Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy
Abstract
:1. Introduction
- To define which combinations of NBS work better in terms of thermal comfort improvement and local UHI mitigation.
- To evaluate the influence of urban morphonology and environmental conditions on NBS microclimatic performances.
- To evaluate how microclimatic and psychological and social aspects can be part of the urban design process, by a) assessing the value attributed by citizens to the presence of green spaces in cities and in highly built-up environments in terms of their ability to improve mood and well-being, and b) understanding which kind of design solutions with vegetation are most preferred by citizens in relation to the improvement of their quality of life.
2. Methodology
- Selecting suitable sites and relative analysis of the microclimatic conditions at the current state.
- Assessing NBS performances for the selected sites in terms of microclimate regulation and UHI mitigation, drafting of design scenarios and analyzing of thermal comfort.
- Carrying out a web survey to assess the preferences of citizens regarding the different scenarios and the perceptual and psychological benefits they may favor.
2.1. Site Selection
2.2. Thermal Comfort and Microclimate
2.3. Evaluation of Perceptive Benefits
3. Results and Discussion
3.1. Site Selection
- Site A (Piazza Moisello);
- Site B (Piazza Battelli);
- Site C (AMT parking lot).
3.2. Thermal Comfort and Microclimate
- Site A: from 41.60 °C to 35.85 °C for scenario 1A (trees) and 35.91 °C for scenario 2A (shelters).
- Site B: from 40.59 °C to 35.49 °C for scenario 1B (trees) and 35.08 °C for scenario 2B (shelters).
- Site C: from 40.14 °C to 34.43 °C for scenario 1C (trees) and 33.57 °C for scenario 2C (shelters).
3.3. Perceptive Benefits Evaluation
4. Conclusions
- Simulations for the three specific sites showed that the best performing (NB) solutions in mitigating local UHI and improving thermal comfort during the summer are those that introduce shaded areas, such as trees and shelters with climbing plants;
- For the case study analyzed, urban morphology partly influences the performances of the NBS in terms of improving thermal comfort;
- Survey results showed that the sample population highly preferred scenarios with a high component of natural elements concerning urban regeneration intervention (even if the sample is not representative);
- The perception of people about the role of vegetation in improving mood and well-being is very positive;
- What emerges from the analysis of the variables defining microclimatic and perceptual wellbeing is that even though design scenarios entail the same (or very similar) physical performance (e.g., microclimate regulation), users can have a clear preference toward one. Therefore, the study highlights the effectiveness of considering different kinds of variables to define human wellbeing in urban design.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beatley, T. Biophilic Cities: Integrating Nature into Urban Design and Planning; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Douglas, O.; Russell, P.; Scott, M. Positive Perceptions of Green and Open Space as Predictors of Neighbourhood Quality of Life: Implications for Urban Planning across the City Region. J. Environ. Plan. Manag. 2019, 62, 626–646. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Shou, Y.-X.; Dickerson, R.R. Upstream Urbanization Exacerbates Urban Heat Island Effects. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Nuruzzaman, M. Urban Heat Island: Causes, Effects and Mitigation Measures-a Review. Int. J. Environ. Monit. Anal. 2015, 3, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Neonato, F.; Tomasinelli, F.; Colaninno, B. Oro Verde: Quanto Vale La Natura in Città; Il Verde Editoriale: Milan, Italy, 2019. [Google Scholar]
- Pedersen Zari, M. Ecosystem Services Analysis for the Design of Regenerative Built Environments. Build. Res. Inf. 2012, 40, 54–64. [Google Scholar] [CrossRef]
- The European Environment—State and Outlook 2020—European Environment Agency. Available online: https://www.eea.europa.eu/publications/soer-2020 (accessed on 14 September 2021).
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing Human Mortality during Extreme Heat Waves to Anthropogenic Climate Change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Roberts, P.; Sykes, H.; Granger, R. Urban Regeneration; SAGE Publications Ldt: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Scudo, G.; Ochoa De La Torre, J.M. Spazi Verdi Urbani, la Vegetazione Come Strumento di Progetto per Il Comfort Ambientale Negli Spazi Abitati; Esselibri: Naples, Italy, 2003. [Google Scholar]
- Turner-Skoff, J.B.; Cavender, N. The Benefits of Trees for Livable and Sustainable Communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Martini, A.; Biondi, D.; Batista, A.C. Thermal Comfort Provided by Street Trees in Cities. Arboric. J. 2020, 42, 153–164. [Google Scholar] [CrossRef]
- Perini, K. Progettare Il Verde in Città. Una Strategia per l’architettura Sostenibile: Una Strategia per l’architettura Sostenibile; FrancoAngeli: Milan, Italy, 2013. [Google Scholar]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Palla, A.; Gnecco, I. Chapter 3.11—Green Roofs to Improve Water Management. In Nature Based Strategies for Urban and Building Sustainability; Pérez, G., Perini, K., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 203–213. ISBN 978-0-12-812150-4. [Google Scholar]
- Polo-Labarrios, M.A.; Quezada-García, S.; Sánchez-Mora, H.; Escobedo-Izquierdo, M.A.; Espinosa-Paredes, G. Comparison of Thermal Performance between Green Roofs and Conventional Roofs. Case Stud. Therm. Eng. 2020, 21, 100697. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. The Effects of Green Roofs on Outdoor Thermal Comfort, Urban Heat Island Mitigation and Energy Savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Celik, S.; Ogus Binatli, A. Energy Savings and Economic Impact of Green Roofs: A Pilot Study. Emerg. Mark. Financ. Trade 2018, 54, 1778–1792. [Google Scholar] [CrossRef]
- Susca, T. Green Roofs to Reduce Building Energy Use? A Review on Key Structural Factors of Green Roofs and Their Effects on Urban Climate. Build. Environ. 2019, 162, 106273. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M. Green Wall Systems: Where Do We Stand? In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 410, p. 012013. [Google Scholar]
- Medl, A.; Stangl, R.; Florineth, F. Vertical Greening Systems–A Review on Recent Technologies and Research Advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar] [CrossRef]
- Fernández-Cañero, R.; Pérez Urrestarazu, L.; Perini, K. Chapter 2.1—Vertical Greening Systems: Classifications, Plant Species, Substrates. In Nature Based Strategies for Urban and Building Sustainability; Pérez, G., Perini, K., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 45–54. ISBN 978-0-12-812150-4. [Google Scholar]
- Thomsit-Ireland, F.; Essah, E.A.; Hadley, P.; Blanuša, T. The Impact of Green Facades and Vegetative Cover on the Temperature and Relative Humidity within Model Buildings. Build. Environ. 2020, 181, 107009. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Z.; Liang, L.; Zhang, Y.; Meng, Q.; Wang, J.; Santamouris, M. Thermal Behavior of a Vertical Green Facade and Its Impact on the Indoor and Outdoor Thermal Environment. Energy Build. 2019, 204, 109502. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical Greenery Systems for Energy Savings in Buildings: A Comparative Study between Green Walls and Green Facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- IUCN IUCN 2015 Annual Report. Available online: https://portals.iucn.org/library/sites/library/files/documents/2016-020.pdf (accessed on 14 October 2020).
- Hurtado, P. Biophilia. Available online: https://www.planning.org/publications/document/9202377/ (accessed on 3 September 2020).
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating Urban Surface Runoff through Nature-Based Solutions—An Assessment at the Micro-Scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Perini, K.; Sabbion, P. Urban Sustainability and River Restoration: Green and Blue Infrastructure; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Abdulateef, M.F.; Al-Alwan, H.A. The Effectiveness of Urban Green Infrastructure in Reducing Surface Urban Heat Island. Ain Shams Eng. J. 2021. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing Vegetation Barriers for Urban Air Pollution Abatement: A Practical Review for Appropriate Plant Species Selection. npj Clim. Atmos. Sci. 2020, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- McNeely, J.A. The Sinking Ark: Pollution and the Worldwide Loss of Biodiversity. Biodivers. Conserv. 1992, 1, 2–18. [Google Scholar] [CrossRef]
- Hoornweg, D.; Hosseini, M.; Kennedy, C.; Behdadi, A. An Urban Approach to Planetary Boundaries. Ambio 2016, 45, 567–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spano, G.; Dadvand, P.; Sanesi, G. The Benefits of Nature-Based Solutions to Psychological Health. Front. Psychol. 2021, 12. [Google Scholar] [CrossRef]
- Abdi, B.; Hami, A.; Zarehaghi, D. Impact of Small-Scale Tree Planting Patterns on Outdoor Cooling and Thermal Comfort. Sustain. Cities Soc. 2020, 56, 102085. [Google Scholar] [CrossRef]
- Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sanchez, A.; Boogaard, F.; Kluck, J. Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement. Sustainability 2019, 11, 6361. [Google Scholar] [CrossRef] [Green Version]
- Williams, F. The Nature Fix: Why Nature Makes Us Happier, Healthier, and More Creative; WW Norton & Company: New York, NY, USA, 2017. [Google Scholar]
- Kolokotsa, D.; Lilli, A.A.; Lilli, M.A.; Nikolaidis, N.P. On the Impact of Nature-Based Solutions on Citizens’ Health & Well Being. Energy Build. 2020, 110527. [Google Scholar] [CrossRef]
- Sanusi, R.; Bidin, S. Re-naturing Cities: Impact of Microclimate, Human Thermal Comfort and Recreational Participation. In Climate Change, Hazards and Adaptation Options; Springer: Berlin/Heidelberg, Germany, 2020; pp. 545–562. [Google Scholar]
- Triguero-Mas, M.; Dadvand, P.; Cirach, M.; Martínez, D.; Medina, A.; Mompart, A.; Basagaña, X.; Gražulevičienė, R.; Nieuwenhuijsen, M.J. Natural Outdoor Environments and Mental and Physical Health: Relationships and Mechanisms. Environ. Int. 2015, 77, 35–41. [Google Scholar] [CrossRef] [Green Version]
- MacKerron, G.; Mourato, S. Happiness Is Greater in Natural Environments. Glob. Environ. Chang. 2013, 23, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- CLIMACTIONS: Adattamento e Mitigazione Ai Cambiamenti CLIMAtici: IntervenTI Urbani per La PromOzioNe Della Salute. IRIB-CNR. Available online: https://www.irib.cnr.it/project/climactions-adattamento-e-mitigazione-ai-cambiamenti-climatici-interventi-urbani-per-la-promozione-della-salute/ (accessed on 14 September 2020).
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Gensini, G.F. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondate Di Calore. Available online: https://www.salute.gov.it/portale/caldo/homeCaldo.jsp (accessed on 22 July 2020).
- Bisson, M. Simulazione Del Microclima Urbano Di Milano Mediante Il Software ENVI-Met. Studio Degli Effetti Dell’inserimento Di Aree Verdi Sulla Sollecitazione Termica Degli Edifici. 2010. Available online: https://www.politesi.polimi.it/handle/10589/11882 (accessed on 10 August 2021).
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Max | Min | Mean | |
---|---|---|---|
01/08/2020 | |||
Air Temperature (°C) | 32.00 (4 P.M.) | 25.50 (4 A.M.) | |
Relative Humidity (%) Main Wind Direction (°) Medium Wind Speed at 10 m height (m/s) | 100 (12 P.M.) | 50 (11 P.M.) | 135 2.90 |
19/06/2020 | |||
Air Temperature (°C) | 24.10 (4 P.M.) | 19.40 (11 P.M.) | |
Relative Humidity (%) Main Wind Direction (°) Medium Wind Speed at 10 m height (m/s) | 88 (11 P.M.) | 70 (5 P.M.) | 135 4.50 |
22/01/2020 | |||
Air Temperature (°C) | 17.50 (2 P.M.) | 7.60 (1 A.M.) | |
Relative Humidity (%) Main Wind Direction (°) Medium Wind Speed at 10 m height (m/s) | 69 (11 P.M.) | 30 (8 A.M.) | 90 9.20 |
Questions | Possible Answers | N | |
---|---|---|---|
Which of the following two urban regeneration project scenarios for the same place do you prefer? | Scenario A | Scenario B | 612 |
Which of the two scenarios do you think would offer you the greatest psychophysical benefit? | Scenario C | Scenario D | 724 |
If you could have a shaded gathering space near your house where you could spend time in summer, which of the following two scenarios would you prefer? | Scenario E | Scenario F | 718 |
N | % | |
---|---|---|
Gender | ||
Women | 609 | 71 |
Men | 249 | 29 |
Age | ||
18–25 | 107 | 13 |
26–40 | 227 | 27 |
41–65 | 461 | 54 |
≥66 | 61 | 7 |
Education | ||
<Higher education | 432 | 50 |
Higher education | 427 | 50 |
Date | Time | UTCI (°C) | Mean Radiant Temperature (°C) | |
---|---|---|---|---|
Point A | 01.08.2020 | 12.00.00 | 39,097 | 62,294 |
01.08.2020 | 14.00.00 | 40,410 | 65,304 | |
01.08.2020 01.08.2020 | 17.00.00 21.00.00 | 33,558 28,104 | 35,669 21,983 | |
Point B | 01.08.2020 | 12.00.00 | 37,890 | 62,222 |
01.08.2020 | 14.00.00 | 39,271 | 65,236 | |
01.08.2020 01.08.2020 | 17.00.00 21.00.00 | 32,552 26,861 | 35,627 21,941 | |
Point C | 01.08.2020 | 12.00.00 | 35,664 | 61,983 |
01.08.2020 | 14.00.00 | 38,167 | 65,005 | |
01.08.2020 01.08.2020 | 17.00.00 21.00.00 | 36,430 24.894 | 62,639 21.810 |
Potential Air Temperature (°C) | UTCI (°C) | |
---|---|---|
| 31,524 | 41,207 |
| 31,358 | 41,073 |
| 31,055 | 36,200 |
| 31,133 | 37,574 |
| 31,352 | 38,294 |
| 31,530 | 40,615 |
| 30,571 | 40,505 |
| 31,035 | 36,386 |
| 31,489 | 40,891 |
Potential Air Temperature (°C) | UTCI (°C) | |
---|---|---|
| 30,777 | 40,915 |
| 30,691 | 40,264 |
| 30,544 | 34,033 |
| 30,670 | 37,354 |
| 30,375 | 40,272 |
| 30,464 | 40,282 |
| 30,475 | 38,378 |
| 30,585 | 35,004 |
| 30,752 | 40,114 |
Potential Air Temperature (°C) | UTCI (°C) | |
---|---|---|
| 31,472 | 40,147 |
| 30,971 | 39,725 |
| 31,100 | 34,914 |
| 31,101 | 37,444 |
| 31,159 | 40,029 |
| 31,157 | 40,031 |
| 30,655 | 39,451 |
| 30,724 | 34,437 |
| 30,560 | 39,306 |
Mean | SD | |
---|---|---|
Gender | ||
Women | 4.73 | 0.57 |
Men | 4.55 | 0.65 |
Age | ||
18–25 | 4.55 | 0.71 |
26–40 | 4.64 | 0.61 |
41–65 | 4.75 | 0.55 |
≥66 | 4.65 | 0.62 |
Education | ||
<Higher education | 4.85 | 0.58 |
Higher education | 4.64 | 0.63 |
1A | 2A | 1B | 2B | 1C | 2C | |
---|---|---|---|---|---|---|
Gender | ||||||
Women | 79 | 21 | 86 | 14 | 86 | 14 |
Men | 77 | 23 | 89 | 11 | 91 | 9 |
Education | ||||||
<Higher education | 78 | 22 | 86 | 14 | 90 | 10 |
Higher education | 79 | 21 | 88 | 12 | 86 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosca, F.; Dotti Sani, G.M.; Giachetta, A.; Perini, K. Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy. Sustainability 2021, 13, 11638. https://doi.org/10.3390/su132111638
Mosca F, Dotti Sani GM, Giachetta A, Perini K. Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy. Sustainability. 2021; 13(21):11638. https://doi.org/10.3390/su132111638
Chicago/Turabian StyleMosca, Francesca, Giulia Maria Dotti Sani, Andrea Giachetta, and Katia Perini. 2021. "Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy" Sustainability 13, no. 21: 11638. https://doi.org/10.3390/su132111638