#### Smart City Design Differences: Insights from Decision-Makers in Germany and the Middle East/North-Africa Region

#### **Marc Ringel**

#### Annex

#### **Overview Supplemental Material**

- A.1 Codebook for readout of smart city literature
- A.2 City profiles and statistics based on literature readout
- A.3 Survey questionnaire (English version)
- A.4 Survey data for descriptive statistics

#### A.1 Codebook literature review

#### I. Framing data

#### 1. Country/region

- i. Algeria
- ii. Egypt
- iii. Germany/German
- iv. Morocco
- v. Oman
- vi. United Arabian Emirates/UAE
- vii. Arab\*
- viii. MENA

#### 2. Cities

- i. Berlin
- ii. Bremen
- iii. Cairo
- iv. Cologne
- v. Hamburg
- vi. Kuwait
- vii. Maskat
- viii. Munich
- ix. Masdar City
- x. Ras-Al-Khaima

#### 3. City profile

- i. smart AND sustainable
- ii. sustainable

#### II. Topics

#### 1. Governance

- i. Bottom up
- ii. Top down
- iii. Coordination
- iv. Public private partnership
- v. Citizen consultation
- vi. Stakeholder

#### 2. Energy

i. Renewable energ\*

- ii. Heating and cooling networks
- iii. Building energy efficiency (private)
- iv. Building energy efficiency (office and public buildings)
- v. Efficient appliances
- vi. Prosumer
- vii. Demand side management, DSM
- viii. Smart meter\*
  - ix. Consumption feedback
  - x. Smart grid\*
  - xi. Smart infrastructure
- xii. Information communication technology, ICT
- xiii. Internet of things, IoT
- xiv. Wireless networks

### 3. Mobility

- i. Electric vehicles, E-vehicles, E-mobility
- ii. Public transport
- iii. Cycling
- iv. Walking
- v. Traffic management

#### III. Motivation, drivers and barriers

### 1. Motivation and drivers

#### **1.1 Economics**

- i. Cost effectiveness
- ii. Competitiveness
- iii. Green growth
- iv. New business models
- v. Increase attractiveness for investors
- vi. Economic advantages by improved infrastructure
- vii. Enable ICT-entrepreneurship
- viii. Deploy ICT/IoT
- ix. Modernize infrastructure

#### 1.2 Environment & energy

- i. Lower energy consumption
- ii. Climate policy
- iii. CO2 mitigation, CO2 abatement
- iv. Climate adaptation
- v. Reduce CO2 emissions
- vi. Resource efficiency
- vii. Deploy RES and save fossil fuels
- viii. Sustainab\*, sustainable, sustainability

#### 1.3 Social

- i. Living conditions
- ii. Improvement of services for citizens
- iii. Allow participation for citizens
- iv. Population growth
- v. Traffic problems
- vi. Increase living conditions
- vii. Build up knowledge society
- viii. Living laboratory

#### 2. Barriers

#### **2.1 Qualifications**

- i. Lack of qualified workforce
- ii. Lack of technical expertise

#### **2.2 Economics**

- i. Lack of economic expertise
- ii. Investors hesitate to provide finance (risk investment)
- iii. Economic feasibility of project is not guaranteed (negative cost/benefits)
- iv. Value added is not clear

#### 2.3 Management and organization

- i. Principal-agent problem with external construction partner
- ii. Specialists focus too strongly
- iii. Missing standardization of IT-interfaces
- iv. Expenditure of time

#### 2.4 Governance and policy

- i. Complex administration structure (coordination)
- ii. Missing integrative planning
- iii. Missing political framework conditions
- iv. Missing acceptance by public (privacy, data protection)

#### IV. Methodology

- i. Comparison,compari\*, compara\*
- ii. Screening
- iii. Index
- iv. Morgenstadt
- v. EU Smart Cities
- vi. Guideline

vii. Ranking

viii. Survey

ix. Mapping

#### **German Cities Common features for German Cities** • Governments of federal states Berlin involved stakeholders in developing its 2015 smart city strategy develop smart cities strategies and (Senatsverwaltung für Stadtentwicklung und Umwelt, 2015). implement them with consultation is a living Laboratory for smart energy technology development and involvement of many (Blanchet, 2015; Li et al., 2018; Moss & Francesch-Huidobro, 2016) stakeholders. and mobility (Ehrhardt, 2016). Adopts Public-Private following a change in the political leadership, Berlin shifted from Partnerships approach where top-down to decentralized approach. cooperation with local consulting adopts public-private-partnership (PPP) where private entities and industry stakeholders plays coordinated the overall and individual projects which have gained major role. a strong influence and power on smart cities projects (Vogelpohl & • Stakeholder interests and power Klemp, 2018). dynamics are apparent by in response, Berlin renounced performance indicator to its changing governance approaches strategy" (Interview 5, German city). from top-down to decentralized (like Berlin), or from Bottom-up to Bremen launched its Masterplan Green City in 2019 through stakeholder top-down (like Cologne). consultation. • Aim to integrate smart technology Focus on mobility and with option to cover energy projects solutions into existing cities' (Senator für Umwelt, Bau und Verkehr, 2018). infrastructure. takes a cautious approach to technology selection and focuses on Technology focus is on mobility improving living conditions of inhabitants (Interview 1, German and energy smart solutions. cities). Living laboratory to develop smart technologies to market to other Hamburg • developed its "digital strategy" in coordination with local cities and countries. stakeholders like the Hamburg Port Authority (Reiswich, Köster, & Nitschke, 2016). tests new technologies in energy (Lorenzen, Duckstein, Vuthi, & Schäfers, 2015; Vuthi et al., 2015), infrastructure (Welzel & Eichhorn, 2016), and mobility (Huang-Lachmann & Lovett, 2016). Munich launched smart city strategy in 2015 (Stadt München, 2015). focuses on energy, mobility and citizen inclusion into decisionmaking (Alawadhi & Scholl, 2016; Scholl & Alawadhi, 2015). PPP partners include locally based and "familiar" industry players (Interview 7, German city) adopts an integrative planning (Freudendal-Pedersen, Kesselring, & Servou, 2019; Kesselring, 2016). implements innovative solutions (Tucci, Santucci, Endres, & Hausladen, 2018). Cologne developed smart cities concept out of several EU "Lighthouse" projects. changed from bottom-up to an umbrella strategy to coordinate individual projects (Interview 4, German city). adopts an integrative approach to smart city development strategy (Kusch, Stadler, & Bhandari, 2016).

#### A.2 City profiles and statistics based on literature readout

#### MENA

| Arab<br>Cities                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Common features for Arab Cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abu<br>Dhabi's<br>Masdar<br>City<br>Kuwait | <ul> <li>is a frontrunner on a global scale (Angelidou, 2017; Huston, Rahimzad, &amp; Parsa, 2015; Shelton, Zook, &amp; Wiig, 2015; Tok, Al Mohammed, &amp; Al Merrekhi, 2014).</li> <li>adopts PPP approach.</li> <li>deliver smart cities and sustainable solutions (Lau, 2012; Masdar Company, 2013, 2016; Masdar Institute, 2014): energy (Lee, Braithwaite, Leach, &amp; Rogers, 2016; Reiche, 2010), mobility (Atef Elhamy Kamel, 2013), architecture (Ibrahim, 2016), and sustainability (Madakam &amp; Ramaswamy, 2016; Sodiq et al., 2019).</li> <li>the aspect of sustainability received controversial reviews (Cugurullo, 2018; Wachsmuth &amp; Angelo, 2018), where the "original aspirations had not been followed up" (Interview 17, MENA cities).</li> <li>the UAE government integrated the learnings into its "2021" vision and strives to develop smart cities in Dubai or Ras Al Khaima.</li> <li>"Vision 2035" (The Economist, 2017) responds to economic and population challenges as well as climate and energy concerns (Al-Mutairi, Smallbone, Al-Salem, &amp; Roskilly, 2017; Alotaibi, 2011; A. Gelan, 2018; A. U. Gelan, 2018; Jaffar, Oreszczyn, Raslan, &amp; Summerfield, 2018; Salahuddin, Alam, Ozturk, &amp; Sohag, 2018).</li> <li>the Public Authority of Housing and Welfare plans, oversees and implements the smart cities projects such as Saad Al-Abdullah project.</li> <li>following 8 smart city projects are planned and contracted out to public and private sector partners from South Korea</li> </ul> | <ul> <li>National governments are the main stakeholder who develop smart cities strategies, govern, and participate in implementing projects.</li> <li>Adopts Public-Private Partnerships approach where cooperation with international consulting and industry plays major role.</li> <li>National governments, as responsible authorities, runs top-down planning and execution of smart cities projects. to deliver energy, mobility and digital services to the citizens.</li> <li>Aim to build new smart cities as extensions to existing cities.</li> <li>Technology focus on efficient and smart building and energy technologies.</li> <li>Improving socio-economic conditions and living standards of citizens play a major role. In addition. containing population</li> </ul> |
| Qatar                                      | <ul> <li>Qatar National Vision 2030 orients the country towards sustainable energy and high ecological standard of living for its citizens (Charfeddine et al., 2018).</li> <li>focuses on building energy efficiency (Ayoub, Musharavati, Pokharel, &amp; Gabbar, 2014; Krarti, Ali, Alaidroos, &amp; Houchati, 2017; Rodriguez-Trejo et al., 2017).</li> <li>launched several smart city projects (Lusail City, Msheireb Downtown Doha, Energy City).</li> <li>Msheireb project will consist of more than 100 new buildings concentrated by Leadership in Energy and Environmental Design LEED ratings (Msheireb official website, 2018).</li> <li>the ecological downtown of Doha is expected to use 30% less energy than regular buildings, focusing on the efficient use of energy in smart grids and the deployment of renewable energies (Abdmouleh, Gastli, &amp; Ben-Brahim, 2018; Al-Marri, Al-Habaibeh, &amp; Watkins, 2018).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | growth and securing housing for<br>population is another motivation<br>for Arab governments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                     | Area [km²] | Population      | GDP per capita<br>[m USD] | Temperature [daily<br>mean min/max ] -<br>harmonized WMO data | Public transport<br>modes |
|---------------------|------------|-----------------|---------------------------|---------------------------------------------------------------|---------------------------|
| Berlin              | 891,68     | 3748148         | 80757,25                  | Min: 5,67°C<br>Max: 13,36°C                                   | Metro, tram, bus, taxi    |
| Bremen              | 326,18     | 569352          | 86499,06                  | Min: 5,2°C<br>Max: 13,2°C                                     | Tram, bus, taxi           |
| Cologne             | 404,89     | 1085767         | 93794,21                  | Min: 5,51°C<br>Max: 14,47°C                                   | Metro, tram, bus, taxi    |
| Hamburg             | 755,09     | 1841179         | 105063,41                 | Min: 5,24°C<br>Max: 12,74°C                                   | Metro, tram, bus, taxi    |
| Munich              | 310,7      | 1471508         | 113893,51                 | Min: 4,17°C<br>Max: 12,98°C                                   | Metro, tram, bus, taxi    |
| Cairo               | 3085       | 9500000         | 2412,73*                  | Min: 15,77°C<br>Max: 27,73°C                                  | Metro, bus taxi           |
| Dubai/RAK           | 4114       | 3173000         | 44516,22*                 | Min: 21,32°C<br>Max: 33°C                                     | Metro, ferry, bus, taxi   |
| Kuwait City         | 200        | 4100000         | 29040*                    | Min: 19,88°C<br>Max: 34,34°C                                  | Bus, taxi                 |
| Masdar/Abu<br>Dhabi | 6 (972)    | 40000 (1200000) | 100000*                   | Min: 20,23°C<br>Max: 33,68°C                                  | Bus, taxi                 |
| Doha                | 132        | 796947          | 66600*                    | Min: 21,58°C<br>Max: 32,7°C                                   | Bus, taxi                 |

Source: WMO; National offices for statistics; IEA Energy and transport balances

#### **References for city profiles**

- Abdmouleh, Z., Gastli, A., & Ben-Brahim, L. (2018). Survey about public perception regarding smart grid, energy efficiency & renewable energies applications in Qatar. *Renewable and Sustainable Energy Reviews*, 82, 168–175. https://doi.org/10.1016/j.rser.2017.09.023
- Alawadhi, S., & Scholl, H. J. (Eds.) (2016). Smart governance: A cross-case analysis of smart city initiatives. : 2016-March.
- Al-Marri, W., Al-Habaibeh, A., & Watkins, M. (2018). An investigation into domestic energy consumption behaviour and public awareness of renewable energy in Qatar. *Sustainable Cities and Society*, 41, 639–646. https://doi.org/10.1016/j.scs.2018.06.024
- Al-Mutairi, A.'a., Smallbone, A., Al-Salem, S. M., & Roskilly, A. P. (2017). The first carbon atlas of the state of Kuwait. *Energy*, *133*, 317–326. https://doi.org/10.1016/j.energy.2017.05.097
- Alotaibi, S. (2011). Energy consumption in Kuwait: Prospects and future approaches. *Energy Policy*, *39*(2), 637–643. https://doi.org/10.1016/j.enpol.2010.10.036
- Angelidou, M. (2017). The Role of Smart City Characteristics in the Plans of Fifteen Cities. *Journal of Urban Technology*, 24(4), 3–28. https://doi.org/10.1080/10630732.2017.1348880
- Atef Elhamy Kamel, M. (2013). Encouraging walkability in GCC cities: Smart urban solutions. *Smart and Sustainable Built Environment*, 2(3), 288–310. https://doi.org/10.1108/SASBE-03-2013-0015
- Ayoub, N., Musharavati, F., Pokharel, S., & Gabbar, H. A. (2014). Energy consumption and conservation practices in Qatar—A case study of a hotel building. *Energy and Buildings*, *84*, 55–69. https://doi.org/10.1016/j.enbuild.2014.07.050
- Blanchet, T. (2015). Struggle over energy transition in Berlin: How do grassroots initiatives affect local energy policy-making? *Energy Policy*, *78*, 246–254.
- Charfeddine, L., Al-Malk, A., & Al Korbi, K. (2018). Is it possible to improve environmental quality without reducing economic growth: Evidence from the Qatar economy. *Renewable and Sustainable Energy Reviews*, *82*, 25–39. https://doi.org/10.1016/j.rser.2017.09.001
- Cugurullo, F. (2018). Exposing smart cities and eco-cities: Frankenstein urbanism and the sustainability challenges of the experimental city. *Environment and Planning A*, *50*(1), 73–92. https://doi.org/10.1177/0308518X17738535
- Ehrhardt, F. (Ed.) (2016). Sustainable mobility for Berlin Green.Smart.Digital.
- Freudendal-Pedersen, M., Kesselring, S., & Servou, E. (2019). What is smart for the future city? Mobilities and automation. *Sustainability (Switzerland)*, *11*(1). https://doi.org/10.3390/su11010221

- Gelan, A. (2018). Economic and environmental impacts of electricity subsidy reform in Kuwait: A general equilibrium analysis. *Energy Policy*, *112*, 381–398. https://doi.org/10.1016/j.enpol.2017.10.032
- Gelan, A. U. (2018). Kuwait's energy subsidy reduction: Examining economic and CO2 emission effects with or without compensation. *Energy Economics*, *71*, 186–200. https://doi.org/10.1016/j.eneco.2018.02.014
- Huang-Lachmann, J.-T., & Lovett, J. C. (2016). How cities prepare for climate change: Comparing Hamburg and Rotterdam. *Cities*, *54*, 36–44. https://doi.org/10.1016/j.cities.2015.11.001
- Huston, S., Rahimzad, R., & Parsa, A. (2015). 'Smart' sustainable urban regeneration: Institutions, quality and financial innovation. *Cities*, *48*, 66–75. https://doi.org/10.1016/j.cities.2015.05.005
- Ibrahim, I. (2016). Livable Eco-Architecture Masdar City, Arabian Sustainable City. *Procedia Social and Behavioral Sciences*, *216*, 46–55. https://doi.org/10.1016/j.sbspro.2015.12.070
- Jaffar, B., Oreszczyn, T., Raslan, R., & Summerfield, A. (2018). Understanding energy demand in Kuwaiti villas: Findings from a quantitative household survey. *Energy and Buildings*, 165, 379–389. https://doi.org/10.1016/j.enbuild.2018.01.055
- Kesselring, S. (2016). Planning in motion. The new politics of mobility in munich. Research for Development. https://doi.org/10.1007/978-3-319-22578-4\_5
- Krarti, M., Ali, F., Alaidroos, A., & Houchati, M. (2017). Macro-economic benefit analysis of large scale building energy efficiency programs in Qatar. *International Journal of Sustainable Built Environment*, 6(2), 597–609. https://doi.org/10.1016/j.ijsbe.2017.12.006
- Kusch, W., Stadler, I., & Bhandari, R. (Eds.) (2016). *Heat pumps in low voltage distribution grids by energy storage.*
- Lau, A. (2012). Masdar City: A model of urban environmental sustainability. Social Sciences. (09), 77–82. Retrieved from https://web.stanford.edu/group/journal/cgi-bin/wordpress/wpcontent/uploads/2012/09/Lau\_SocSci\_2012.pdf
- Lee, S. E., Braithwaite, P., Leach, J. M., & Rogers, C. D.F. (2016). A comparison of energy systems in Birmingham, UK, with Masdar City, an embryonic city in Abu Dhabi Emirate. *Renewable and Sustainable Energy Reviews*, 65, 1299–1309. https://doi.org/10.1016/j.rser.2016.07.019
- Li, H., Meier, F., Lee, X., Chakraborty, T., Liu, J., Schaap, M., & Sodoudi, S. (2018). Interaction between urban heat island and urban pollution island during summer in Berlin. *The Science of the Total Environment, 636*, 818–828. https://doi.org/10.1016/j.scitotenv.2018.04.254
- Lorenzen, P., Duckstein, G., Vuthi, P. P., & Schäfers, H. (Eds.) (2015). Architecture and simulation of a virtual power plant in Hamburg.

- Madakam, S., & Ramaswamy, R. (2016). Sustainable smart city: Masdar (UAE) (A city: Ecologically balanced). *Indian Journal of Science and Technology*, 9(6). https://doi.org/10.17485/ijst/2016/v9i6/87669
- Masdar Company (2013). Advancing Sustainability. Masdar 2013 Sustainability Report. Retrieved from https://masdar.ae/-/media/corporate/downloads/about-us/masdar-annual-sustainabilityreports/advancing\_sustainability\_masdar\_2013\_sustainability\_report.pdf
- Masdar Company (2016). A decade of delivering. Sustainability Report 2016. Retrieved from https://masdar.ae/-/media/corporate/downloads/about-us/masdar-annual-sustainabilityreports/sustainability\_report\_2016.pdf

Masdar Institute. Masdar sustainability report 2014.

- Moss, T., & Francesch-Huidobro, M. (2016). Realigning the electric city. Legacies of energy autarky in Berlin and Hong Kong. *Energy Research & Social Science*, *11*, 225–236. https://doi.org/10.1016/j.erss.2015.10.002
- Reiswich, E., Köster, F., & Nitschke, J. (2016). Touchdown in the Hamburg port Development of a digital sounding-table as component of the smartPORT concept in the Hamburg port. *ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement, 141*(5), 317–321. https://doi.org/10.12902/zfv-0125-2016
- Rodriguez-Trejo, S., Ahmad, A. M., Hafeez, M. A., Dawood, H., Vukovic, V., Kassem, M., . . . Dawood, N. (2017).
   Hierarchy based information requirements for sustainable operations of buildings in Qatar. *Sustainable Cities and Society*, *32*, 435–448. https://doi.org/10.1016/j.scs.2017.03.005
- Salahuddin, M., Alam, K., Ozturk, I., & Sohag, K. (2018). The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. *Renewable and Sustainable Energy Reviews*, *81*, 2002–2010. https://doi.org/10.1016/j.rser.2017.06.009
- Scholl, H. J., & Alawadhi, S. (Eds.) (2015). *Pooling and leveraging scarce resources: The smart eCity gov alliance.* : 2015-March.
- Senator für Umwelt, Bau und Verkehr (2018). Masterplan Green City Bremen. Retrieved from https://www.bauumwelt.bremen.de/sixcms/media.php/13/20180813%20Masterplan%20Green%20Cit y%20Bremen%20V1.1%20-%20Leseversion.39677.pdf
- Senatsverwaltung für Stadtentwicklung und Umwelt (2015). Smart city-Strategie Berlin. Retrieved from https://www.berlinpartner.de/fileadmin/user\_upload/01\_chefredaktion/02\_pdf/02\_navi/21/Strategie\_Smart\_City\_Berlin.pdf
- Shelton, T., Zook, M., & Wiig, A. (2015). The 'actually existing smart city'. *Cambridge Journal of Regions, Economy and Society*, 8(1), 13–25. https://doi.org/10.1093/cjres/rsu026

- Snyder, L. (2009). Masdar City: The Source of Inspiration or Uneconomical Spending? Retrieved from https://docplayer.net/45970711-Masdar-city-the-source-of-inspiration-or-uneconomical-spending.html
- Sodiq, A., Baloch, A.A.B., Khan, S. A., Sezer, N., Mahmoud, S., Jama, M., & Abdelaal, A. (2019). Towards modern sustainable cities: Review of sustainability principles and trends. *Journal of Cleaner Production*, 227, 972– 1001. https://doi.org/10.1016/j.jclepro.2019.04.106
- Stadt München (2015). München als Smart City. Retrieved from https://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Stadtplanung-und-Bauordnung/Stadtentwicklung/Perspektive-Muenchen/Smart-City.html
- Tok, E., Al Mohammed, F., & Al Merrekhi, M. (2014). Crafting Smart Cities in the Gulf Region: A Comparison of Masdar and Lusail. *European Scientific Journal*. (Special Issue), 130–140.
- Tucci, F., Santucci, D., Endres, E., & Hausladen, G. (2018). Smart urban districts: Dynamic energy systems for synergic interactions between building and city. *TECHNE*, *SpecialSeries1*, 92–102. https://doi.org/10.13128/Techne-22741
- Vogelpohl, A., & Klemp, F. (2018). The creeping influence of consultants on cities: McKinsey's involvement in Berlin's urban economic and social policies. *Geoforum*, 91, 39–46. https://doi.org/10.1016/j.geoforum.2018.02.028
- Vuthi, P. P., Lorenzen, P., Schäfers, H., Raths, S., Krengel, S., Sudeikat, J., & Thomsen, M. (Eds.) (2015). Smart Power Hamburg: A virtual power plant for Hamburg.
- Wachsmuth, D., & Angelo, H. (2018). Green and gray: New ideologies of nature in urban sustainability policy. Annals of the American Association of Geographers, 108(4), 1038–1056. https://doi.org/10.1080/24694452.2017.1417819
- Welzel, R.-W., & Eichhorn, T. (2016). Urban development in the digital city of Hamburg Modern, innovative, future-proof. ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement, 141(5), 322–329. https://doi.org/10.12902/zfv-0135-2016



### **Expert Opinion Survey**

- Your personal information will be fully anonymized and protected according to EU data protection rules.
- We will contact you just in case of follow up questions and for sharing the research results.

| Your Country                |  |
|-----------------------------|--|
| City                        |  |
| Name                        |  |
| Organization/ Your function |  |
| E-mail                      |  |
| Follow-up (yes, no)         |  |

#### 1. Presentation of project

#### a. Could you briefly describe the smart city project you intend to implement?

#### Aspects:

- Coverage (city/town quarter/sector)
- Size (km2, inhabitants)
- Timeline/roll-out plan
- Investment needed
- Financing (public, private, PPP)
- Focus (private dwellings, Business, mixed)
- National Project/International cooperation/Cooperation with company

# b. Let me ask you about the motivation for taking up the project. On a 6-point scale from 1 (not important at all) to 6 (very important), how would you rate the following motives:

|                                  | 1 | 2 | 3 | 4 | 5 | 6 |
|----------------------------------|---|---|---|---|---|---|
| Climate change adaptation        |   |   |   |   |   |   |
| Better living conditions for     |   |   |   |   |   |   |
| citizens                         |   |   |   |   |   |   |
| Energy independence              |   |   |   |   |   |   |
| Energy savings                   |   |   |   |   |   |   |
| Sustainability/Sparing of        |   |   |   |   |   |   |
| fossil resources                 |   |   |   |   |   |   |
| Modernize the                    |   |   |   |   |   |   |
| city/infrastructure (fit for the |   |   |   |   |   |   |
| future)                          |   |   |   |   |   |   |
| Living laboratory to test new    |   |   |   |   |   |   |
| technologies                     |   |   |   |   |   |   |
| Economic concerns (green         |   |   |   |   |   |   |
| growth)                          |   |   |   |   |   |   |
| Mobility concerns                |   |   |   |   |   |   |



#### 2 Planning

#### a. Who are your partners to implement the smart city project?

#### b. Do you plan to build from scratch or re-organize an existing town (quarter)?

#### c. (Follow up) Please rate the role of these stakeholders from 1 (not important at all) to 6 (very important)

|                         | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------------------|---|---|---|---|---|---|
| National government     |   |   |   |   |   |   |
| Regional government     |   |   |   |   |   |   |
| City government         |   |   |   |   |   |   |
| City Administration     |   |   |   |   |   |   |
| Business associations   |   |   |   |   |   |   |
| NGOs                    |   |   |   |   |   |   |
| Citizens                |   |   |   |   |   |   |
| University/research     |   |   |   |   |   |   |
| institutions            |   |   |   |   |   |   |
| SMEs/start-up/spin-offs |   |   |   |   |   |   |
| External partners       |   |   |   |   |   |   |
| Other (specify)         |   |   |   |   |   |   |
|                         |   |   |   |   |   |   |
|                         |   |   |   |   |   |   |

#### d. How do you ensure the coordination/consultation between these partners? Do you consult citizens?

#### 3. Implementation

a. How important are the following energy and transport components in the smart city strategy (Please rate from 1 (not important at all) to 6 (very important) ).

|                                                 | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------------------------------------------|---|---|---|---|---|---|
| Renewable energies for central use (which RES?) |   |   |   |   |   |   |
| Distributed renewables                          |   |   |   |   |   |   |
| Heating and cooling                             |   |   |   |   |   |   |
| networks                                        |   |   |   |   |   |   |
| Building energy efficiency (private)            |   |   |   |   |   |   |



| Building energy efficiency            |  |  |  |
|---------------------------------------|--|--|--|
| (office and public buildings)         |  |  |  |
| Efficient appliances                  |  |  |  |
| Prosumer                              |  |  |  |
| Demand side management                |  |  |  |
| Smart meters & consumption feedback   |  |  |  |
| Smart grids/smart infrastructure      |  |  |  |
| ICT-based solutions<br>(IoT/wireless) |  |  |  |
| Public transport<br>(which?)          |  |  |  |
| Cycling/walking                       |  |  |  |
| E-vehicles                            |  |  |  |
| Traffic management                    |  |  |  |
| Other (specify)                       |  |  |  |
|                                       |  |  |  |

#### b. Do you plan to develop business models to sell/export the model solutions which you have implemented?

# c. Please rate the following drivers for the implementation of the project from 1 (not important at all to 6 (very important)

|                               | 1         | 2 | 3 | 4 | 5 | 6 |  |  |  |  |
|-------------------------------|-----------|---|---|---|---|---|--|--|--|--|
| Economics                     | Economics |   |   |   |   |   |  |  |  |  |
| Cost effectiveness            |           |   |   |   |   |   |  |  |  |  |
|                               |           |   |   |   |   |   |  |  |  |  |
| Competitiveness               |           |   |   |   |   |   |  |  |  |  |
| New business models           |           |   |   |   |   |   |  |  |  |  |
| Increase attractiveness for   |           |   |   |   |   |   |  |  |  |  |
| investors                     |           |   |   |   |   |   |  |  |  |  |
| Economic advantages by        |           |   |   |   |   |   |  |  |  |  |
| improved infrastructure       |           |   |   |   |   |   |  |  |  |  |
| Enable ICT-entrepreneurship   |           |   |   |   |   |   |  |  |  |  |
| Deploy ICT/IoT                |           |   |   |   |   |   |  |  |  |  |
| Environment & energy          |           |   |   |   |   |   |  |  |  |  |
| Lower energy consumption      |           |   |   |   |   |   |  |  |  |  |
| Reduce CO2 emissions          |           |   |   |   |   |   |  |  |  |  |
| Resource efficiency           |           |   |   |   |   |   |  |  |  |  |
| Deploy RES and save fossil    |           |   |   |   |   |   |  |  |  |  |
| fuels                         |           |   |   |   |   |   |  |  |  |  |
| Governance and policy         |           |   |   |   |   |   |  |  |  |  |
| Political support for project |           |   |   |   |   |   |  |  |  |  |
|                               |           |   |   |   |   |   |  |  |  |  |



| Improvement of services for |  |  |  |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|--|--|--|
| citizens                    |  |  |  |  |  |  |  |  |  |
| Allow participation for     |  |  |  |  |  |  |  |  |  |
| citizens                    |  |  |  |  |  |  |  |  |  |
| Society                     |  |  |  |  |  |  |  |  |  |
| Population growth           |  |  |  |  |  |  |  |  |  |
| Traffic problems            |  |  |  |  |  |  |  |  |  |
| Increase living conditions  |  |  |  |  |  |  |  |  |  |
| Build up knowledge society  |  |  |  |  |  |  |  |  |  |

# d. Please rate the following barriers against the implementation of the project from 1 (not important at all to 6 (very important)

|                                | 1         | 2 | 3 | 4 | 5 | 6 |  |  |  |  |
|--------------------------------|-----------|---|---|---|---|---|--|--|--|--|
| Qualifications                 |           |   |   |   |   |   |  |  |  |  |
| Lack of qualified workforce    |           |   |   |   |   |   |  |  |  |  |
| Lack of technical expertise    |           |   |   |   |   |   |  |  |  |  |
| Economics                      | Economics |   |   |   |   |   |  |  |  |  |
| Lack of economic expertise     |           |   |   |   |   |   |  |  |  |  |
| Investors hesitate to provide  |           |   |   |   |   |   |  |  |  |  |
| finance (risk investment)      |           |   |   |   |   |   |  |  |  |  |
| Economic feasibility of        |           |   |   |   |   |   |  |  |  |  |
| project is not guaranteed      |           |   |   |   |   |   |  |  |  |  |
| (negative cost/benefits)       |           |   |   |   |   |   |  |  |  |  |
| Value added is not clear       |           |   |   |   |   |   |  |  |  |  |
| Management and organization    | า         | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| Principal-agent problem with   |           |   |   |   |   |   |  |  |  |  |
| external construction          |           |   |   |   |   |   |  |  |  |  |
| partner                        |           |   |   |   |   |   |  |  |  |  |
| Specialists focus too strongly |           |   |   |   |   |   |  |  |  |  |
| Missing standardization of     |           |   |   |   |   |   |  |  |  |  |
| IT-interfaces                  |           |   |   |   |   |   |  |  |  |  |
| Expenditure of time            |           |   |   |   |   |   |  |  |  |  |
| Governance and policy          |           | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| Complex administration         |           |   |   |   |   |   |  |  |  |  |
| structure (coordination)       |           |   |   |   |   |   |  |  |  |  |
| Missing integrative planning   |           |   |   |   |   |   |  |  |  |  |
| Missing political framework    |           |   |   |   |   |   |  |  |  |  |
| conditions                     |           |   |   |   |   |   |  |  |  |  |
| Missing acceptance by public   |           |   |   |   |   |   |  |  |  |  |
| (privacy, data protection)     |           |   |   |   |   |   |  |  |  |  |



4. Governance: How do you intend to run the future city (public, PPP, private government arrangement?)

5. Impact: Do you have evaluations/studies on the impact of the project, which you could share with me?

Thank you for your cooperation and support Marc Ringel, HFWU - Nuertingen-Geislingen University Arab-German Young Academy of Sciences and Humanities (AGYA)

### Survey data for descriptive statistics

A.4

|      | Renewables |           |           | En        | ergy efficier | псу       | Demand<br>management |     | Smart meter/grids |            |           |
|------|------------|-----------|-----------|-----------|---------------|-----------|----------------------|-----|-------------------|------------|-----------|
|      |            |           | Heating & | Buildings | Buildings     | Appliance |                      |     | Smart             |            | ICT       |
| City | Central    | Decentral | Cooling   | private   | public        | s         | Prosumer             | DSM | meter             | Smart grid | solutions |
| 1    | 2,0        | 6,0       | 6,0       | 3,0       | 6,0           | 6,0       | 5,0                  | 6,0 | 4,0               | 6,0        | 6,0       |
| 1    | 6,0        | 6,0       | 3,0       | 5,0       | 6,0           | 3,0       | 6,0                  | 6,0 | 5,0               | 6,0        | 6,0       |
| 1    | 6,0        | 6,0       | 6,0       | 5,0       | 5,0           | 4,0       | 6,0                  | 5.0 | 5,0               | 6,0        | 6,0       |
| 2    | 5.0        | 5.0       | 4.0       | 2.0       | 2.0           | 3.0       | 4,0                  | 2.0 | 4.0               | 6,0        | 6,0       |
| 3    | 4,0        | 6,0       | 6,0       | 5,0       | 6,0           | 4,0       | 5,0                  | 6,0 | 4,0               | 6,0        | 6,0       |
| 3    | 6,0        | 6,0       | 6,0       | 6,0       | 6,0           | 5,0       | 4,0                  | 4,0 | 5,0               | 5,0        | 6,0       |
| 4    | 4,0        | 5,0       | 6,0       | 3,0       | 6,0           | 4,0       | 1,0                  | 3,0 | 1,0               | 1,0        | 1,0       |
| 4    | 5,0        | 6,0       | 6,0       | 6,0       | 5,0           | 6,0       | 1,0                  | 4,0 | 3,0               | 3,0        | 3,0       |
| 5    | 6,0        | 6,0       | 6,0       | 6,0       | 4,0           | 1,0       | 6,0                  | 3,0 | 6,0               | 6,0        | 6,0       |
| 5    | 6,0        | 6,0       | 6,0       | 6,0       | 5,0           | 6,0       | 4,0                  | 5,0 | 5,0               | 6,0        | 6,0       |
| 5    | 6,0        | 6,0       | 6,0       | 6,0       | 5,0           | 6,0       | 4,0                  | 5,0 | 5,0               | 6,0        | 6,0       |
| 6    | 6,0        | 6,0       | 6,0       | 6,0       | 5,0           | 3,0       | 1,0                  | 1,0 | 5,0               | 5,0        | 5,0       |
| 6    | 5,0        | 5,0       | 4,0       | 5,0       | 4,0           | 4,0       | 4,0                  | 5,0 | 6,0               | 6,0        | 6,0       |
| 7    | 6,0        | 3,0       | 6,0       | 6,0       | 6,0           | 5,0       | 3,0                  | 3,0 | 3,0               | 4,0        | 4,0       |
| 7    | 6,0        | 6,0       | 6,0       | 6,0       | 6,0           | 5,0       | 5,0                  | 5,0 | 6,0               | 6,0        | 6,0       |
| 11   | 4,0        | 6,0       | 2,0       | 4,0       | 5,0           | 6,0       | 3,0                  | 2,0 | 6,0               | 5,0        | 2,0       |
| 11   | 4,0        | 4,0       | 4,0       | 4,0       | 6,0           | 6,0       | 4,0                  | 5,0 | 5,0               | 4,0        | 6,0       |
| 8    | 4,0        | 4,0       | 4,0       | 4,0       | 4,0           | 4,0       | 4,0                  | 4,0 | 4,0               | 4,0        | 3,0       |
| 8    | 3,0        | 3,0       | 3,0       | 3,0       | 3,0           | 3,0       | 3,0                  | 3,0 | 3,0               | 3,0        | 3,0       |
| 12   | 6,0        | 6,0       | 6,0       | 6,0       | 6,0           | 4,0       | 4,0                  | 4,0 | 4,0               | 5,0        | 6,0       |
| 12   | 2,0        | 2,0       | 6,0       | 6,0       | 5,0           | 6,0       | 4,0                  | 5,0 | 6,0               | 6,0        | 6,0       |

|      |           | Mobility  |            |         |          | n to engage<br>ity activies | Role of stakeholders |           |           |                |                 |
|------|-----------|-----------|------------|---------|----------|-----------------------------|----------------------|-----------|-----------|----------------|-----------------|
|      |           |           |            | Traffic | Motive   | Motive                      | Stakehold<br>er      | Stakehold | Stakehold | Stakehold      | Stakehold<br>er |
|      | Public    | Cycling/w |            | managem | & energy | energy &                    | national             | governme  | or NGO-   | Stakenolu      | universitie     |
| City | transport | alking    | F-Vehicles | ent     | saving   | ent                         | nt                   | nt        | nrivate   | ei<br>husiness | c               |
| 1    | 6.0       | 5.0       | 5.0        | 60      | 4 O      | 5.0                         | 3.0                  | 6.0       | 4.0       | 5 0            | 5 5             |
| 1    | 5.0       | 6.0       | 6.0        | 6.0     | 4.0      | 5,5                         | 3.0                  | 6.0       | 3.5       | 5,5            | 5,5             |
| 1    | 6.0       | 6.0       | 6.0        | 5.0     | 5.0      | 5.0                         | 3.0                  | 6.0       | 4.5       | 5.0            | 5.0             |
| 2    | 6.0       | 6.0       | 6.0        | 6.0     | 2.5      | 5.0                         | 5.0                  | 6.0       | 5.0       | 4.5            | 6.0             |
| 2    | 5,0       | 2,0       | 6,0        | 5,0     | 5,0      | 4,5                         | 4,0                  | 5,0       | 3,5       | 2,5            | 4,0             |
| 3    | 6,0       | 5,0       | 5,0        | 6,0     | 5,0      | 5,5                         | 4,0                  | 6,0       | 4,5       | 5,0            | 5,5             |
| 3    | 6,0       | 6,0       | 6,0        | 6,0     | 5,5      | 5,5                         | 5,0                  | 6,0       | 5,0       | 4,5            | 5,0             |
| 4    | 1,0       | 1,0       | 1,0        | 1,0     | 6,0      | 4,5                         | 1,0                  | 6,0       | 1,0       | 1,0            | 6,0             |
| 4    | 3,0       | 3,0       | 3,0        | 3,0     | 6,0      | 6,0                         | 1,0                  | 6,0       | 3,5       | 3,0            | 6,0             |
| 5    | 6,0       | 6,0       | 6,0        | 5,0     | 5,5      | 5,5                         | 1,0                  | 6,0       | 3,5       | 3,5            | 6,0             |
| 5    | 6,0       | 6,0       | 6,0        | 6,0     | 6,0      | 6,0                         | 5,0                  | 6,0       | 4,5       | 4,5            | 6,0             |
| 5    | 6,0       | 6,0       | 6,0        | 6,0     | 6,0      | 6,0                         | 3,0                  | 6,0       | 5,5       | 4,5            | 6,0             |
| 6    | 1,0       | 1,0       | 1,0        | 1,0     | 5,0      | 5,5                         | 6,0                  | 5,0       | 2,5       | 2,0            | 3,0             |
| 6    | 4,0       | 4,0       | 3,0        | 6,0     | 5,0      | 5,0                         | 6,0                  | 6,0       | 5,0       | 2,5            | 3,5             |
| 7    | 6,0       | 5,0       | 6,0        | 3,0     | 1,0      | 2,5                         | 5,0                  | 2,0       | 4,0       | 2,5            | 2,0             |
| 7    | 5,0       | 5,0       | 6,0        | 6,0     | 6,0      | 5,5                         | 6,0                  | 3,0       | 5,0       | 4,5            | 5,5             |
| 11   | 1,0       | 1,0       | 4,0        | 1,0     | 4,5      | 3,5                         | 6,0                  | 6,0       | 1,5       | 1,0            | 3,5             |
| 11   | 3,0       | 3,0       | 4,0        | 5,0     | 5,0      | 6,0                         | 5,0                  | 5,0       | 4,0       | 4,0            | 5,0             |
| 8    | 3,0       | 3,0       | 3,0        | 3,0     | 4,0      | 3,0                         | 6,0                  | 5,0       | 4,0       | 5,0            | 4,0             |
| 8    | 3,0       | 3,0       | 3,0        | 3,0     | 3,0      | 4,5                         | 6,0                  | 6,0       | 4,5       | 3,0            | 3,0             |
| 12   |           |           |            |         | 5,5      | 3,0                         | 6,0                  | 6,0       | 6,0       | 5,5            | 5,0             |
| 12   | 6,0       | 6,0       | 4,0        | 5,0     | 5,0      | 5,0                         | 6,0                  | 6,0       | 2,0       | 2,5            | 3,5             |

|      | Evaluation of technology options |            |                                        |                    |          | Drivers and barriers for/against smart city development |                                 |            |            |                        |          |         |          |
|------|----------------------------------|------------|----------------------------------------|--------------------|----------|---------------------------------------------------------|---------------------------------|------------|------------|------------------------|----------|---------|----------|
|      | Renewabl                         | Fnerøv     | Prosumer<br>/Demand<br>side<br>managem | Smart<br>grids/sam |          | Driver                                                  | Driver<br>Environm<br>ent/energ | Driver     | Driver     | Barrier<br>qualificati | Barriers | Barrier | Barrier  |
| City | e Energy                         | Efficiency | ent                                    | rt meters          | Mohility | s                                                       | v                               | р.         | society    | ons                    | s        | ent     | <u>е</u> |
| 1    | 6.0                              | 6.0        | 5.5                                    | 6.0                | 5.5      | 5.0                                                     | , 6.0                           | c<br>6.0   | 6.0        | 3.0                    | 2.0      | 3.5     | 5.0      |
| - 1  | 6.0                              | 5.0        | 6.0                                    | 6.0                | 6.0      | 6.0                                                     | 6,0                             | 4.0        | 6.0        | 1.5                    | 1.0      | 1.0     | 3.5      |
| 1    | 6,0                              | 5,0        | 6,0                                    | 6,0                | 6,0      | 6,0                                                     | 6,0                             | 5,0        | 5,5        | 3,0                    | 3,0      | 5,0     | 5,0      |
| 2    | 6,0                              | 6,0        | 4,5                                    | 6,0                | 6,0      | 5,0                                                     | 6,0                             | 5,0        | 6,0        | 3,5                    | 4,0      | 3,5     | 5,5      |
| 2    | 5,0                              | 2,0        | 3,0                                    | 6,0                | 5,0      | 5,0                                                     | 4,5                             | 3,0        | 3,0        | 5,0                    | 2,0      | 3,0     | 3,5      |
| 3    | 6,0                              | 5,0        | 5,5                                    | 6,0                | 5,5      | 5,0                                                     | 6,0                             | 6,0        | 6,0        | 3,0                    | 2,0      | 3,5     | 5,0      |
| 3    | 6,0                              | 6,0        | 4,0                                    | 5,0                | 6,0      | 6,0                                                     | 6,0                             | 6,0        | 5,0        | 1,5                    | 2,5      | 3,5     | 4,0      |
| 4    | 5,0                              | 4,0        | 2,0                                    | 1,0                | 1,0      | 6,0                                                     | 6,0                             | 6,0        | 3,5        | 1,0                    | 1,0      | 1,0     | 5,0      |
| 4    | 6,0                              | 6,0        | 2,5                                    | 3,0                | 3,0      | 6,0                                                     | 6,0                             | 5,0        | 5,0        | 2,5                    | 3,0      | 2,5     | 4,0      |
| 5    | 6,0                              | 4,0        | 4,5                                    | 6,0                | 6,0      | 5,0                                                     | 6,0                             | 6,0        | 6,0        |                        |          |         |          |
| 5    | 6,0                              | 6,0        | 4,5                                    | 6,0                | 6,0      | 5,0                                                     | 6,0                             | 5,0        | 5,5        | 3,5                    | 3,5      | 2,5     | 4,0      |
| 5    | 6,0                              | 6,0        | 4,5                                    | 6,0                | 6,0      | 5,0                                                     | 6,0                             | 6,0        | 6,0        | 3,0                    | 2,5      | 3,0     | 2,5      |
| 6    | 6,0                              | 5,0        | 1,0                                    | 5,0                | 1,0      | 5,0                                                     | 6,0                             | 6,0        | 6,0        | 4,0                    | 3,0      | 3,0     | 2,0      |
| 6    | 5,0                              | 4,0        | 4,5                                    | 6,0                | 4,0      | 6,0                                                     | 6,0                             | 6,0        | 6,0        | 6,0                    | 3,0      | 5,5     | 5,0      |
| 7    | 6,0                              | 6,0        | 3,0                                    | 4,0                | 5,5      | 2,0                                                     | 2,0                             | 3,0        | 4,5        | 2,0                    | 2,0      | 2,5     | 4,0      |
| /    | 6,0                              | 6,0        | 5,0                                    | 6,0                | 5,5      | 4,0                                                     | 4,0                             | 6,0        | 6,0        | 4,0                    | 5,0      | 5,0     | 6,0      |
| 11   | 4,0                              | 5,0        | 2,5                                    | 5,0                | 1,0      | 5,0                                                     | 6,0                             | 3,0        | 4,0        | 1,0                    | 1,5      | 1,5     | 2,5      |
| 11   | 4,0                              | 6,0        | 4,5                                    | 5,0                | 3,5      | 5,0                                                     | 6,0                             | 5,0        | 5,0        | 2,0                    | 2,5      | 2,5     | 3,0      |
| 8    | 4,0                              | 4,0        | 4,0                                    | 4,0                | 3,0      | 0,0                                                     | 4,0                             | 5,0        | 5,0        | 0,0                    | 0,0      | 4,5     | 5,0      |
| 12   | 3,0                              | 3,0        | 3,0                                    | 5,0                | 3,0      | 3,0                                                     | 3,0                             | 0,0<br>E 0 | 5,0        | 5,0                    | 2,0      | 3,0     | 3,0      |
| .12  | 2.0                              | 6.0        | 4,0                                    | 5,0<br>6.0         | 5.5      | 5,0                                                     | 4,5                             | 5,0        | 5,0<br>6,0 | 4.5                    | 2.0      | 3.0     | 1.5      |