, V.; Braunreiter, L.; Müller, A.W. Treiber und Barrieren auf dem Weg zu einer Smart City. Erkenntnisse aus Theorie und Praxis. In Energy Governance Working Paper; ZHAW School of Mangement and Law, Ed.; ZHAW: Zurich, Switzerland, 2016; pp. 1–31. [Google Scholar]
- Alawadhi, S.; Scholl, H.J. (Eds.) Smart Governance: A Cross-Case Analysis of Smart City Initiatives. Available online: https://ieeexplore.ieee.org/document/7427553 (accessed on 16 February 2021).
- Taylor, R. Media Interview Techniques. A Complete Guide to Media Training; Kogan Page: London, UK; Philadelphia, PA, USA, 2016; ISBN 9780749474737. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage: Los Angeles, CA, USA, 2018. [Google Scholar]
- Senatsverwaltung für Stadtentwicklung und Umwelt. Smart City-Strategie Berlin. Available online: https://www.berlin-partner.de/fileadmin/user_upload/01_chefredaktion/02_pdf/02_navi/21/Strategie_Smart_City_Berlin.pdf (accessed on 19 July 2019).
- Blanchet, T. Struggle over energy transition in Berlin: How do grassroots initiatives affect local energy policy-making? Energy Policy 2015, 78, 246–254. [Google Scholar] [CrossRef]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Moss, T.; Francesch-Huidobro, M. Realigning the electric city. Legacies of energy autarky in Berlin and Hong Kong. Energy Res. Soc. Sci. 2016, 11, 225–236. [Google Scholar] [CrossRef]
- Ehrhardt, F. (Ed.) Sustainable Mobility for Berlin-Green.Smart.Digital; TU Berlin: Berlin, Germany, 2016. [Google Scholar]
- Vogelpohl, A.; Klemp, F. The creeping influence of consultants on cities: McKinsey’s involvement in Berlin’s urban economic and social policies. Geoforum 2018, 91, 39–46. [Google Scholar] [CrossRef]
- Senator für Umwelt, Bau und Verkehr. Masterplan Green City Bremen. Available online: https://www.bauumwelt.bremen.de/sixcms/media.php/13/20180813%20Masterplan%20Green%20City%20Bremen%20V1.1%20-%20Leseversion.39677.pdf (accessed on 19 July 2019).
- Kusch, W.; Stadler, I.; Bhandari, R. (Eds.) Heat Pumps in Low Voltage Distribution Grids by Energy Storage. Available online: https://ieeexplore.ieee.org/document/7384386 (accessed on 10 December 2020).
- Reiswich, E.; Köster, F.; Nitschke, J. Touchdown in the Hamburg port-Development of a digital sounding-table as component of the smartPORT concept in the Hamburg port. ZFV Z. Geodasie Geoinf. Landmanagement 2016, 141, 317–321. [Google Scholar] [CrossRef]
- Welzel, R.-W.; Eichhorn, T. Urban development in the digital city of Hamburg-Modern, innovative, future-proof. ZFV Z. Geodasie Geoinf. Landmanagement 2016, 141, 322–329. [Google Scholar] [CrossRef]
- Huang-Lachmann, J.-T.; Lovett, J.C. How cities prepare for climate change: Comparing Hamburg and Rotterdam. Cities 2016, 54, 36–44. [Google Scholar] [CrossRef]
- Stadt München. München Als Smart City. Available online: https://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Stadtplanung-und-Bauordnung/Stadtentwicklung/Perspektive-Muenchen/Smart-City.html (accessed on 22 November 2020).
- Scholl, H.J.; Alawadhi, S. (Eds.) Pooling and Leveraging Scarce Resources: The Smart eCity Gov Alliance. Available online: https://ieeexplore.ieee.org/document/7070097 (accessed on 21 January 2021).
- Kesselring, S. Planning in Motion. In The New Politics of Mobility in Munich; Springer: Wiesbaden, Germany, 2016. [Google Scholar]
- Freudendal-Pedersen, M.; Kesselring, S.; Servou, E. What is smart for the future city? Mobilities and automation. Sustainability 2019, 11, 221. [Google Scholar] [CrossRef] [Green Version]
- Tucci, F.; Santucci, D.; Endres, E.; Hausladen, G. Smart urban districts: Dynamic energy systems for synergic interactions between building and city. TECHNE 2018, 1, 92–102. [Google Scholar] [CrossRef]
- Angelidou, M. The Role of Smart City Characteristics in the Plans of Fifteen Cities. J. Urban Technol. 2017, 24, 3–28. [Google Scholar] [CrossRef]
- Huston, S.; Rahimzad, R.; Parsa, A. ‘Smart’ sustainable urban regeneration: Institutions, quality and financial innovation. Cities 2015, 48, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Tok, E.; Al Mohammed, F.; Al Merrekhi, M. Crafting Smart Cities in the Gulf Region: A Comparison of Masdar and Lusail. Eur. Sci. J. 2014, 130–140. [Google Scholar]
- Shelton, T.; Zook, M.; Wiig, A. The ‘actually existing smart city’. Camb. J. Reg. Econ. Soc. 2015, 8, 13–25. [Google Scholar] [CrossRef]
- Lau, A. Masdar City: A model of urban environmental sustainability. Soc. Sci. 2012, 4, 77–82. [Google Scholar]
- Masdar Company. Advancing Sustainability; Masdar 2013 Sustainability Report; Masdar Institute: Abu Dhabi, United Arab Emirates, 2013. [Google Scholar]
- Masdar Institute. Masdar Sustainability Report; Masdar Company: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Masdar Company. A Decade of Delivering; Sustainability Report 2016; Masdar Company: Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- Lee, S.E.; Braithwaite, P.; Leach, J.M.; Rogers, C.D.F. A comparison of energy systems in Birmingham, UK, with Masdar City, an embryonic city in Abu Dhabi Emirate. Renew. Sustain. Energy Rev. 2016, 65, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Reiche, D. Renewable Energy Policies in the Gulf countries: A case study of the carbon-neutral “Masdar City” in Abu Dhabi. Energy Policy 2010, 38, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Kamel, M.A.E. Encouraging walkability in GCC cities: Smart urban solutions. Smart Sustain. Built Environ. 2013, 2, 288–310. [Google Scholar] [CrossRef]
- Ibrahim, I. Livable Eco-Architecture Masdar City, Arabian Sustainable City. Procedia Soc. Behav. Sci. 2016, 216, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Madakam, S.; Ramaswamy, R. Sustainable smart city: Masdar (UAE) (A city: Ecologically balanced). Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Sodiq, A.; Baloch, A.A.B.; Khan, S.A.; Sezer, N.; Mahmoud, S.; Jama, M.; Abdelaal, A. Towards modern sustainable cities: Review of sustainability principles and trends. J. Clean. Prod. 2019, 227, 972–1001. [Google Scholar] [CrossRef]
- Bint Butti Bin Bishr, A.; Geray, O. Smart Dubai—Towards becoming thehappiest city on Earth. Available online: https://www.smartdubai.ae/docs/default-source/publications/a-better-world-vol-5_sdo.pdf?sfvrsn=ed5f5543_0 (accessed on 17 February 2021).
- futureXchanges. Dubai Plan 2021. Available online: https://thehappycity.com/wp-content/uploads/2017/09/170521_DP2021_FutureXchanges-2017_Full-Report_EN.pdf (accessed on 17 February 2021).
- IQPC Middle East. Dubai Set to be Smartest City: Dubai Plan 2021. Available online: file:///C:/Users/MARC~1.RIN/AppData/Local/Temp/dubai-set-to-be-smartest-city-dubai-plan-2021.pdf (accessed on 17 February 2021).
- Zakzak, L.; Salem, F. Building a Happy City—The Case of Smart Dubai’s Happiness Agenda. In Future Governments; Stephens, M., El-Sholkamy, M., Moonesar, I.A., Awamleh, R., Eds.; Emerald Publishing Limited: Bingley, UK, 2019; pp. 271–301. ISBN 978-1-78756-360-5. [Google Scholar]
- The Economist. Government Releases New Kuwait 2035 Strategic Plan. Available online: http://country.eiu.com/article.aspx?articleid=1675084151 (accessed on 17 July 2019).
- Al-Mutairi, A.; Smallbone, A.; Al-Salem, S.M.; Roskilly, A.P. The first carbon atlas of the state of Kuwait. Energy 2017, 133, 317–326. [Google Scholar] [CrossRef]
- Alotaibi, S. Energy consumption in Kuwait: Prospects and future approaches. Energy Policy 2011, 39, 637–643. [Google Scholar] [CrossRef]
- Gelan, A. Economic and environmental impacts of electricity subsidy reform in Kuwait: A general equilibrium analysis. Energy Policy 2018, 112, 381–398. [Google Scholar] [CrossRef]
- Gelan, A.U. Kuwait’s energy subsidy reduction: Examining economic and CO2 emission effects with or without compensation. Energy Econ. 2018, 71, 186–200. [Google Scholar] [CrossRef]
- Jaffar, B.; Oreszczyn, T.; Raslan, R.; Summerfield, A. Understanding energy demand in Kuwaiti villas: Findings from a quantitative household survey. Energy Build. 2018, 165, 379–389. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Krarti, M.; Ali, F.; Alaidroos, A.; Houchati, M. Macro-economic benefit analysis of large scale building energy efficiency programs in Qatar. Int. J. Sustain. Built Envrion. 2017, 6, 597–609. [Google Scholar] [CrossRef]
- Rodriguez-Trejo, S.; Ahmad, A.M.; Hafeez, M.A.; Dawood, H.; Vukovic, V.; Kassem, M.; Naji, K.K.; Dawood, N. Hierarchy based information requirements for sustainable operations of buildings in Qatar. Sustain. Cities Soc. 2017, 32, 435–448. [Google Scholar] [CrossRef]
- Ayoub, N.; Musharavati, F.; Pokharel, S.; Gabbar, H.A. Energy consumption and conservation practices in Qatar—A case study of a hotel building. Energy Build. 2014, 84, 55–69. [Google Scholar] [CrossRef]
- Al-Marri, W.; Al-Habaibeh, A.; Watkins, M. An investigation into domestic energy consumption behaviour and public awareness of renewable energy in Qatar. Sustain. Cities Soc. 2018, 41, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L. Survey about public perception regarding smart grid, energy efficiency & renewable energies applications in Qatar. Renew. Sustain. Energy Rev. 2018, 82, 168–175. [Google Scholar] [CrossRef]
- Garson, G.D. Cluster Analysis; Statistical Associates Publishers: Asheboro, NC, USA, 2012. [Google Scholar]
- Azzari, M.; Garau, C.; Nesi, P.; Paolucci, M.; Zamperlin, P. Smart City Governance Strategies to Better Move Towards a Smart Urbanism. In Computational Science and Its Applications–ICCSA 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 639–653. ISBN 978-3-319-95167-6. [Google Scholar]
- Desdemoustier, J.; Crutzen, N.; Giffinger, R. Municipalities’ understanding of the Smart City concept: An exploratory analysis in Belgium. Technol. Soc. Chang. 2018. [Google Scholar] [CrossRef]
- Tegel Projekt GmbH. Tegel Projekt the Urban Tech Republic. Facts and Figures. Available online: https://www.tegelprojekt.de/en/press/detail/facts-figures-berlin-txl-the-urban-tech-republic.html (accessed on 17 July 2019).
- Stadt Köln. Smart City Cologne. Available online: https://www.smartcity-cologne.de/index.php/partner.html (accessed on 15 July 2019).
- Katzer, D. Intergeo 2016 update: Smart city Hamburg. Geo Connex. 2016, 15, 32. [Google Scholar]
- UN Habitat. World-City Prosperity Index, and the Components of Its 5 Dimensions. Available online: https://data.world/unhabitat-guo/a96a76be-c5ad-4704-a3ab-695218caa85a (accessed on 18 October 2019).
Combined Search Strings | Smart Cit * | AND Energy | AND Mobility | AND Governance |
---|---|---|---|---|
German * | 8384 | 4222 | 1797 | 1140 |
Arab * | 745 | 478 | 1919 | 230 |
MENA | 174 | 125 | 60 | 41 |
Category | Coding | Incidence (Overall) | Rank | #Pubs | #Arab | #MENA | #German |
---|---|---|---|---|---|---|---|
Sustainability/environment | sustainab * | 655 | 1 | 240 | 19 | 13 | 208 |
Technology/energy | renewable * | 290 | 2 | 78 | 5 | 3 | 70 |
Technology/overall | infrastructure | 246 | 3 | 134 | 13 | 13 | 108 |
Motivation | services | 203 | 4 | 115 | 14 | 19 | 82 |
Governance | citizens | 176 | 5 | 105 | 10 | 9 | 86 |
Technology/ICT | internet of things | 128 | 6 | 47 | 2 | 5 | 40 |
Sustainability/environment | climate | 115 | 7 | 60 | 4 | 4 | 52 |
Technology/energy | smart grid * | 110 | 8 | 53 | 2 | 5 | 46 |
Methodology | survey | 93 | 9 | 59 | 7 | 5 | 47 |
German Cities | |
Berlin |
|
Bremen |
|
Cologne |
|
Hamburg |
|
Munich | |
MENA Cities | |
Abu Dhabi’s Masdar City |
|
Dubai/RAK |
|
Cairo |
|
Kuwait |
|
Qatar |
|
Intra-Class Correlation Coefficient | 95%-Confidence Interval | F-Test with Value 0 | ||||||
---|---|---|---|---|---|---|---|---|
Upper | Lower | F-Value | df1 | df2 | Significance (p-Value) | |||
German cities | Berlin | 0.013 | −0.007 | 0.514 | 1.997 | 2 | 40 | 0.149 |
Bremen | 0.834 | 0.122 | 1.000 | 6.214 | 1 | 20 | 0.022 | |
Cologne | 0.717 | 0.217 | 1.000 | 12.935 | 1 | 20 | 0.002 | |
Hamburg | 0.834 | 0.122 | 1.000 | 6.214 | 1 | 20 | 0.022 | |
Munich | 0.580 | −0.276 | 0.999 | 3.857 | 1 | 5 | 0.107 | |
MENA cities | Cairo | 0.860 | 0.232 | 1.000 | 7.141 | 1 | 18 | 0.016 |
Dubai/RAK | 0.859 | 0.456 | 1.000 | 21.041 | 1 | 20 | 0.000 | |
Kuwait | 0.795 | 0.250 | 1.000 | 9.469 | 1 | 20 | 0.006 | |
Masdar | 0.969 | 0.838 | 1.000 | 50.356 | 1 | 20 | 0.000 | |
Qatar | 0.813 | −0.045 | 1.000 | 5.284 | 1 | 17 | 0.034 |
Renewable Energies | Energy Efficiency | Prosumer/DSM | Smart Meter/Smart Grid/ICT | Mobility | |
---|---|---|---|---|---|
Mdn. German Cities | 14.08 | 11.58 | 13.21 | 13.33 | 13.83 |
Mdn. MENA Cities | 8.40 | 11.40 | 9.45 | 9.30 | 7.22 |
Mann–Whitney U | 29.000 | 59.000 | 39.500 | 38.000 | 20.000 |
SPSS Z-Score | −2.379 | −0.071 | −1.378 | −1.596 | −2.485 |
Exact significance (p)—two-sided | 0.043 | 0.974 | 0.180 | 0.159 | 0.015 |
Reject null hypothesis | X | X | |||
Effect size where applicable | 0.507 | 0.542 |
Climate Change Adaptation | Better Living Condi-tions for Citizens | Energy Inde-pen-dence | Energy Sa-vings | Sustain-able Resource Use | Moder-nized City Infra-structure | Living Laboratory for Testing New Techno-logies | Economic Concerns (Green Growth) | Mobi-lity Con-cerns | |
---|---|---|---|---|---|---|---|---|---|
Mdn. German Cities | 13.917 | 10.333 | 9.750 | 11.750 | 13.708 | 10.917 | 15.333 | 12.208 | 13.958 |
Mdn. MENA Cities | 8.600 | 12.900 | 13.600 | 11.200 | 8.850 | 12.200 | 6.900 | 10.650 | 8.550 |
Mann–Whitney U | 31.000 | 46.000 | 39.000 | 57.000 | 33.500 | 53.000 | 14.000 | 51.500 | 30.500 |
SPSS Z-Score | −1.977 | −0.976 | −1.426 | −0.209 | −1.813 | −0.492 | −3.200 | −0.590 | −2.043 |
Exact significance (p)—two-sided | 0.059 | 0.381 | 0.180 | 0.872 | 0.080 | 0.674 | 0.002 | 0.582 | 0.050 |
Reject null hypothesis | X | X | |||||||
Effect size where applicable | 0.682 | 0.436 |
Stakeholder:National Govt. | Regional/Local Govt. | Citizens and NGOs | Business and SMEs | Univer sities and External | |
---|---|---|---|---|---|
Mdn. German Cities | 6.750 | 13.667 | 11.583 | 13.208 | 15.750 |
Mdn. MENA Cities | 17.200 | 8.900 | 11.400 | 9.450 | 6.400 |
Mann–Whitney U | 3.000 | 34.000 | 59.000 | 39.500 | 9.000 |
SPSS Z-Score | −3.891 | −2.194 | −0.067 | −1.368 | −3.422 |
Exact significance (p)—two-sided | 0.000 | 0.093 | 0.974 | 0.180 | 0.000 |
Reject null hypothesis | X | X | |||
Effect size where applicable | 0.829 | 0.729 |
Drivers | Barriers | |||||||
---|---|---|---|---|---|---|---|---|
Econo-mics | Environ-ment | Gover-nance | Socie-ty | Qualifi-cations | Econo-mics | Mana-gement | Govern-ment | |
Mdn. German Cities | 13.46 | 13.75 | 12.08 | 11.67 | 9.18 | 9.86 | 10.14 | 12.18 |
Mdn. MENA Cities | 9.15 | 8.80 | 10.80 | 11.30 | 13.00 | 12.25 | 11.95 | 9.70 |
Mann¬–Whitney U | 36.500 | 33.000 | 53.000 | 58.000 | 35.000 | 42.500 | 45.500 | 42.000 |
SPSS Z-Score | −1.725 | −2.270 | −0.499 | −0.142 | −1.421 | −0.895 | −0.678 | −0.937 |
Exact significance (p)—two-sided | 0.123 | 0.08 | 0.674 | 0.923 | 0.173 | 0.387 | 0.512 | 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ringel, M. Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region. Sustainability 2021, 13, 2143. https://doi.org/10.3390/su13042143
Ringel M. Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region. Sustainability. 2021; 13(4):2143. https://doi.org/10.3390/su13042143
Chicago/Turabian StyleRingel, Marc. 2021. "Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region" Sustainability 13, no. 4: 2143. https://doi.org/10.3390/su13042143
APA StyleRingel, M. (2021). Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region. Sustainability, 13(4), 2143. https://doi.org/10.3390/su13042143