3D IoT System for Environmental and Energy Consumption Monitoring System
Abstract
:1. Introduction
2. Literature Review
3. Internet of Things (IoT) System for Environmental and Energy Consumption Monitoring with 3D Modeling
3.1. System Architecture
3.2. Hardware Layer
- Environmental conditions and
- Energy consumption.
3.2.1. Environmental Conditions
3.2.2. Energy Consumption
- (1)
- Programming of the sensors and communication with the LoRaWAN (protocol’s name) network;
- (2)
- Calibration of the TC sensors with the aid of a clamp meter;
- (3)
- Three-phase main switchboard circuit breaker, which corresponds to the connections where a sensor has been installed;
- (4)
- Three-phase main switchboard emergency circuit breaker, which corresponds to the connections where a sensor has been installed; and
- (5)
- Implantation of the sensors at the bottom of the switchboard. With the reduced size of the sensors, it was possible to hide them at the bottom of the switchboard without disturbing the normal access to the switchboard or the other connections.
3.3. Network Layer
- ABP (Activation by personalization):
- OTAA (Over the Air Activation):
3.4. Data Layer
3.4.1. Node-Red Server
- Confirmation of status of all system sensors and the addition of new sensors;
- LoRa message reception with sensor data;
- Treatment of the received LoRa message and separation of the different measurement values;
- Storage of the measurements in the system DB;
- Sending data to machine learning and receiving the processed data;
- Sending consumption information to the final application and dashboard visualization for the system user; and
- Node-RED dashboard configuration for maintenance and system managers.
3.4.2. SQL (Structured Query Language) Database
3.5. Application Layer
Building Information Model (BIM)
4. Application Case
4.1. Pilot Academics Services at ISCTE-IUL University
- Environmental monitoring
- Energy management
4.1.1. Environmental Monitoring
4.1.2. Energy Management
- Red: consumption 20% higher than the average of the history of that hour.
- Green: consumption 20% lower than the average for each hour.
- Blue: consumption similar to the average of the hourly history (Mrms) (i.e., between the previous values).
4.2. Evaluation and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP 2007 Annual Report. Available online: https://wedocs.unep.org/handle/20.500.11822/7647 (accessed on 8 January 2021).
- Becerik-Gerber, B.; Siddiqui, M.K.; Brilakis, I.; El-Anwar, O.; El-Gohary, N.; Mahfouz, T.; Jog, G.M.; Li, S.; Kandil, A.A. Civil Engineering Grand Challenges: Opportunities for Data Sensing, Information Analysis, and Knowledge Discovery. J. Comput. Civ. Eng. 2014, 28, 4. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Hadley, S.W.; Erickson, D.J.; Hernandez, J.L.; Broniak, C.T.; Blasing, T.J. Responses of energy use to climate change: A climate modeling study. Geophys. Res. Lett. 2006, 33, 17703. [Google Scholar] [CrossRef]
- Rehman, A.; Rauf, A.; Ahmad, M.; Chandio, A.A.; Deyuan, Z. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 21760–21773. [Google Scholar] [CrossRef] [PubMed]
- Mataloto, B.; Ferreira, J.C.; Cruz, N. LoBEMS—IoT for Building and Energy Management Systems. Electronics 2019, 8, 763. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.C.; Afonso, J.A.; Monteiro, V.; Afonso, J.L. An energy management platform for public buildings. Electron 2018, 7, 294. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.; Ferreira, J.C. IoT Power Monitoring System for Smart Environments. Sustainability 2019, 11, 5355. [Google Scholar] [CrossRef] [Green Version]
- Mataloto, B.; Mendes, H.; Ferreira, J.C. Things2people interaction toward energy savings in shared spaces using BIM. Appl. Sci. 2020, 10, 5709. [Google Scholar] [CrossRef]
- Ferreira, J.; Martins, A. Building a Community of Users for Open Market Energy. Energies 2018, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- Blyth, W.; Bradley, R.; Bunn, D.; Clarke, C.; Wilson, T.; Yang, M. Investment risks under uncertain climate change policy. Energy Policy 2007, 35, 5766–5773. [Google Scholar] [CrossRef]
- Wang, L.; Mathew, P.; Pang, X. Uncertainties in energy consumption introduced by building operations and weather for a medium-size office building. Energy Build. 2012, 53, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Menassa, C.C. Evaluating sustainable retrofits in existing buildings under uncertainty. Energy Build. 2011, 43, 3576–3583. [Google Scholar] [CrossRef]
- Yohanis, Y.G. Domestic energy use and householders’ energy behavior. Energy Policy 2012, 41, 654–665. [Google Scholar] [CrossRef]
- Guerra Santin, O.; Itard, L.; Visscher, H. The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy Build. 2009, 41, 1223–1232. [Google Scholar] [CrossRef]
- Baek, C.H.; Park, S.H. Changes in renovation policies in the era of sustainability. Energy Build. 2012, 47, 485–496. [Google Scholar] [CrossRef]
- Tobias, L. Retrofitting Office Buildings to Be Green and Energy-Efficient: Optimizing Building Performance, Tenant Satisfaction, and Financial Return; Urban Land Institute: Washington, DC, USA, 2009. [Google Scholar]
- Hong, T.; Yan, D.; D’Oca, S.; Chen, C.F. Ten questions concerning occupant behavior in buildings: The big picture. Build. Environ. 2017, 114, 518–530. [Google Scholar] [CrossRef] [Green Version]
- Owens, J.; Wilhite, H. Household energy behavior in Nordic countries-an unrealized energy saving potential. Energy 1988, 13, 853–859. [Google Scholar] [CrossRef]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Yan, D.; Hong, T.; Guo, S. Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration. Build. Environ. 2014, 79, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hoes, P.; Hensen, J.L.M.; Loomans, M.G.L.C.; de Vries, B.; Bourgeois, D. User behavior in whole building simulation. Energy Build. 2009, 41, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Hong, T.; Taylor-Lange, S.C.; Piette, M.A. A pattern-based automated approach to building energy model calibration. Appl. Energy 2016, 165, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Living Labs: Successful User Engagement on Energy-Efficiency through Participatory Innovation-ProQuest. Available online: https://search.proquest.com/docview/1690239375?pq-origsite=gscholar (accessed on 13 December 2020).
- Barrios-O’Neill, D.; Hook, A. Future energy networks and the role of interactive gaming as simulation. Futures 2016, 81, 119–129. [Google Scholar] [CrossRef]
- Sütterlin, B.; Brunner, T.A.; Siegrist, M. Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics. Energy Policy 2011, 39, 8137–8152. [Google Scholar] [CrossRef]
- Gölz, S.; Hahnel, U.J.J. What motivates people to use energy feedback systems? A multiple goal approach to predict long-term usage behaviour in daily life. Energy Res. Soc. Sci. 2016, 21, 155–166. [Google Scholar] [CrossRef]
- Aksoezen, M.; Daniel, M.; Hassler, U.; Kohler, N. Building age as an indicator for energy consumption. Energy Build. 2015, 87, 74–86. [Google Scholar] [CrossRef]
- Houde, S.; Todd, A.; Sudarshan, A.; Flora, J.A.; Armel, K.C. Real-time feedback and electricity consumption: A field experiment assessing the potential for savings and persistence. Energy J. 2013, 34, 87–102. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L.; Vlek, C.; Rothengatter, T. A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 2005, 25, 273–291. [Google Scholar] [CrossRef]
- Ma, H.; Du, N.; Yu, S.; Lu, W.; Zhang, Z.; Deng, N.; Li, C. Analysis of typical public building energy consumption in northern China. Energy Build. 2017, 136, 139–150. [Google Scholar] [CrossRef]
- Thewes, A.; Maas, S.; Scholzen, F.; Waldmann, D.; Zürbes, A. Field study on the energy consumption of school buildings in Luxembourg. Energy Build. 2014, 68, 460–470. [Google Scholar] [CrossRef]
- Raatikainen, M.; Skön, J.P.; Leiviskä, K.; Kolehmainen, M. Intelligent analysis of energy consumption in school buildings. Appl. Energy 2016, 165, 416–429. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [Google Scholar] [CrossRef]
- Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of Things in Smart Cities. IEEE Commun. Mag. 2017, 55, 84–91. [Google Scholar]
- Chooruang, K.; Meekul, K. Design of an IoT Energy Monitoring System. In Proceedings of the International Conference on ICT and Knowledge Engineering, Siam University, Bangkok, Thailand, 20–22 November 2019; Volume 2018, pp. 48–51. [Google Scholar]
- Li, C.Z.; Xue, F.; Li, X.; Hong, J.; Shen, G.Q. An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Autom. Constr. 2018, 89, 146–161. [Google Scholar] [CrossRef]
- DIng, K.; Shi, H.; Hui, J.; Liu, Y.; Zhu, B.; Zhang, F.; Cao, W. Smart steel bridge construction enabled by BIM and Internet of Things in industry 4.0: A framework. In Proceedings of the ICNSC 2018—15th IEEE International Conference on Networking, Sensing and Control, Zhuhai, China, 27–29 March 2018. [Google Scholar]
- Natephra, V.; Motamedi, A. Live data visualization of IoT sensors using augmented reality (AR) and BIM. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), Banff, AB, Canada, 21–24 May 2019; Volume 2, p. 1338. [Google Scholar]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Chang, K.M.; Dzeng, R.J.; Wu, Y.J. An automated IoT visualization BIM platform for decision support in facilities management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Becerik-Gerber, B.; Krishnamachari, B.; Soibelman, L. A BIM centered indoor localization algorithm to support building fire emergency response operations. Autom. Constr. 2014, 42, 78–89. [Google Scholar] [CrossRef]
- Patti, E.; Mollame, A.; Erba, D.; Dalmasso, D.; Osello, A.; Macii, E.; Acquaviva, A. Information Modeling for Virtual and Augmented Reality. IT Prof. 2017, 19, 52–60. [Google Scholar] [CrossRef]
- Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: https://ec.europa.eu/environment/waste/framework/ (accessed on 17 December 2020).
- Castelli, N.; Stevens, G.; Jakobi, T.; Ogonowski, C. Placing information at home: Using room context in domestic design. In Proceedings of the UbiComp 2014—Adjunct Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 919–922. [Google Scholar]
- Costanza, E.; Ramchurn, S.D.; Jennings, N.R. Understanding domestic energy consumption through interactive visualisation: A field study. In Proceedings of the UbiComp’12-Proceedings of the 2012 ACM Conference on Ubiquitous Computing, New York, NY, USA, 5–8 September 2012; pp. 216–225. [Google Scholar]
- Pasini, D. Connecting BIM and IoT for addressing user awareness toward energy savings. J. Struct. Integr. Maint. 2018, 3, 243–253. [Google Scholar] [CrossRef]
- Stavropoulos, T.G.; Koutitas, G.; Vrakas, D.; Kontopoulos, E.; Vlahavas, I. A smart university platform for building energy monitoring and savings. J. Ambient Intell. Smart Environ. 2016, 8, 301–323. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, N.I.O.G. Rede de Sensores Wireless Baseada na Tecnologia LoRa Para Monitorização de Processo na Indústria. Available online: https://recipp.ipp.pt/handle/10400.22/14640 (accessed on 17 December 2020).
- Henrique, P.; Pereira, M. Desenvolvimento de dispositivo de sensoreamento para cidades inteligentes usando o padrão LoRaWAN. Acta Bot. Brasilica 2019, 30, 39–64. [Google Scholar]
- Node-Red-Node-Mysql. Available online: https://flows.nodered.org/node/node-red-node-mysql (accessed on 18 October 2020).
- MariaDB Foundation—MariaDB.org. Available online: https://mariadb.org/ (accessed on 18 October 2020).
- American Society of Heating and Air-Conditioning Engineers. Available online: https://searchdatacenter.techtarget.com/definition/ASHRAE (accessed on 18 October 2020).
- Autobahn-Test: Audi e-tron gegen Rest der E-Auto-Welt. Available online: https://nextmove.de/autobahn-test-audi-e-tron-gegen-den-rest-der-elektroauto-welt/ (accessed on 13 December 2020).
- iPhone—Apple (PT). Available online: https://www.apple.com/pt/iphone/#footnote-9 (accessed on 25 October 2020).
- 15, 25 ou Mais de 30 Euros por Mês? Saiba Quanto pode Aumentar a Conta da luz das Famílias na Quarentena—ECO. Available online: https://eco.sapo.pt/2020/04/06/15-25-ou-mais-de-30-euros-por-mes-saiba-quanto-pode-aumentar-a-conta-da-luz-das-familias-na-quarentena/ (accessed on 25 October 2020).
Temperature | Humidity | ||
---|---|---|---|
Color | Temperature Range | Color | Humidity Level |
Blue | <22 °C | Red | <40% |
Green | 22 °C–28 °C | Green | 40–70% |
Red | >28 °C | Yellow | >70% |
Electrical Energy Consumption | |
---|---|
Color | Energy (kWh) |
Green | >Mrms kWh − 20% |
Blue | Mrms kWh |
Red | <Mrms kWh + 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mataloto, B.; Calé, D.; Carimo, K.; Ferreira, J.C.; Resende, R. 3D IoT System for Environmental and Energy Consumption Monitoring System. Sustainability 2021, 13, 1495. https://doi.org/10.3390/su13031495
Mataloto B, Calé D, Carimo K, Ferreira JC, Resende R. 3D IoT System for Environmental and Energy Consumption Monitoring System. Sustainability. 2021; 13(3):1495. https://doi.org/10.3390/su13031495
Chicago/Turabian StyleMataloto, Bruno, Daniel Calé, Kaiser Carimo, Joao C. Ferreira, and Ricardo Resende. 2021. "3D IoT System for Environmental and Energy Consumption Monitoring System" Sustainability 13, no. 3: 1495. https://doi.org/10.3390/su13031495
APA StyleMataloto, B., Calé, D., Carimo, K., Ferreira, J. C., & Resende, R. (2021). 3D IoT System for Environmental and Energy Consumption Monitoring System. Sustainability, 13(3), 1495. https://doi.org/10.3390/su13031495