Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Land Use Change Multi-Scenario Simulation
2.2.1. Land Use Demand Prediction Using the System Dynamics (SD) Model
2.2.2. Land Use Change Spatial Pattern Simulation using the FLUS Model
2.2.3. Integration of the SD Model with the FLUS Model
2.3. Scenario Description and Parameterization
2.3.1. Drive Factor Setting for SD Model
2.3.2. Internal Transfer Feature Settings for FLUS Models
2.4. Evaluation of the Ecosystem Service Value (ESV)
2.5. Ecological Contribution Rate of Land Use Change
3. Results
3.1. Land Use Change in 2035
3.2. Changes in Ecosystem Service Values in 2035
3.3. Influence of Future Land Use Changes on Ecosystem Services Value (ESV)
4. Discussion
4.1. Review and Synthesis Analyses of Simulation Results
4.2. Advice for Future Strategies and Policies
4.3. Strengths and Limitations
5. Conclusions
- From 2015 to 2035, the area of construction land in the four scenarios increased. Among them, the area of construction land in the CP_ scenario and PP_ scenario is almost twice that in 2015. In the PP_ scenario, the area of forest land decreased the most, from 2474.36 km2 in 2015 to 2120.88 km2 in 2035. In the ecological scenario, the forest area increased significantly, accounting for 41.51% of the total area, and the waters had a dramatic growth to 2.37 km2 by 2035, almost twice that in 2015. In the LP_ scenario, the land use structure of the study area is relatively stable.
- From 2015 to 2035, the ESV of the PP_ scenario and LP_ scenario showed a downward trend, while they increased under the EP_ scenario. The ESV of the CP_ scenario changed only slightly. Among the different scenarios, the value of each ecosystem service function is the smallest in the PP_ scenario, and the value of each ecosystem service function is the largest in the EP_ scenario. The ESV of cultivated land and grassland is the largest in the PP scenario, and the ESV of forest land and waters is the largest in the EP scenario.
- From 2015 to 2035, the areas where ESV decreased mainly appeared in river banks and surrounding areas of towns. In the CP_ scenario and LP_ scenario, the conversion of grassland to construction land is the main reason for the decline in ESV, and the contribution rates are 55.70% and 33.02%, respectively. In the PP_ scenario, the conversion of forest land to cultivated land is the main reason for the decline in ESV. In the CP_ scenario and EP_ scenario, the conversion of grassland to waters is the main reason for the increase in ESV, and the contribution rates are 74.18% and 73.89%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Notte, A.; D’Amato, D.; Makinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Qian, X.; Wei, S.; Yili, Z.; Fengyun, M. Research progress in ecological carrying capacity: Implications, assessment methods and current focus. J. Resour. Ecol. 2017, 8, 514–525. [Google Scholar] [CrossRef]
- Song, W.; Liu, M. Farmland conversion decreases regional and national land quality in China. Land Degrad. Dev. 2016, 28, 459–471. [Google Scholar] [CrossRef]
- Olander, L.P.; Johnston, R.J.; Tallis, H.; Kagan, J.; Maguire, L.A.; Polasky, S.; Urban, D.; Boyd, J.; Wainger, L.; Palmer, M. Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecol. Indic. 2018, 85, 1262–1272. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 5, 911–919. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Liu, Y.; Zhang, F.; Zhang, M. Response of ecosystem services to land use and cover change: A case study in Chengdu City. Resour. Conserv. Recycl. 2018, 132, 291–300. [Google Scholar] [CrossRef]
- Koo, H.; Kleemann, J.; Fürst, C. Integrating ecosystem services into land-use modeling to assess the effects of future land-use strategies in northern Ghana. Land 2020, 9, 379. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Vayreda, J.; De Cáceres, M.; García-Valdés, R.; Banqué-Casanovas, M.; Morán-Ordóñez, A.; Brotons, L.; de-Miguel, S.; Martínez-Vilalta, J. Temporal changes in mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. For. Ecol. Manag. 2021, 480, 118623. [Google Scholar] [CrossRef]
- Solé-Senan, X.O.; Juárez-Escario, A.; Robleño, I.; Conesa, J.A.; Recasens, J. Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agric. Ecosyst. Environ. 2017, 247, 255–264. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Nie, X.; Li, Z.; Liu, Y.; Xiao, H.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; et al. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- DÍAz, S.; Lavorel, S.; McIntyre, S.U.E.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant trait responses to grazing? a global synthesis. Glob. Chang. Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Deng, X.; Shi, Q.; Zhang, Q.; Shi, C.; Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. Earth Parts A/B/C 2015, 79–82, 2–10. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L. Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Aguirre-Gutierrez, J.; Malhi, Y.; Lewis, S.L.; Fauset, S.; Adu-Bredu, S.; Affum-Baffoe, K.; Baker, T.R.; Gvozdevaite, A.; Hubau, W.; Moore, S.; et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 2020, 11, 3346. [Google Scholar] [CrossRef] [PubMed]
- Runting, R.K.; Bryan, B.A.; Dee, L.E.; Maseyk, F.J.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.P.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Chang. Biol. 2017, 23, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Li, J.; Li, Y.; Xu, Z.; Kong, B.; Li, Y.; Shen, Y. Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China. Sci. Rep. 2020, 10, 20317. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tian, L.; Cao, Y.; Zhou, L.; Li, Z.; Hou, D. Supplying social infrastructure land for satisfying public needs or leasing residential land? A study of local government choices in China. Land Use Policy 2019, 87, 104088. [Google Scholar] [CrossRef]
- Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C. Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technol. Forecast. Soc. Chang. 2014, 81, 236–249. [Google Scholar] [CrossRef]
- Xu, X.; Du, Z.; Zhang, H. Integrating the system dynamic and cellular automata models to predict land use and land cover change. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 568–579. [Google Scholar] [CrossRef]
- Geng, B.; Zheng, X.; Fu, M. Scenario analysis of sustainable intensive land use based on SD model. Sustain. Cities Soc. 2017, 29, 193–202. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Q.; Tang, B.-S.; Yeung, S.; Hu, Y.; Cheung, G. A system dynamics model for the sustainable land use planning and development. Habitat Int. 2009, 33, 15–25. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S. Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Comput. Geosci. 2011, 37, 111–121. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban. Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M.; Adi, B.; Manjoro, M. Rural sustainability under threat in Zimbabwe—Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl. Geogr. 2009, 29, 435–447. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Cai, Y. Delimiting the urban growth boundaries with a modified ant colony optimization model. Comput. Environ. Urban. Syst. 2017, 62, 146–155. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Samat, N.; Mahamud, M.A.; Tan, M.L.; Maghsoodi Tilaki, M.J.; Tew, Y.L. Modelling land cover changes in peri-urban areas: A case study of george town conurbation, Malaysia. Land 2020, 9, 373. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Zhu, C.; Yang, H. The impact of land use change on ecosystem service value in the upstream of Xiong’an new area. Sustainability 2020, 12, 5707. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban. Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, H.; Liu, X.; Li, K.; Zhang, P.; Wen, W.; Yu, Y. PHAHs in 14 principal river sediments from Hai River basin, China. Sci. Total Environ. 2012, 427–428, 139–145. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Chen, Q.; Zhang, J.; Yang, Y. Estimation of environmental flow requirements for the river ecosystem in the Haihe River Basin, China. Water Sci. Technol. 2013, 67, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Ke, L.; Pan, H.; Zhan, S.; Liu, K.; Ma, R. Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis. Sci. Bull. 2018, 63, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Coyle, R.G. System dynamics modelling: A practical approach. J. Oper. Res. Soc. 1997, 48, 544. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Huang, K.; Liu, X.; Li, X.; Liang, J.; He, S. An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. Int. J. Geogr. Inf. Sci. 2013, 27, 922–946. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban. Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sleeter, B.M.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Bennett, S.L.; Sleeter, R.R.; Kanengieter, R.L.; Zhu, Z. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States. Agric. Ecosyst. Environ. 2012, 153, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Zhang, L.; Xia, J.; Yang, Z. Water cycle characteristic and its responses to climate change of the yongding River Basin. J. Basic Sci. Eng. 2013, 21, 501–511. [Google Scholar]
- Lin, X.; Lu, C.; Song, K.; Su, Y.; Lei, Y.; Zhong, L.; Gao, Y. Analysis of coupling coordination variance between urbanization quality and eco-environment pressure: A case study of the west taiwan strait urban agglomeration, China. Sustainability 2020, 12, 2643. [Google Scholar] [CrossRef] [Green Version]
- Kuai, P.; Li, W.; Liu, N. Evaluating the effects of land use planning for non-point source pollution based on a system dynamics approach in China. PLoS ONE 2015, 10, e0135572. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Cao, M.; Zhu, Y.; Lü, G.; Chen, M.; Qiao, W. Spatial distribution of global cultivated land and its variation between 2000 and 2010, from both agro-ecological and geopolitical perspectives. Sustainability 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, X. Spatial Correlation between type of mountain area and land use degree in Guizhou province, China. Sustainability 2016, 8, 849. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Gao, Q.; Zhang, X.; Cheng, W. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 2019, 62, 1461–1472. [Google Scholar] [CrossRef]
- Vieira, J.; Matos, P.; Mexia, T.; Silva, P.; Lopes, N.; Freitas, C.; Correia, O.; Santos-Reis, M.; Branquinho, C.; Pinho, P. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environ. Res. 2018, 160, 306–313. [Google Scholar] [CrossRef]
- Scheller, R.; Parajuli, R. Forest management for climate change in New England and the Klamath ecoregions: Motivations, practices, and barriers. Forests 2018, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Vass, M.M.; Elofsson, K. Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050? J. For. Econ. 2016, 24, 82–105. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Lotz, T.; Chang, N.B. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. J. Environ. Manag. 2017, 204, 92–101. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Hua, Y.; Zhang, Y.; Liu, K. Assessing and mapping recreationists’ perceived social values for ecosystem services in the Qinling Mountains, China. Ecosyst. Serv. 2019, 39, 101006. [Google Scholar] [CrossRef]
- Qian, D.; Yan, C.; Xiu, L.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Verburg, R.; Selnes, T.; Verweij, P. Governing ecosystem services: National and local lessons from policy appraisal and implementation. Ecosyst. Serv. 2016, 18, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, N.; Wang, S.; Yu, J.; Zhao, W.; Fu, B. A multiple importance–satisfaction analysis framework for the sustainable management of protected areas: Integrating ecosystem services and basic needs. Ecosyst. Serv. 2020, 46, 101219. [Google Scholar] [CrossRef]
- Ye, Y.; Bryan, B.A.; Zhang, J.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Clements, H.S.; De Vos, A.; Bezerra, J.C.; Coetzer, K.; Maciejewski, K.; Mograbi, P.J.; Shackleton, C. The relevance of ecosystem services to land reform policies: Insights from South Africa. Land Use Policy 2021, 100, 104939. [Google Scholar] [CrossRef]
- Rosa, I.M.D.; Purvis, A.; Alkemade, R.; Chaplin-Kramer, R.; Ferrier, S.; Guerra, C.A.; Hurtt, G.; Kim, H.; Leadley, P.; Martins, I.S.; et al. Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Glob. Ecol. Conserv. 2020, 22, e00886. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
Category | Data | Year | Resolution | Data Resource |
---|---|---|---|---|
Social economy | Population | 2010 | 1 km | Global Change Research Data Publishing & Repository |
Gross Domestic Product (GDP) | 2010 | 1 km | Global Change Research Data Publishing & Repository | |
Terrain | Digital Elevation Model (DEM) | 2010 | 30 m | Geospatial Data Cloud |
Aspect | 2010 | 30 m | Calculated from DEM | |
Slope | 2010 | 30 m | Calculated from DEM | |
Traffic and stream | National road | 2010 | Vector | National catalogue service for geographic information |
Provincial road | ||||
Highway | ||||
Railway | ||||
River net | ||||
Climate | Annual mean temperature | 2000–2010 | 100 m | China Meteorological Data Network (Spatial interpolation) |
Annual mean precipitation |
Parameters | CP_ Scenario | PP_ Scenario | EP_ Scenario | LP_ Scenario |
---|---|---|---|---|
Annual economic growth (%/a) | 13.88 | 20 | 8 | 8 |
Annual population growth (%/a) | 0.53 | 1 | 0.3 | 0.53 |
Annual technological innovation (%/a) | 10 | 15 | 5 | 15 |
Annual precipitation growth (%/a) | 0.04 | 0.17 | 0.03 | 0.20 |
Annual temperature growth (%/a) | 0.02 | 0.03 | 0.02 | 0.04 |
CP_ Scenario | PP_ Scenario | EP_ Scenario | LP_ Scenario | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
e | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Ecosystem Service Functions | Cultivated Land | Forest Land | Grassland | Waters | Bare Land | |
---|---|---|---|---|---|---|
Provisioning services | Food production | 2035.18 | 502.81 | 694.36 | 1915.46 | 0.00 |
Raw material production | 957.73 | 1149.28 | 1005.62 | 550.70 | 0.00 | |
Water supply | 47.89 | 598.58 | 550.70 | 19,849.00 | 0.00 | |
Regulating services | Gas regulation | 1604.20 | 3735.15 | 3543.61 | 1843.63 | 47.89 |
Climate regulation | 861.96 | 11,133.63 | 9385.77 | 5483.02 | 0.00 | |
Environment purification | 239.43 | 3328.12 | 3088.69 | 13,288.53 | 239.43 | |
Hydrological regulation | 646.47 | 7997.06 | 6871.73 | 24,4796.30 | 71.83 | |
Supporting services | Soil conservation | 2466.16 | 4525.28 | 4333.74 | 2226.73 | 47.89 |
Nutrient cycle maintenance | 287.32 | 359.15 | 335.21 | 167.60 | 0.00 | |
Biodiversity | 311.26 | 4142.19 | 3926.70 | 6105.54 | 47.89 | |
Cultural services | Aesthetic landscape | 143.66 | 1819.69 | 1723.92 | 4525.28 | 23.94 |
Total | 9601.26 | 39,290.96 | 35,460.03 | 30,0751.79 | 478.87 |
2015 | 2035 | ||||
---|---|---|---|---|---|
CP_ Scenario | PP_ Scenario | EP_ Scenario | LP_ Scenario | ||
Cultivated land | 1120.82 | 1174.19 | 1280.92 | 960.66 | 1174.2 |
Forest land | 2474.36 | 2827.86 | 2120.88 | 3039.92 | 2466.81 |
Grassland | 3460.34 | 2889.69 | 3505.65 | 2959.55 | 3366.94 |
Waters | 98.28 | 118.36 | 79.63 | 173.36 | 89.89 |
Construction land | 163.88 | 307.52 | 330.94 | 184.5 | 220.06 |
Bare land | 0.87 | 0.93 | 0.53 | 0.56 | 0.65 |
Land Use in 2035. | Land Use in 2015 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Transfer in | ||
CP_ scenario | 1 | 1092.49 | 9.25 | 57.02 | 6.19 | 9.24 | 0 | 81.7 |
2 | 2.93 | 2414.13 | 409.68 | 0.28 | 0.84 | 0 | 413.73 | |
3 | 22.84 | 49.25 | 2814.75 | 1.09 | 1.74 | 0.02 | 74.94 | |
4 | 0.2 | 0.17 | 27.51 | 90.46 | 0.02 | 0 | 27.9 | |
5 | 2.36 | 1.56 | 151.3 | 0.26 | 152.04 | 0 | 155.48 | |
6 | 0 | 0 | 0.08 | 0 | 0 | 0.85 | 0.08 | |
Transfer out | 28.33 | 60.23 | 645.59 | 7.82 | 11.84 | 0.02 | ||
PP_ scenario | 1 | 964.31 | 275.33 | 29.27 | 11.9 | 0 | 0.11 | 316.61 |
2 | 0 | 2102.72 | 17.98 | 0 | 0 | 0.18 | 18.16 | |
3 | 0 | 91.12 | 3411.01 | 3.47 | 0 | 0.05 | 94.64 | |
4 | 0 | 0 | 0 | 79.63 | 0 | 0 | 0 | |
5 | 156.51 | 5.19 | 2.08 | 3.28 | 163.88 | 0 | 167.06 | |
6 | 0 | 0 | 0 | 0 | 0 | 0.53 | 0 | |
Transfer out | 156.51 | 371.64 | 49.33 | 18.65 | 0 | 0.34 | ||
EP_ scenario | 1 | 960.66 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 15.55 | 2474.36 | 549.86 | 0 | 0 | 0.15 | 565.56 | |
3 | 120.5 | 0 | 2838.89 | 0 | 0 | 0.16 | 120.66 | |
4 | 3.49 | 0 | 71.59 | 98.28 | 0 | 0 | 75.08 | |
5 | 20.62 | 0 | 0 | 0 | 163.88 | 0 | 20.62 | |
6 | 0 | 0 | 0 | 0 | 0 | 0.56 | 0 | |
Transfer out | 160.16 | 0 | 621.45 | 0 | 0 | 0.31 | ||
LP_ scenario | 1 | 1119.21 | 6.08 | 42.94 | 5.97 | 0 | 0 | 54.99 |
2 | 0 | 2466.26 | 0 | 0.44 | 0 | 0.11 | 0.55 | |
3 | 0 | 0 | 3365 | 1.83 | 0 | 0.11 | 1.94 | |
4 | 0 | 0 | 0 | 89.89 | 0 | 0 | 0 | |
5 | 1.61 | 2.02 | 52.4 | 0.15 | 163.88 | 0 | 56.18 | |
6 | 0 | 0 | 0 | 0 | 0 | 0.65 | 0 | |
Transfer out | 1.61 | 8.1 | 95.34 | 8.39 | 0 | 0.22 |
Ecosystem Service Functions | 2015 | 2035 | ||||
---|---|---|---|---|---|---|
CP_ Scenario | PP_ Scenario | EP_ Scenario | LP_ Scenario | |||
Provisioning services | Food production | 611.62 | 604.47 | 626.00 | 587.07 | 614.01 |
Raw material production | 745.11 | 734.57 | 723.35 | 748.54 | 739.50 | |
Water supply | 539.11 | 568.96 | 484.20 | 693.65 | 517.12 | |
Total | 1895.84 | 1908.00 | 1833.54 | 2029.26 | 1870.63 | |
Regulating services | Gas regulation | 2348.35 | 2290.43 | 2254.62 | 2370.28 | 2319.44 |
Climate regulation | 6153.16 | 6026.74 | 5805.71 | 6340.16 | 6057.09 | |
Environment purification | 2049.74 | 2019.10 | 1925.14 | 2179.22 | 2008.51 | |
Hydrological regulation | 6834.93 | 7220.50 | 6137.19 | 8770.66 | 6562.78 | |
Total | 17,386.18 | 17,556.77 | 16,122.65 | 19,660.32 | 16,947.82 | |
Supporting services | Soil conservation | 2917.64 | 2847.94 | 2812.64 | 2933.76 | 2885.04 |
Nutrient cycle Maintenance | 238.71 | 234.15 | 231.82 | 238.89 | 236.70 | |
Biodiversity | 2478.60 | 2414.87 | 2343.56 | 2557.07 | 2435.33 | |
Total | 5634.94 | 5496.95 | 5388.03 | 5729.72 | 5557.07 | |
Cultural services | Aesthetic landscape | 1107.37 | 1083.17 | 1044.72 | 1155.63 | 1086.86 |
Total | 1107.37 | 1083.17 | 1044.72 | 1155.63 | 1086.86 | |
Total | 26,024.33 | 26,044.89 | 24,388.94 | 28,574.92 | 25,462.38 |
Change Pattern | Types of Land Use Change | Contribution Rate/% | |||
---|---|---|---|---|---|
CP_ Scenario | PP_ Scenario | EP_ Scenario | LP_ Scenario | ||
Improvement of ecosystem function | 1→2 | 0.88 | 1.80 | ||
1→3 | 6.00 | 12.12 | |||
1→4 | 0.59 | 3.95 | |||
2→4 | 0.45 | ||||
3→2 | 15.95 | 87.61 | 8.20 | ||
3→4 | 74.18 | 73.89 | |||
5→1 | 0.90 | ||||
5→2 | 0.34 | ||||
5→3 | 0.63 | ||||
5→4 | 0.06 | ||||
6→1 | 1.28 | ||||
6→2 | 8.89 | 0.02 | 52.60 | ||
6→3 | 0.01 | 2.22 | 0.02 | 47.40 | |
Total | 100.00 | 100.00 | 100.00 | 100.00 | |
Deterioration of ecosystem function | 1→5 | 0.24 | 9.14 | 100.00 | 0.27 |
2→1 | 2.85 | 49.75 | 3.21 | ||
2→3 | 1.96 | 2.12 | |||
2→5 | 0.64 | 1.24 | 1.41 | ||
3→1 | 15.31 | 4.61 | 19.73 | ||
3→5 | 55.70 | 0.45 | 33.02 | ||
3→6 | 0.03 | ||||
4→1 | 18.71 | 21.08 | 30.89 | ||
4→2 | 0.76 | 2.04 | |||
4→3 | 3.00 | 5.60 | 8.63 | ||
4→5 | 0.81 | 6.00 | 0.80 | ||
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cao, J. Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China. Sustainability 2021, 13, 704. https://doi.org/10.3390/su13020704
Wang Z, Cao J. Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China. Sustainability. 2021; 13(2):704. https://doi.org/10.3390/su13020704
Chicago/Turabian StyleWang, Zhiyin, and Jiansheng Cao. 2021. "Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China" Sustainability 13, no. 2: 704. https://doi.org/10.3390/su13020704
APA StyleWang, Z., & Cao, J. (2021). Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China. Sustainability, 13(2), 704. https://doi.org/10.3390/su13020704