Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Abstract
:1. Introduction
2. H2 as an Energy Vector
3. Methodology
4. Results and Discussion: Case Study
4.1. Study Port
4.2. Load/Demand Assessment and Resources
4.2.1. Sizing of H2 Line and Photovoltaic Plant
- IBA.PV = 1584.69 MWh/MWp;
- IBMax.PV = 5.60 MWh/MWp (month December);
- IBMin.PV = 2.67 MWh/MWp (month June).
- Scenario 1: Month with the minimum indicator of power generation from the photovoltaic system: IBMin.PV;
- Scenario 2: Month with the maximum power generation indicator from the photovoltaic system: IBMax.PV;
- Scenario 3: For annual average power generation: IBA.PV.
- 1 l diesel = 1 USD$;
- 1 kgH2 = 4.09 USD$.
- 1 l diesel = 0.846 kgD;
- HHVD = 12.67 kWh/kgD;
- ;
- .
- .
- LHVH2 = 33.33 kWh/kgH2;
- ];
- ;
4.2.2. Cost Estimation and Comparison Assuming Green H2 Production
- Hours of Operation per day Electrolyzer (ELZ): 8 h;
- Hours of Operation per day Fuel Cell (FC): 8 h;
- ELZ: 1.6 USD$/W;
- FC: 1.6 USD$/W.
- Power FC: 0.125 MW;
- Power ELZ: 0.38 MW.
- FC of 0.125 MW: USD$200,000;
- ELZ of 0.38 MW: USD$615,385;
- Lifetime FC: 100,000 h;
- Lifetime ELZ: 100,000 h.
4.2.3. LCOE Estimation (Simplified)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 2018, 3, 628–633. [Google Scholar] [CrossRef]
- Kuzemko, C.; Bradshaw, M.; Bridge, G.; Goldthau, A.; Jewell, J.; Overland, I.; Scholten, D.; Van de Graaf, T.; Westphal, K. COVID-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 2020, 68, 101685. [Google Scholar] [CrossRef]
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2019, 151, 119682. [Google Scholar] [CrossRef]
- REmap—Renewable Energy Roadmaps. Available online: https://www.irena.org/remap (accessed on 26 January 2021).
- Generación Eléctrica en Chile. Available online: http://generadoras.cl/generacion-electrica-en-chile (accessed on 25 January 2021).
- Comisión Nacional de Energía. Generación de Energía Eléctrica—Energía Abierta. Available online: http://energiaabierta.cl/visualizaciones/generacion-de-energia-electrica/ (accessed on 25 January 2021).
- Comisión Nacional de Energía. Balance Nacional de Energía—Energía Abierta. Available online: http://energiaabierta.cl/visualizaciones/balance-de-energia/ (accessed on 25 January 2021).
- Ministerio de Energía. Estrategia Nacional de Hidrógeno Verde. Available online: https://energia.gob.cl/h2/Estrategia-nacional-de-hidrogeno-verde (accessed on 25 January 2021).
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2018, 101, 279–294. [Google Scholar] [CrossRef]
- Masip, Y.; Gutierrez, A.; Morales, J.; Campo, A.; Valín, M. Integrated Renewable Energy System based on IREOM Model and Spatial–Temporal Series for Isolated Rural Areas in the Region of Valparaiso, Chile. Energies 2019, 12, 1110. [Google Scholar] [CrossRef] [Green Version]
- Kötter, E.; Schneider, L.; Sehnke, F.; Ohnmeiss, K.; Schröer, R. The future electric power system: Impact of Power-to-Gas by interacting with other renewable energy components. J. Energy Storage 2016, 5, 113–119. [Google Scholar] [CrossRef]
- Pleßmann, G.; Erdmann, M.; Hlusiak, M.; Breyer, C. Global Energy Storage Demand for a 100% Renewable Electricity Supply. Energy Procedia 2014, 46, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Colbertaldo, P.; Agustin, S.B.; Campanari, S.; Brouwer, J. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. Int. J. Hydrogen Energy 2019, 44, 9558–9576. [Google Scholar] [CrossRef]
- Lu, B.; Blakers, A.; Stocks, M. 90–100% renewable electricity for the South West Interconnected System of Western Australia. Energy 2017, 122, 663–674. [Google Scholar] [CrossRef]
- Schuetze, T.; Lee, J.-W.; Lee, T.-G. Sustainable Urban (re-)Development with Building Integrated Energy, Water and Waste Systems. Sustainability 2013, 5, 1114–1127. [Google Scholar] [CrossRef] [Green Version]
- Microgrids Enter the Mainstream—Renewable Energy Focus. Available online: http://www.renewableenergyfocus.com/view/43345/microgrids-enter-the-mainstream/ (accessed on 25 January 2021).
- Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (accessed on 25 January 2021).
- Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study; NREL/TP-5500-50057, 1001442; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010.
- Fuel Cells and Hydrogen Joint Undertaking. Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Chehade, Z.; Mansilla, C.; Lucchese, P.; Hilliard, S.; Proost, J. Review and analysis of demonstration projects on power-to-X pathways in the world. Int. J. Hydrogen Energy 2019, 44, 27637–27655. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Bourne, S. The future of fuel: The future of hydrogen. Fuel Cells Bull. 2012, 2012, 12–15. [Google Scholar] [CrossRef]
- Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Appl. Energy 2017, 200, 290–302. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Morgan, E.; Manwell, J.; McGowan, J. Wind-powered ammonia fuel production for remote islands: A case study. Renew. Energy 2014, 72, 51–61. [Google Scholar] [CrossRef]
- Proost, J. State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. Int. J. Hydrogen Energy 2018, 44, 4406–4413. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Reuß, M.; Grube, T.; Robinius, M.; Stolten, D. A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany. Appl. Energy 2019, 247, 438–453. [Google Scholar] [CrossRef]
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 2019, 45, 1541–1558. [Google Scholar] [CrossRef]
- Hydrogen Tools. Basic Hydrogen Properties Chart. Available online: https://h2tools.org/tools (accessed on 25 January 2021).
- Cardella, U.; Decker, L.; Klein, H. Roadmap to economically viable hydrogen liquefaction. Int. J. Hydrogen Energy 2017, 42, 13329–13338. [Google Scholar] [CrossRef]
- Chapman, A.J.; Fraser, T.; Itaoka, K. Hydrogen import pathway comparison framework incorporating cost and social preference: Case studies from Australia to Japan. Int. J. Energy Res. 2017, 41, 2374–2391. [Google Scholar] [CrossRef]
- Al-Sharafi, A.; Sahin, A.Z.; Ayar, T.; Yilbas, B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 69, 33–49. [Google Scholar] [CrossRef]
- Yoshino, Y.; Harada, E.; Inoue, K.; Yoshimura, K.; Yamashita, S.; Hakamada, K. Feasibility Study of “CO2 Free Hydrogen Chain” Utilizing Australian Brown Coal Linked with CCS. Energy Procedia 2012, 29, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Noussan, M.; Raimondi, P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Vásquez, R.; Salinas, F. Tecnologías del Hidrógeno y Perspectivas para Chile, 1st ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2018. [Google Scholar]
- Chardonnet, C.; Giordano, V.; De Vos, L.; Bart, F.; De Lacroix, T. Study on Early Business Cases for H2 in Energy Storage and More Broadly Power to H2 Applications; FCH-JU: Brussels, Belgium, 2017. [Google Scholar]
- Sharma, A.; Arya, S.K. Hydrogen from algal biomass: A review of production process. Biotechnol. Rep. 2017, 15, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, S.; Lanzini, A.; Leone, P. Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector. Appl. Energy 2015, 143, 370–382. [Google Scholar] [CrossRef]
- Walker, S.B.; Mukherjee, U.; Fowler, M.; Elkamel, A. Benchmarking and selection of Power-to-Gas utilizing electrolytic hydrogen as an energy storage alternative. Int. J. Hydrogen Energy 2015, 41, 7717–7731. [Google Scholar] [CrossRef]
- Mohamed, B.; Ali, B.; Ahmed, B.; Ahmed, B.; Salah, L.; Rachid, D. Study of hydrogen production by solar energy as tool of storing and utilization renewable energy for the desert areas. Int. J. Hydrogen Energy 2016, 41, 20788–20806. [Google Scholar] [CrossRef]
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Ikäheimo, J.; Kiviluoma, J.; Weiss, R.; Holttinen, H. Power-to-ammonia in future North European 100% renewable power and heat system. Int. J. Hydrogen Energy 2018, 43, 17295–17308. [Google Scholar] [CrossRef]
- Takaoka, Y.; Kagaya, H.; Saeed, A.; Nishimura, M. Introduction to a Liquefied Hydrogen Carrier for a Pilot Hydrogen Energy Supply Chain (HESC) Project in Japan; Kawasaki Heavy Industries: Tokyo, Japan, 2017. [Google Scholar]
- Elgowainy, A.; Gaines, L.; Wang, M. Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation. Int. J. Hydrogen Energy 2009, 34, 3557–3570. [Google Scholar] [CrossRef]
- Gallardo, F.I.; Ferrario, A.M.; Lamagna, M.; Bocci, E.; Garcia, D.A.; Baeza-Jeria, T.E. A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. Int. J. Hydrogen Energy 2020, 46, 13709–13728. [Google Scholar] [CrossRef]
- Chile Wants to Fuel a Green Hydrogen Boom with $300 Million Fund. Available online: https://www.bloomberg.com/news/articles/2021-05-04/chile-wants-to-fuel-a-green-hydrogen-boom-with-300-million-fund (accessed on 4 May 2021).
- Zolezzi, J.; Garay, A.; Reveco, M. Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile. J. Power Sources 2010, 195, 8236–8243. [Google Scholar] [CrossRef]
- Bilbao, D.C. Valorization of the waste heat given off in a system alkaline electrolyzer-photovoltaic array to improve hydrogen production performance: Case study Antofagasta, Chile. Int. J. Hydrogen Energy 2021, 46, 31108–31121. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Song, Y.; Roh, Y. Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon. Transp. Res. Part D Transp. Environ. 2013, 25, 1–4. [Google Scholar] [CrossRef]
- Secretariat UNCTAD. Review of Maritime Transport 2016. Available online: https://unctad.org/system/files/official-document/rmt2016_en.pdf (accessed on 25 January 2021).
- Acciaro, M.; Vanelslander, T.; Sys, C.; Ferrari, C.; Roumboutsos, A.; Giuliano, G.; Lam, J.S.L.; Kapros, S. Environmental sustainability in seaports: A framework for successful innovation. Marit. Policy Manag. 2014, 41, 480–500. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Notteboom, T. The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe. Transp. Rev. 2014, 34, 169–189. [Google Scholar] [CrossRef]
- Terminal Pacífico Sur Valparaíso (TPS). Cuidado Del Medio Ambiente. Available online: https://www.tps.cl/medio-ambiente/tps/2013-08-05/173136.html (accessed on 25 January 2021).
- Styhre, L.; Winnes, H.; Black, J.; Lee, J.; Le-Griffin, H. Greenhouse gas emissions from ships in ports—Case studies in four continents. Transp. Res. Part D Transp. Environ. 2017, 54, 212–224. [Google Scholar] [CrossRef]
- Marin, J.; Raga, G.B.; Arévalo, J.; Baumgardner, D.; Córdova, A.M.; Pozo, D.; Calvo, A.; Castro, A.; Fraile, R.; Sorribas, M. Properties of particulate pollution in the port city of Valparaiso, Chile. Atmos. Environ. 2017, 171, 301–316. [Google Scholar] [CrossRef]
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen Storage Technologies for Future Energy Systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef]
- Dicks, A.; Rand, D.A.J. Fuel Cell Systems Explained; Wiley Online Library: Chichester, UK, 2018; Volume 479. [Google Scholar]
- Silveira, J.L. Sustainable Hydrogen Production Processes: Energy, Economic and Ecological Issues. In Green Energy and Technology; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-41614-4. [Google Scholar]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen Production Technologies Overview. J. Power Energy Eng. 2019, 07, 107–154. [Google Scholar] [CrossRef] [Green Version]
- Saithong, N.; Authayanun, S.; Patcharavorachot, Y.; Arpornwichanop, A. Thermodynamic analysis of the novel chemical looping process for two-grade hydrogen production with CO2 capture. Energy Convers. Manag. 2019, 180, 325–337. [Google Scholar] [CrossRef]
- Smolinka, T. Water Electrolysis: Status and Potential for Development; Fraunhofer: Freiburg, Germany, 2014. [Google Scholar]
- Hydrogen Production Technologies; Sankir, M.; Sankir, N.D. Advances in Hydrogen Production and Storage; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-1-119-28364-5. [Google Scholar]
- Walker, S.B.; van Lanen, D.; Fowler, M.; Mukherjee, U. Economic analysis with respect to Power-to-Gas energy storage with consideration of various market mechanisms. Int. J. Hydrogen Energy 2016, 41, 7754–7765. [Google Scholar] [CrossRef]
- dos Santos, K.G.; Eckert, C.T.; De Rossi, E.; Bariccatti, R.A.; Frigo, E.P.; Lindino, C.A.; Alves, H.J. Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 2017, 68, 563–571. [Google Scholar] [CrossRef]
- Bruce, S.; Temminghoff, M.; Hayward, J.; Schmidt, E.; Munnings, C.; Palfreyman, D.; Hartley, P. National Hydrogen Roadmap; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2018. [Google Scholar]
- Palmer, G. Australia’s Hydrogen Future 2018; Energy Transition Hub: Melbourne, Australia, 2018. [Google Scholar]
- Chen, Y.-T.; Hsu, C.-W. The key factors affecting the strategy planning of Taiwan’s hydrogen economy. Int. J. Hydrogen Energy 2018, 44, 3290–3305. [Google Scholar] [CrossRef]
- Marchi, C.S.; Hecht, E.; Ekoto, I.; Groth, K.; LaFleur, C.; Somerday, B.; Mukundan, R.; Rockward, T.; Keller, J.; James, C. Overview of the DOE hydrogen safety, codes and standards program, part 3: Advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards. Int. J. Hydrogen Energy 2016, 42, 7263–7274. [Google Scholar] [CrossRef] [Green Version]
- Boudries, R.; Khellaf, A.; Aliane, A.; Ihaddaden, L.; Khida, F. PV system design for powering an industrial unit for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 15188–15195. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Ghaib, K.; Ben-Fares, F.-Z. Power-to-Methane: A state-of-the-art review. Renew. Sustain. Energy Rev. 2018, 81, 433–446. [Google Scholar] [CrossRef]
- Guandalini, G.; Campanari, S.; Romano, M.C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment. Appl. Energy 2015, 147, 117–130. [Google Scholar] [CrossRef]
- Kadam, R.; Panwar, N.L. Recent advancement in biogas enrichment and its applications. Renew. Sustain. Energy Rev. 2017, 73, 892–903. [Google Scholar] [CrossRef]
- Hirscher, M. Handbook of Hydrogen Storage: New Materials for Future Energy Storage; Wiley-VCH: Weinheim, Germany, 2010; ISBN 978-3-527-32273-2. [Google Scholar]
- Töpler, J.; Lehmann, J. Hydrogen and Fuel Cell; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-44971-4. [Google Scholar]
- Yokohama partnership to test green hydrogen supply chain. Fuel Cells Bull. 2016, 2016, 12–13. [CrossRef]
- Facchini, F.; Mummolo, G.; Mossa, G.; Digiesi, S.; Boenzi, F.; Verriello, R. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts. J. Ind. Eng. Manag. 2016, 9, 1035. [Google Scholar] [CrossRef] [Green Version]
- Geofísica, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Explorador Solar Chile—Manual de Usuario Versión 2016; Ministerio de Energía del Gobierno de Chile: Santiago de Chile, Chile, 2016.
- Ayodele, T.; Munda, J. Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. Int. J. Hydrogen Energy 2019, 44, 17669–17687. [Google Scholar] [CrossRef]
- Winnes, H.; Styhre, L.; Fridell, E. Reducing GHG emissions from ships in port areas. Res. Transp. Bus. Manag. 2015, 17, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Chaube, A.; Chapman, A.; Shigetomi, Y.; Huff, K.; Stubbins, J. The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals. Energies 2020, 13, 4539. [Google Scholar] [CrossRef]
- Ministerio de Transporte y Telecomunicaciones Desarrollo Logistico. Available online: http://www.logistica.mtt.cl/areas/1/desarrollo-portuario (accessed on 14 October 2021).
- Hydrogen and Fuel Cells in the Ports Workshop Report 2017; California Hydrogen Business Council: Yorba Linda, CA, USA, 2017.
- Plug Power. Applications: Sustainable Fuel Cell Solutions for an Electrified World. Available online: https://www.plugpower.com/applications/ (accessed on 14 October 2021).
- Principales Puertos de Carga en Chile para el Transporte Marítimo de Mercancías. Available online: https://lamaignere.com/es/noticias/ficha/principales-puertos-de-carga-en-chile-para-el-transporte-maritimo-de-mercancias (accessed on 14 October 2021).
- Estadísticas de la Cámara Marítima y Portuaria de Chile. Available online: https://www.camport.cl/estadisticas/ (accessed on 14 October 2021).
- Guerra, C.F.; Reyes-Bozo, L.; Vyhmeister, E.; Caparrós, M.J.; Salazar, J.L.; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renew. Energy 2020, 157, 404–414. [Google Scholar] [CrossRef]
- Explorador Solar. Available online: http://solar.minenergia.cl/exploracion (accessed on 14 October 2021).
- Barbir, F. PEM Fuel Cells: Theory and Practice; Academic Press: Cambridge, MA, USA, 2012; ISBN 0-12-387710-5. [Google Scholar]
- Wheeler, K.R. Efficient Operation of Diesel Generator Sets in Remote Environments. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017. [Google Scholar]
- Ghenai, C.; Bettayeb, M.; Brdjanin, B.; Hamid, A.K. Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Stud. Therm. Eng. 2019, 14, 100497. [Google Scholar] [CrossRef]
- Jamshidi, M.; Askarzadeh, A. Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustain. Cities Soc. 2018, 44, 310–320. [Google Scholar] [CrossRef]
- Global Energy Review 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 26 January 2020).
- Renewable Power Generation Costs in 2020. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 28 October 2021).
Primary Consumers in the Port | Attractive Characteristics for Using Green H2 |
---|---|
RTG Crane Diesel generator Forklift Manlift Container Handler Container Reach Stackers Yard Tractors Straddle Carrier | Use of fossil fuels A large percentage of port assets Intensive use in cargo handling and conditioning High energy intensity Inability to pause operations to charge batteries, in the case of equipment with the technology Space available for storage of batteries and fuels |
Location | |
Initial Date Data | 1 July 2004 |
End Date Data | 30 December 2016 |
Latitude | −32.78727048 |
Length | −70.95353415 |
Height [m] | 426 m |
Photovoltaic Panel Parameters | |
Arrangement Type | Permanent |
Inclination [°] | 27 |
Azimuth [°] | −7 |
Installed Capacity [MW] | 1 |
Coverage | Glass |
Mounting Type | open_rack_cell_glassback |
Temperature coefficient [%/°C] | −0.45 |
Loss factor [%] | 14 |
Investor Efficiency | 0.96 |
Month | Indicator [MWh/MWp] | Days of Each Month | Monthly PV Generation [MWh] |
---|---|---|---|
January | 5.57 | 31 | 172.71 |
February | 5.47 | 28 | 153.29 |
March | 5.01 | 31 | 155.28 |
April | 4.15 | 30 | 124.50 |
May | 3.17 | 31 | 98.37 |
June | 2.67 | 30 | 80.13 |
July | 2.84 | 31 | 88.08 |
August | 3.32 | 31 | 102.78 |
September | 4.13 | 30 | 124.01 |
October | 4.84 | 31 | 150.00 |
November | 5.39 | 30 | 161.84 |
December | 5.60 | 31 | 173.70 |
H2 System | DG System | ||||
---|---|---|---|---|---|
Parameter | Value | Unit | Parameter | Value | Unit |
Fuel cell efficiency (ηFC) | 0.5 | - | Efficiency (ηDG) | 0.38 | - |
Electrolyzer efficiency (ηELZ) | 0.65 | - | Diesel Density | 846 | [kg/m3] |
Lower Heating Value of H2 (LHVH2) | 33.3 | [kWh/kgH2] | Higher Heating Value of Diesel (HHVD) | 12.67 | [kWh/kgD] |
Scenarios | Power from the PV Plant [MWp] | Gx 1 Typical Day June [MWh] | Gx Month June [MWh] | Gx 1 Typical Day December [MWh] | Gx Month December [MWh] | Gx Annual [MWh] | PV Plant Cost [USD$] |
---|---|---|---|---|---|---|---|
(1) June | 1.15 | 3.08 | 92.31 | 6.45 | 200.1 | 1825 | $863,949 |
(2) December | 0.55 | 1.47 | 44.00 | 3.08 | 95.4 | 870 | $411,855 |
(3) Annual average | 0.71 | 1.89 | 56.71 | 3.97 | 122.9 | 1121 | $530,744 |
Scenarios | Power from the PV Plant [MWp] | June [kgH2/day] | June [kgH2/day] | December [kgH2/day] | December [kgH2/month] | [kgH2/year] |
---|---|---|---|---|---|---|
(1) June | 1.15 | 60 | 1800 | 126 | 3902 | 35,600 |
(2) December | 0.55 | 29 | 858 | 60 | 1860 | 16,971 |
(3) Annual average | 0.71 | 37 | 1106 | 77 | 2397 | 21,870 |
Variable | Value | Unit |
---|---|---|
LT 1 for PV Plant | 25 | year |
ELZ: H2 production in LT | 750,075 | kgH2 |
FC: Electric Power Production in LT | 12,500 | MWh |
Prorate FC | 16 | USD$/MWh |
Prorate ELZ | 0.82 | USD$/kgH2 |
Prorate ELZeq = (Prorate ELZ/LHVH2) | 0.02 | USD$/kWheq,H2 |
Prorate PV (June) | 18.93 | USD$/MWh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masip Macía, Y.; Rodríguez Machuca, P.; Rodríguez Soto, A.A.; Carmona Campos, R. Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile. Sustainability 2021, 13, 13681. https://doi.org/10.3390/su132413681
Masip Macía Y, Rodríguez Machuca P, Rodríguez Soto AA, Carmona Campos R. Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile. Sustainability. 2021; 13(24):13681. https://doi.org/10.3390/su132413681
Chicago/Turabian StyleMasip Macía, Yunesky, Pablo Rodríguez Machuca, Angel Alexander Rodríguez Soto, and Roberto Carmona Campos. 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile" Sustainability 13, no. 24: 13681. https://doi.org/10.3390/su132413681
APA StyleMasip Macía, Y., Rodríguez Machuca, P., Rodríguez Soto, A. A., & Carmona Campos, R. (2021). Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile. Sustainability, 13(24), 13681. https://doi.org/10.3390/su132413681