An Empirical Study on How Livestreaming Can Contribute to the Sustainability of Green Agri-Food Entrepreneurial Firms
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Task–Technology Fit Theory
2.2. Task Characteristics of Green Agri-Food
2.3. Technology Characteristics of Livestreaming
2.4. Task–Technology Fit, Technology Adoption, and Performance
2.5. Corporate Social Responsibility
3. Methodology
3.1. Sampling and Data Collection
3.2. Bias Testing
3.3. Variables and Measurement
4. Analyses and Results
4.1. Measurement Reliability and Validity
4.2. Hypothesis Testing
5. Discussion and Conclusions
6. Limitations and Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TTF | Task–technology fit |
CSR | Corporate social responsibility |
References
- Joshi, Y.; Rahman, Z. Factors affecting green purchase behaviour and future research directions. Int. Strateg. Manag. Rev. 2015, 3, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Ploeger, A. An integrated framework to explain consumers’ purchase intentions toward green food in the Chinese context. Food Qual. Prefer. 2021, 92, 104229. [Google Scholar] [CrossRef]
- Li, C.; Mirosa, M.; Bremer, P. Review of online food delivery platforms and their impacts on sustainability. Sustainability 2020, 12, 5528. [Google Scholar] [CrossRef]
- Bertram, R.F.; Chi, T. A study of companies’ business responses to fashion e-commerce’s environmental impact. Int. J. Fash. Des. 2018, 11, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W. Research on social responsibility of e-commerce platform. IOP Conf. Ser. Mater. Sci. Eng. 2018, 439, 032063. [Google Scholar] [CrossRef]
- Oláh, J.; Kitukutha, N.; Haddad, H.; Pakurár, M.; Máté, D.; Popp, J. Achieving sustainable e-commerce in environmental, social and economic dimensions by taking possible trade-offs. Sustainability 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K.A. A 2020 perspective on “How live streaming influences purchase intentions in social commerce: An IT affordance perspective”. Electron. Commer. Res. Appl. 2020, 40, 100958. [Google Scholar] [CrossRef]
- Sohn, J.W.; Kim, J.K. Factors that influence purchase intentions in social commerce. Sci. Technol. 2020, 63, 101365. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Neguriţă, O.; Grecu, I.; Grecu, G.; Mitran, P.C. Consumers’ decision-making process on social commerce platforms: Online trust, perceived risk, and purchase intentions. Front. Psychol. 2020, 11, 890. [Google Scholar] [CrossRef]
- Akram, U.; Junaid, M.; Zafar, A.U.; Li, Z.; Fan, M. Online purchase intention in Chinese social commerce platforms: Being emotional or rational? J. Retail. Consum. Serv. 2021, 63, 102669. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, F.; Wang, G.A.; Luo, C. The impact of live video streaming on online purchase intention. Serv. Ind. J. 2020, 40, 656–681. [Google Scholar] [CrossRef]
- Chen, C.D.; Zhao, Q.; Wang, J.L. How livestreaming increases product sales: Role of trust transfer and elaboration likelihood model. Behav. Inf. Technol. 2020, 1–16. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A.; Assarut, N. The role of live streaming in building consumer trust and engagement with social commerce sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See now, act now: How to interact with customers to enhance social commerce engagement? Inf. Manag. 2020, 57, 103324. [Google Scholar] [CrossRef]
- Molinillo, S.; Anaya-Sánchez, R.; Liebana-Cabanillas, F. Analyzing the effect of social support and community factors on customer engagement and its impact on loyalty behaviors toward social commerce websites. Comput. Hum. Behav. 2020, 108, 105980. [Google Scholar] [CrossRef]
- Cai, J.; Wohn, D.Y. Live streaming commerce: Uses and gratifications approach to understanding consumers’ motivations. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar] [CrossRef] [Green Version]
- Wongkitrungrueng, A.; Dehouche, N.; Assarut, N. Live streaming commerce from the sellers’ perspective: Implications for online relationship marketing. J. Mark. Manag. 2020, 36, 488–518. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, Y.; Lu, Y.; Hong, Y. Everyone can be a star in the digital economy: Quantifying the business value of live streaming technology in online retail. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Goodhue, D.L.; Thompson, R.L. Task-technology fit and individual performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking 2020, 27, 2599–2629. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, P.; Rana, N.P.; Islam, R.; Dwivedi, Y.K. Impact of internet of things (IoT) in disaster management: A task-technology fit perspective. Ann. Oper. Res. 2019, 283, 759–794. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wong, Y.D.; Chen, T.; Yuen, K.F. Adoption of shopper-facing technologies under social distancing: A conceptualisation and an interplay between task-technology fit and technology trust. Comput. Hum. Behav. 2021, 124, 106900. [Google Scholar] [CrossRef]
- Klopping, I.M.; McKinney, E. Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Inf. Technol. Learn. Perform. J. 2004, 22, 35–48. [Google Scholar]
- Vatanasakdakul, S.; D’Ambra, J.A. Conceptual model for e-commerce adoption in developing countries: A task-technology fit perspective. Int. J. Inf. Technol. Manag. 2007, 6, 343–361. [Google Scholar] [CrossRef]
- Lee, K.C.; Lee, S.; Kim, J.S. Analysis of mobile commerce performance by using the task-technology fit. In Proceedings of the IFIP Working Conference on Mobile Information Systems, Oslo, Norway, 15–17 September 2004; pp. 135–153. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Cheng, H.K.; Cheng, H.H. An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decis. Support Syst. 2007, 43, 95–110. [Google Scholar] [CrossRef]
- Dani, S. Food Supply Chain Management and Logistics: From Farm to Fork; Kogan Page Publishers: London, UK, 2015. [Google Scholar]
- Bond, J.K.; Thilmany, D.; Bond, C. What influences consumer choice of fresh produce purchase location? J. Agric. Econ. 2009, 41, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Spence, C. Explaining seasonal patterns of food consumption. Int. J. Gastron. Food Sci. 2021, 24, 100332. [Google Scholar] [CrossRef]
- Wilkins, J.L. Consumer perceptions of seasonal and local foods: A study in a US community. Ecol. Food Nutr. 2002, 41, 415–439. [Google Scholar] [CrossRef]
- Wilkins, J.L. Seasonality, food origin, and food preference: A comparison between food cooperative members and nonmembers. J. Nutr. Educ. 1996, 28, 329–337. [Google Scholar] [CrossRef]
- Thilmany, D.; Bond, C.A.; Bond, J.K. Going local: Exploring consumer behavior and motivations for direct food purchases. Am. J. Agric. Econ. 2008, 90, 1303–1309. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, Z.; Huang, J.; Wang, J.; Xu, S.; Zhang, L. Consumers’ perceptions, purchase intention, and willingness to pay a premium price for safe vegetables: A case study of Beijing, China. J. Clean. Prod. 2018, 197, 1498–1507. [Google Scholar] [CrossRef]
- Seccia, A.; Viscecchia, R.; Nardone, G. Table grapes as functional food: Consumer preferences for health and environmental attributes. BIO Web Conf. 2019, 15, 03011. [Google Scholar] [CrossRef]
- Sánchez-Bravo, P.; Chambers, E.; Noguera-Artiaga, L.; Sendra, E.; Chambers, I.V.E.; Carbonell-Barrachina, Á.A. Consumer understanding of sustainability concept in agricultural products. Food Qual. Prefer. 2021, 89, 104136. [Google Scholar] [CrossRef]
- Goh, S.K.; Balaji, M. Linking green skepticism to green purchase behavior. J. Clean. Prod. 2016, 131, 629–638. [Google Scholar] [CrossRef]
- Padmanabhan, V.N.; Wang, H.J.; Chou, P.A.; Sripanidkulchai, K. Distributing streaming media content using cooperative networking. In Proceedings of the 12th International Workshop on Network and Operating Systems Support for Digital Audio and Video, Miami, FL, USA, 12–14 May 2002; pp. 177–186. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, Y.C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Blasco-Arcas, L.; Hernandez-Ortega, B.; Jimenez-Martinez, J. Adopting television as a new channel for e-commerce. The influence of interactive technologies on consumer behavior. Electron. Commer. Res. 2013, 13, 457–475. [Google Scholar] [CrossRef]
- Wu, L. Website interactivity may compensate for consumers’ reduced control in E-Commerce. J. Retail. Consum. Serv. 2019, 49, 253–266. [Google Scholar] [CrossRef]
- Sukpanich, N.; Chen, L.D. Interactivity as the driving force behind e-commerce. In Proceedings of the Americas Conference on Information Systems (AMCIS 2000), Long Beach, CA, USA, 10–13 August 2000; p. 244. [Google Scholar]
- Liu, P.; Li, M.; Dai, D.; Guo, L. The effects of social commerce environmental characteristics on customers’ purchase intentions: The chain mediating effect of customer-to-customer interaction and customer-perceived value. Electron. Commer. Res. Appl. 2021, 48, 101073. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, Z.; Dou, Y.F. Effect of social commerce factors on user purchase behavior: An empirical investigation from renren. com. Int. J. Inf. Manag. 2015, 35, 538–550. [Google Scholar] [CrossRef]
- Wu, G.; Wu, G. Conceptualizing and measuring the perceived interactivity of websites. J. Curr. Issues Res. Advert. 2006, 28, 87–104. [Google Scholar] [CrossRef]
- Ahn, T.; Ryu, S.; Han, I. The impact of the online and offline features on the user acceptance of Internet shopping malls. Electron. Commer. Res. Appl. 2004, 3, 405–420. [Google Scholar] [CrossRef]
- Lim, S.; Cha, S.Y.; Park, C.; Lee, I.; Kim, J. Getting closer and experiencing together: Antecedents and consequences of psychological distance in social media-enhanced real-time streaming video. Comput. Hum. Behav. 2012, 28, 1365–1378. [Google Scholar] [CrossRef]
- Tajvidi, M.; Richard, M.O.; Wang, Y.; Hajli, N. Brand co-creation through social commerce information sharing: The role of social media. J. Bus. Res. 2020, 121, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, X.; Hajli, N. Building e-commerce satisfaction and boosting sales: The role of social commerce trust and its antecedents. Int. J. Electron. Commer. 2019, 23, 328–363. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Zhang, S.; Zhang, W. Mobile social media use intention in emergencies among Gen Y in China: An integrative framework of gratifications, task-technology fit, and media dependency. Telemat. Inform. 2019, 42, 101244. [Google Scholar] [CrossRef]
- Khidzir, N.Z.; Ghani, W.S.D.W.A.; Guan, T.T. Cloud-Based Mobile-Retail Application for Textile Cyberpreneurs: Task-Technology Fit Perspective Analysis. In Proceedings of the International Conference on High Performance Compilation, Computing and Communications, Kuala Lumpur, Malaysia, 22–24 March 2017; pp. 65–70. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Lu, Y.; Hong, Y. Everyone can be a star: Quantifying grassroots online sellers’ live streaming effects on product sales. In Proceedings of the International Conference on Information System (ICIS), San Francisco, CA, USA, 13–16 December 2018. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.B. A three-dimensional conceptual model of corporate performance. Acad. Manag. Rev. 1979, 4, 497–505. [Google Scholar] [CrossRef]
- Carroll, A.B. The pyramid of corporate social responsibility: Toward the moral management of organizational stakeholders. Bus. Horiz. 1991, 34, 39–48. [Google Scholar] [CrossRef]
- Chen, Q. Comprehensive Evaluation of Businesses Strategy and E-Commerce Performance in Smes: A Corporate Social Responsibility Perspective. Int. J. Hybrid Inf. Technol. 2016, 9, 361–370. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J.; Kwon, S.J. Corporate social responsibility as a determinant of consumer loyalty: An examination of ethical standard, satisfaction, and trust. J. Bus. Res. 2017, 76, 8–13. [Google Scholar] [CrossRef]
- Sen, S.; Du, S.; Bhattacharya, C. Corporate social responsibility: A consumer psychology perspective. Curr. Opin. Behav. Sci. 2016, 10, 70–75. [Google Scholar] [CrossRef]
- Klein, J.; Dawar, N. Corporate social responsibility and consumers’ attributions and brand evaluations in a product–harm crisis. Int. J. Res. Mark. 2004, 21, 203–217. [Google Scholar] [CrossRef]
- Ellen, P.S.; Webb, D.J.; Mohr, L.A. Building corporate associations: Consumer attributions for corporate socially responsible programs. J. Acad. Mark. Sci. 2006, 34, 147–157. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Ketchen, D.J.; Griffith, D.A.; Finnegan, C.A.; Gonzalez-Padron, T.; Harmancioglu, N.; Huang, Y.; Talay, M.B.; Cavusgil, C.T. Data equivalence in cross-cultural international business research: Assessment and guidelines. J. Int. Bus. Stud. 2008, 39, 1027–1044. [Google Scholar] [CrossRef]
- Hoskisson, R.E.; Eden, L.; Lau, C.M.; Wright, M. Strategy in emerging economies. Acad. Manag. J. 2000, 43, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.J.; Van Witteloostuijn, A.; Eden, L. From the editors: Common method variance in international business research. J. Int. Bus. Stud. 2010, 41, 178–184. [Google Scholar] [CrossRef]
- Johnson, R.E.; Rosen, C.C.; Djurdjevic, E. Assessing the impact of common method variance on higher order multidimensional constructs. J. Appl. Psychol. 2011, 96, 744. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef]
- Horng, J.S.; Chou, S.F.; Liu, C.H.; Tsai, C.Y. Creativity, aesthetics and eco-friendliness: A physical dining environment design synthetic assessment model of innovative restaurants. Tour. Manag. 2013, 36, 15–25. [Google Scholar] [CrossRef]
- Laroche, M.; Bergeron, J.; Barbaro-Forleo, G. Targeting consumers who are willing to pay more for environmentally friendly products. J. Consum. Mark. 2001, 18, 503–520. [Google Scholar] [CrossRef] [Green Version]
- McCarty, J.A.; Shrum, L. The recycling of solid wastes: Personal values, value orientations, and attitudes about recycling as antecedents of recycling behavior. J. Bus. Res. 1994, 30, 53–62. [Google Scholar] [CrossRef]
- Hennessy, D.A. Region marginalization in agriculture, seasonality, dedicated capital, and product development with reference to North Europe dairy sector. Ann. Reg. Sci. 2007, 41, 467–486. [Google Scholar] [CrossRef]
- Murphy, J.A. The seasonality of risk and return on agricultural futures positions. Am. J. Agric. Econ. 1987, 69, 639–646. [Google Scholar] [CrossRef]
- Schmitz, A.; Wang, Z.; Kimn, J.H. A jump diffusion model for agricultural commodities with Bayesian analysis. J. Futures Mark. 2014, 34, 235–260. [Google Scholar] [CrossRef]
- Sørensen, C. Modeling seasonality in agricultural commodity futures. J. Futures Mark. 2002, 22, 393–426. [Google Scholar] [CrossRef]
- Cai, Y.; Xia, C. Interpretive structural analysis of interrelationships among the elements of characteristic agriculture development in Chinese rural poverty alleviation. Sustainability 2018, 10, 786. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.; Kenney, M.; Patton, D. Regional identity can add value to agricultural products. Calif. agric. 2015, 69, 85–91. [Google Scholar] [CrossRef]
- Qin, H.; Liao, T.F. Labor out-migration and agricultural change in rural China: A systematic review and meta-analysis. J. Rural Stud. 2016, 47, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, X.; Zhou, B. Relationship among interaction, presence and consumer trust in B2C online shopping. Manag. Rev. 2015, 27, 43–54. [Google Scholar]
- Hsu, C.L.; Lin, J.C.C. Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Inf. Manag. 2008, 45, 65–74. [Google Scholar] [CrossRef]
- Kim, M.J.; Chung, N.; Lee, C.K.; Preis, M.W. Motivations and use context in mobile tourism shopping: Applying contingency and task–technology fit theories. Int. J. Cult. Tour. Hosp. Res. 2015, 17, 13–24. [Google Scholar] [CrossRef]
- Howard, M.C.; Rose, J.C. Refining and extending task–technology fit theory: Creation of two task–technology fit scales and empirical clarification of the construct. Inf. Manag. 2019, 56, 103134. [Google Scholar] [CrossRef]
- Lam, T.; Cho, V.; Qu, H. A study of hotel employee behavioral intentions towards adoption of information technology. Int. J. Hosp. Manag. 2007, 26, 49–65. [Google Scholar] [CrossRef]
- Luo, Y. Political behavior, social responsibility, and perceived corruption: A structuration perspective. J. Int. Bus. Stud. 2006, 37, 747–766. [Google Scholar] [CrossRef]
- Maignan, I. Consumers’ perceptions of corporate social responsibilities: A cross-cultural comparison. J. Bus. Ethics 2001, 30, 57–72. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
- Yen, D.C.; Wu, C.S.; Cheng, F.F.; Huang, Y.W. Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Comput. Hum. Behav. 2010, 26, 906–915. [Google Scholar] [CrossRef]
- Hultman, M.; Robson, M.J.; Katsikeas, C.S. Export product strategy fit and performance: An empirical investigation. J. Int. Mark. 2009, 17, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Katsikeas, C.S.; Samiee, S.; Theodosiou, M. Strategy fit and performance consequences of international marketing standardization. Strateg. Manag. 2006, 27, 867–890. [Google Scholar] [CrossRef]
- Samiee, S.; Chirapanda, S. International marketing strategy in emerging-market exporting firms. J. Int. Mark. 2019, 27, 20–37. [Google Scholar] [CrossRef]
- Tam, C.; Oliveira, T. Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Comput. Hum. Behav. 2016, 61, 233–244. [Google Scholar] [CrossRef]
- Richter, N.F.; Sinkovics, R.R.; Ringle, C.M.; Schlägel, C. A critical look at the use of SEM in international business research. Int. Mark. Rev. 2016, 33, 376–404. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Chin, W.W. The partial least squares approach to structural equation modeling. Organ. Res. Methods 1998, 295, 295–336. [Google Scholar]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Geisser, S. The predictive sample reuse method with applications. J. Am. Stat. Assoc. 1975, 70, 320–328. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R Stat. Soc. Series B Stat. Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing (Advances in International Marketing, 20); Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Jiang, C.; Rashid, R.M.; Wang, J. Investigating the role of social presence dimensions and information support on consumers’ trust and shopping intentions. J. Retail. Consum. Serv. 2019, 51, 263–270. [Google Scholar] [CrossRef]
- Cho, D.W.; Lee, Y.H. Bullwhip effect measure in a seasonal supply chain. J. Intell. Manuf. 2012, 23, 2295–2305. [Google Scholar] [CrossRef]
- Orjuela Castro, J.A.; Orejuela Cabrera, J.P.; Adarme Jaimes, W. Logistics network configuration for seasonal perishable food supply chains. J. Ind. Eng. 2021, 14, 135–151. [Google Scholar] [CrossRef]
Construct and Indicators | Mean | STD | Item Loading | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|---|
Perceived locality (LOC) | 0.845 | 0.907 | 0.764 | |||
LOC1 | 5.223 | 1.250 | 0.834 | |||
LOC2 | 5.267 | 1.250 | 0.884 | |||
LOC3 | 5.326 | 1.281 | 0.904 | |||
Perceived seasonality (SEA) | 0.904 | 0.933 | 0.776 | |||
SEA1 | 5.321 | 1.286 | 0.866 | |||
SEA2 | 5.347 | 1.304 | 0.874 | |||
SEA3 | 5.300 | 1.284 | 0.901 | |||
SEA4 | 5.282 | 1.348 | 0.883 | |||
Perceived eco-friendliness (ECF) | 0.920 | 0.943 | 0.806 | |||
ECF1 | 5.376 | 1.354 | 0.901 | |||
ECF2 | 5.340 | 1.314 | 0.896 | |||
ECF3 | 5.303 | 1.398 | 0.898 | |||
ECF4 | 5.305 | 1.333 | 0.896 | |||
Responsiveness (REV) | 0.907 | 0.935 | 0.782 | |||
REV1 | 5.211 | 1.271 | 0.873 | |||
REV2 | 5.213 | 1.223 | 0.883 | |||
REV3 | 5.129 | 1.240 | 0.896 | |||
REV4 | 5.275 | 1.280 | 0.885 | |||
Interactivity (INT) | 0.923 | 0.942 | 0.764 | |||
INT1 | 5.084 | 1.418 | 0.871 | |||
INT2 | 5.148 | 1.287 | 0.872 | |||
INT3 | 5.174 | 1.292 | 0.872 | |||
INT4 | 5.286 | 1.264 | 0.880 | |||
INT5 | 5.235 | 1.276 | 0.874 | |||
Entertainment (ENT) | 0.917 | 0.938 | 0.750 | |||
ENT1 | 5.152 | 1.256 | 0.899 | |||
ENT2 | 5.131 | 1.287 | 0.880 | |||
ENT3 | 5.005 | 1.295 | 0.868 | |||
ENT4 | 5.172 | 1.326 | 0.868 | |||
ENT5 | 5.000 | 1.254 | 0.814 | |||
Task–technology fit (TTF) | 0.954 | 0.961 | 0.730 | |||
TTF1 | 5.265 | 1.300 | 0.852 | |||
TTF2 | 5.230 | 1.294 | 0.843 | |||
TTF3 | 5.172 | 1.271 | 0.869 | |||
TTF4 | 5.172 | 1.286 | 0.852 | |||
TTF5 | 5.282 | 1.255 | 0.852 | |||
TTF6 | 5.157 | 1.312 | 0.865 | |||
TTF7 | 5.193 | 1.243 | 0.845 | |||
TTF8 | 5.186 | 1.286 | 0.859 | |||
TTF9 | 5.268 | 1.292 | 0.854 | |||
Corporate social responsibility (CSR) | 0.957 | 0.963 | 0.722 | |||
CSR1 | 5.305 | 1.321 | 0.850 | |||
CSR2 | 5.416 | 1.300 | 0.852 | |||
CSR3 | 5.394 | 1.299 | 0.846 | |||
CSR4 | 5.240 | 1.276 | 0.853 | |||
CSR5 | 5.343 | 1.317 | 0.844 | |||
CSR6 | 5.293 | 1.286 | 0.855 | |||
CSR7 | 5.303 | 1.287 | 0.849 | |||
CSR8 | 5.368 | 1.298 | 0.851 | |||
CSR9 | 5.366 | 1.327 | 0.848 | |||
CSR10 | 5.420 | 1.363 | 0.852 | |||
Intention to adopt (ITA) | 0.943 | 0.953 | 0.716 | |||
ITA1 | 5.009 | 1.781 | 0.818 | |||
ITA2 | 5.131 | 1.606 | 0.838 | |||
ITA3 | 4.716 | 1.606 | 0.864 | |||
ITA4 | 4.247 | 1.870 | 0.847 | |||
ITA5 | 4.301 | 1.570 | 0.853 | |||
ITA6 | 4.429 | 1.580 | 0.841 | |||
ITA7 | 4.699 | 1.583 | 0.849 | |||
ITA8 | 4.770 | 1.595 | 0.859 | |||
Firm performance (PER) | 0.922 | 0.941 | 0.762 | |||
PER1 | 5.401 | 1.428 | 0.884 | |||
PER2 | 5.375 | 1.392 | 0.890 | |||
PER3 | 5.125 | 1.402 | 0.860 | |||
PER4 | 5.122 | 1.404 | 0.878 | |||
PER5 | 5.136 | 1.331 | 0.852 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Perceived eco-friendliness | 0.898 | |||||||||
2. Perceived seasonality | 0.582 | 0.881 | ||||||||
3. Perceived locality | 0.567 | 0.558 | 0.874 | |||||||
4. Responsiveness | 0.522 | 0.514 | 0.483 | 0.884 | ||||||
5. Interactivity | 0.480 | 0.399 | 0.434 | 0.669 | 0.874 | |||||
6. Entertainment | 0.562 | 0.547 | 0.478 | 0.671 | 0.676 | 0.866 | ||||
7. Task–technology fit | 0.623 | 0.568 | 0.584 | 0.713 | 0.696 | 0.739 | 0.855 | |||
8. Corporate social responsibility | 0.651 | 0.610 | 0.630 | 0.705 | 0.695 | 0.700 | 0.790 | 0.850 | ||
9. Intention to adopt | 0.420 | 0.408 | 0.381 | 0.532 | 0.600 | 0.618 | 0.616 | 0.599 | 0.846 | |
10. Firm performance | 0.583 | 0.505 | 0.519 | 0.656 | 0.685 | 0.687 | 0.714 | 0.730 | 0.665 | 0.873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Fan, X. An Empirical Study on How Livestreaming Can Contribute to the Sustainability of Green Agri-Food Entrepreneurial Firms. Sustainability 2021, 13, 12627. https://doi.org/10.3390/su132212627
Wang M, Fan X. An Empirical Study on How Livestreaming Can Contribute to the Sustainability of Green Agri-Food Entrepreneurial Firms. Sustainability. 2021; 13(22):12627. https://doi.org/10.3390/su132212627
Chicago/Turabian StyleWang, Mengmeng, and Xue Fan. 2021. "An Empirical Study on How Livestreaming Can Contribute to the Sustainability of Green Agri-Food Entrepreneurial Firms" Sustainability 13, no. 22: 12627. https://doi.org/10.3390/su132212627
APA StyleWang, M., & Fan, X. (2021). An Empirical Study on How Livestreaming Can Contribute to the Sustainability of Green Agri-Food Entrepreneurial Firms. Sustainability, 13(22), 12627. https://doi.org/10.3390/su132212627