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Abstract: The evaluation of ecosystem service value has become the basis of ecological protection,
ecological regionalization, and ecological compensations. Land use changes have taken place due to
several natural and anthropogenic reasons, significantly influencing the ecosystem services value
(ESV). In this study, we used an interactive coupling model that simulates future land use changes
and the equivalent coefficient table method to predict and evaluate the ecosystem service value in
the upstream of Xiong’an New Area in 2035, and we quantitatively calculated the impact of land
use changes on the ecosystem service value under four future scenarios. The results indicate that
from 2015 to 2035, the ecosystem service value in the production scenario and life scenario decreased
significantly by CNY 1635.39 million and 561.95 million, respectively, and the areas where the ESV
decreased mainly appeared in river banks and surrounding areas of towns. The conversion of forest
land to cultivated land and the conversion of grassland to construction land are the main reasons for
the reduction of the ecosystem service value in the production scenario and life scenario, respectively.
The ecosystem service value in the ecological scenario increased significantly by CNY 2550.59 million,
and the conversion of grassland to waters is the main reason for the increase in ecosystem service
value, with a contribution rate of 73.89%. Moreover, due to the trade-off between ecosystem services,
the overall change of ecosystem service value in the current scenario is not obvious. In conclusion,
strictly controlling the scale of construction land, strengthening the management and protection of
water resources, and expanding the afforestation scale may improve the ecosystem service value of
the upstream Xiong’an New Area in the future.

Keywords: system dynamics; scenario simulation; land use change; ecosystem services value (ESV);
upstream of Xiong’an New Area

1. Introduction

Ecosystem services refer to life support products and services obtained directly or
indirectly through the ecosystem’s structure, processes, and functions, including provi-
sioning services, regulating services, supporting services, and cultural services [1,2]. The
sustainable development of the social economy depends on the sustainable supply of
ecosystem services. However, rapid population growth, coupled with economic growth
and global climate change, are producing various environmental problems, which severely
threaten the ability of ecosystems to provide ecosystem services [3,4]. Quantifying, valuing,
and mapping ecosystem services are becoming important and reliable tools for ecological
environment management and policy making [5,6]. Costanza et al. used the “willingness
to pay” method to evaluate the global ecosystem service value (ESV) [7], which provides
new methods and ideas for the study of ESV. Based on the research of Costanza et al., Xie
et al. constructed a method for valuing ecosystem services based on expert knowledge [8],
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and it has been widely used in the evaluation of ESV at sample, regional, and national
scales [9,10].

Land use change alters the physical parameters of the earth’s surface, modifies the
ecosystem productivity, influences nutritional provision from soil to vegetation by changing
biochemical cycles, and significantly affects ecosystem services ranging from water supply
to biodiversity [11–13]. In the past few decades, human-dominated land use change
(e.g., forest overexploitation, agricultural intensification, and urbanization) has changed
ecosystems more drastically and extensively than ever before, leading to substantial and
largely irreversible loss of ecosystem services [14–16]. Diaz et al. noted that the land
use change from natural land to urban and cultivated land has accelerated the loss of
biodiversity, leading to a decrease in the ecosystem’s stability [17]. Deng et al. found
that the increase in land use intensity and the resulting change in vegetation cover can
significantly change hydrological processes, including the cycle of chemical elements,
thereby affecting hydrological ecosystem services [18]. Cultivated land is an essential part
of a country’s ecological environment because it is one of the most important provisioning
services in the ecosystem [19]. However, land use changes caused by rapid urbanization
have reduced the quality and quantity of cultivated land, which has reduced the food
provisioning services provided by agricultural ecosystems [20]. Song et al. assessed the
impacts of land use change on the ESV in the rapidly urbanizing North China Plains and
found that the conversion from cultivated land to construction land decreased the ESV
by 66.5% [21]. Moreover, many previous studies have found that climatic factors (e.g.,
precipitation and temperature variations) have long-term effects that alter the natural
landscape dynamics and significantly impact specific ecosystem services, such as carbon
sequestration and raw material production [22,23].

Land use change is a complex process intertwined with nature and economic activi-
ties. On the one hand, the land’s natural material conditions provide the possibility and
suitability of land use [24]. On the other hand, the final use range, structure, and method
of land depend on the rationality and feasibility of socioeconomic and technological in-
novation, and are deeply affected by the level of urban and rural industrial development
and industrial structure [25,26]. With the continuous changes in national policies, social
needs and the natural environment, the types and structures of land use will inevitably
change. Although the government has made strong interventions in land use planning,
future land use changes cannot be accurately forecasted [27]. In view of the complexity
and uncertainty of future land use changes, land use change simulation models need to be
used to evaluate the impact of land use changes on ESV under different scenarios. Xu et al.
suggested these models should be either “top down” or “bottom up” [28]. The “top-down”
model, such as the system dynamics (SD) model, focuses on the relationship between
different land use types at the macro level and is usually used to predict the magnitude of
land use change [29]. However, the “top-down” model cannot predict the spatial pattern
of land use [30]. In contrast, the “bottom-up” model predicts land use changes in all grid
cells by establishing a regular grid, and it can predict the spatial pattern of land use [31].
One widely used “bottom-up” model is the future land use simulation (FLUS) model,
which can effectively deal with the complexity and uncertainty of converting various
land use types under the mutual influence of the human–land relationship [32]. Some
studies have coupled “top-down” and “bottom-up” approaches. In this coupling, the “top-
down” method is used to determine the amount of future land use change. Subsequently,
a “bottom-up” approach is used to allocate these land-use changes on grid cells [33,34].
However, current the coupled model directly integrate two models via land use demands at
the end of the study period, while the interaction and feedback between the two models are
ignored [30,35]. Moreover, the spatially explicit allocation of land use change to a grid cell
involves a complex process that must identify the relationships between land use change
and its driving forces [36]. The impact of human activities on climate change is increasing;
thus, if climate change scenarios are not taken into account, these models are not suitable
for the simulation of land use changes under human-climate-included scenarios [37].
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In this paper, we interactively integrate the “top-down” SD and the “bottom-up”
FLUS model to simulate and predict future land use changes in multiple scenarios. In the
coupled model, we incorporate natural factors (including future climate variations and
socioeconomic development) into the SD and FLUS models. In addition, driving force
factors of different degrees were set in the SD model according to the future scenarios
designed, and different internal conversion costs were set in the FLUS model accordingly,
so as to meet the actual characteristics of land use change and conversion under different
scenarios. We present a case study in the upstream of Xiong’an New Area to investigate
how land use changes under different scenarios in 2025 will affect the ESV by applying the
coupling model. The aims of this paper are (1) the simulation and prediction of land use
changes under different scenarios in the upstream of Xiong’an New Area; (2) the evaluation
of changes in ESV under different land use change scenarios; and (3) the calculation of the
contribution rate of land use change to the ESV under four future scenarios.

2. Materials and Methods
2.1. Overview of the Study Area

The study area includes three basins in the upstream of Xiong’an New Area, across
Hebei and Shanxi provinces of the Northern China, Zijingguan, Zhongtangmei and Fuping
basins, with a total area of 7310.27 km2 (Figure 1) [38]. The terrain of the study area is high in
the northwest and low in the southeast, with an average altitude of 1108 m and an average
slope of about 19◦, which belongs to the mountain–plain interlaced area with frequent
human activities [39]. The study area has a monsoon climate of the medium latitudes zone
with an average annual temperature of 7.4 to 12.8 ◦C and annual precipitation of 550 to
790 mm. Affected by the monsoon climate, precipitation in the study area was uneven
throughout the year; nearly 80% was concentrated from June to September [40].
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On 1 April 2017, China’s Central Committee and State Council decided to establish
the Xiong’an New Area. The upstream of Xiong’an New Area is an important ecological
environment support area and water conservation function area. The change in ecosystem
services in this area will directly affect the ecology, water supply, and flood control safety
of Xiong’an New Area [38]. However, with the increase in global warming and human
disturbance, the land use in this area has changed significantly, and the ecological environ-
ment is facing unprecedented pressure [41]. The recent joint statement from China’s the
Central Committee and State Council passed the “Hebei Xiong’an New Area Master Plan
(2018–2035)”, which describes the plans to build the New Area into a green, ecological, and
livable new city by 2035 [42]. This puts forward higher requirements for protecting and
improving the ecological environment in the upstream of Xiong’an New Area in the future.

2.2. Land Use Change Multi-Scenario Simulation

In this study, we established a coupling model for land use simulation. The realization
of the coupling model consists of three steps: (1) the SD model is used to predict land use
demand; (2) the FLUS model is used to simulate the spatial pattern of land use; (3) an
“interactive coupling” mechanism is used to connect the SD model and the FLUS model.
The general structure of the coupling model is illustrated in Figure 2.
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2.2.1. Land Use Demand Prediction Using the System Dynamics (SD) Model

The SD model is an effective way to model complex systems’ nonlinear behavior over
time through feedback loops between different modules and variables [43]. Thus, SD mod-
els can be established to understand the interaction between climate and socioeconomic
changes and future land use changes. In this study, we established an SD model that consid-
ers the impact of human activities and the natural environment to predict future land use
demand (Figure 3). The established SD model consists of four sectors: economy, population,
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climate, and land use. In the economic sector, GDP affects fixed-asset investment changes,
thereby affecting the economic investment in various land use types. The population sector
is very important, since population changes will directly affect the demand for agricultural
and animal husbandry products, urbanization rates, and social productivity, leading to
corresponding changes in other sectors. The climate sector (temperature and precipitation)
is also an essential part of the model. As mentioned in the introduction, climate change
has long-term effects on natural landscape dynamics. A moderate increase in precipitation
and temperature can meet the water consumption and growth needs of various natural
vegetation and crops, leading to changes in woodland, grassland, and cultivated land.
The land use sector includes six land use types: cultivated land, forest land, grassland,
construction land, waters, and bare land. The changes in each land use type are restricted
by the comprehensive influence of socioeconomic and climatic conditions as well as by the
interaction between various land use types. For example, the area of construction land is
mainly increased by occupying cultivated land and grassland, and it will also affect the
area of bare land and forest land.
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The simulation time of the SD model is 2000 to 2035, and the time step is one year. The
period from 2000 to 2015 is the model simulation stage, in which the collected data are used
to evaluate and check the simulation results. The period from 2016 to 2035 is the simulation
stage of land use scale. The 2015 data are selected as the initial simulation value, and 2016
is the starting year of the scenario simulation. The data used to build the SD model in this
study include the social and economic data, such as population and GDP from 2000 to 2015,
as well as the climate data, such as precipitation and temperature. Socioeconomic data
were collected from China Statistical Yearbook, Shanxi Province Statistical Yearbook and
Hebei Province Statistical Yearbook; climate data were provided by China Meteorological
Data Network. The land use data for 2000, 2005, 2010, and 2015 were provided by the
Resource and Environmental Science Data Center of the Chinese Academy of Sciences
with a spatial resolution of 100 × 100 m. This model was built in Vensim PLE for windows
version x64.
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2.2.2. Land Use Change Spatial Pattern Simulation using the FLUS Model

The FLUS model used in this study was proposed by Sun Yat-Sen University [32]. The
principle of the FLUS model is to estimate the occurrence probability of each land use type
in the region based on the calculation of the land use data and the driving influence factor
data in the base period by using the artificial neural network (ANN) model algorithm [44].
In this study, the ANN model will be trained with the 15 spatial driving factors in natural,
social, and economic aspects that are listed in Table 1. All of the spatial datasets were
resampled to the same resolution of 100 × 100 m.

Table 1. Data on driving forces of land use change.

Category Data Year Resolution Data Resource

Social
economy

Population 2010 1 km Global Change Research Data Publishing & Repository
Gross Domestic Product (GDP) 2010 1 km Global Change Research Data Publishing & Repository

Terrain
Digital Elevation Model (DEM) 2010 30 m Geospatial Data Cloud

Aspect 2010 30 m Calculated from DEM
Slope 2010 30 m Calculated from DEM

Traffic and
stream

National road

2010 Vector National catalogue service for geographic information
Provincial road

Highway
Railway
River net

Climate
Annual mean temperature

2000–2010 100 m
China Meteorological Data Network (Spatial

interpolation)Annual mean precipitation

In the second step, the mechanism of self-adaptive inertia and competition is adopted
in the FLUS modeling process. The self-adaptive inertia coefficient is set by automatically
adjusting the inheritance of the current land type for each cell based on the difference
between the expected land demand and the actual land type allocated. If the development
trend of a particular land type is inconsistent with the expected demand, the self-adaptive
inertia coefficient will dynamically adjust the land type’s inheritance to correct the problem
in the next iteration and achieve the expected goal [32]. The inertia coefficient is defined
as follows:

It
k =


It−1
k i f

∣∣∣Dt−1
k

∣∣∣ ≤ ∣∣∣Dt−2
k

∣∣∣
It−1
k × Dt−2

k
Dt−1

k
i f Dt−1

k < Dt−2
k < 0

It−1
k × Dt−1

k
Dt−2

k
i f 0 < Dt−2

k < Dt−1
k

(1)

where It
k denotes the inertia coefficient for land use type k at iteration time t, and Dt−1

k de-
notes the difference between the macro demand and the allocated amount of land use type
k until iteration time t − 1. The conversion cost, which indicates the conversion difficulty
from the current land use type to the demand type, is obtained by analyzing historical
land use change data, and it reflects the inherent attributes of land use changes [45]. The
value of the conversion cost varies within the range of [0,1]. The larger the value, the more
difficult the conversion.

Finally, the following formula is used to estimate the overall conversion probability of
units occupied by a specific land type [46]:

TPt
i,k = Pi,k ×Ωt

i,k × It
k × Zc→k (2)

where TPt
i,k denotes the overall conversion probability of grid cell i to covert from the

original land use type to the demand type k at iteration time t; Pi,k denotes the probability
of occurrence of land use type k on grid cell i; Ωt

i,k denotes the neighborhood influence
factor of land use type k on grid cell i at iteration time t; It

k denotes the inertia coefficient of
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land use type k at iteration time t; and Zc→k denotes the conversion cost from the original
land use type c to the demand type k.

The roulette selection mechanism is used in the FLUS model to determine which
land type the grid unit is converted to. In order to better simulate the dynamics and
uncertainties of land use, a higher total probability has a greater chance of being assigned
to the target land type, but land types with a lower probability also have a chance to be
assigned to the target land type [32].

2.2.3. Integration of the SD Model with the FLUS Model

This study uses the “interactive coupling” mechanism proposed by Liang et al. [46]
to closely combine the SD model and the FLUS model in order to strengthen the mutual
feedback between the two models (Figure 4). The land use demand comes from the SD
model’s output, which is used to guide the simulation of the land use spatial pattern of the
FLUS model until the land use growth meets the forecast demand. Then, using the land
use spatial pattern simulated at the previous time node, combined with the new stage’s
driving factors, the SD model is used to predict the land use demand in the next period.
This interaction continues throughout the simulation period, resulting in a spatial pattern
map of land use in 2035.
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2.3. Scenario Description and Parameterization
2.3.1. Drive Factor Setting for SD Model

The SD model constructed in this study considers the impact of population, economy,
technological innovation, and climate change on land use demand under four future
scenarios from 2015 to 2035 (Figure 5). Based on the Intergovernmental Panel on Climate
Change (IPCC) assessment report, four scenarios were designed, taking into account
regional climate change and different socioeconomic developments in the study area [47].

We considered five parameters in different scenarios: annual economic growth, annual
population growth, annual technological innovation, annual temperature growth, and
annual precipitation growth. These parameters are set to be slightly different in the four
scenarios to reflect the socioeconomic and natural condition differences among these
scenarios (Table 2). The development trend of the economy, population, and climate change
in the current priority (CP)_ scenario maintains the current growth level. This scenario’s
parameters are calculated based on the statistical yearbook and meteorological data of
the study area from 2000 to 2015, and they are used as reference values for other scenario
parameters. In the production priority (PP)_ scenario, we assume that the establishment of
Xiong’an New Area will drive its upstream area’s economic development. The population
growth and economic growth are considered to experience sustained and rapid increases
(1% and 20%, respectively) at the expense of many natural resources. Additionally, large-
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scale human activities have accelerated greenhouse gas emissions, leading to a sharp
increase in temperature and precipitation. The ecological priority (EP)_ scenario focuses on
protecting the ecological environment, and the population and economy in this scenario
have a relatively slow growth rate (0.3% and 8%, respectively) to reduce the impact
on the natural environment. The life priority (LP) scenario is a more human-oriented
and sustainable development mode. In this scenario, the economy shifts to high-quality
development, and the improvement of technological innovation capabilities (15%) can
better meet social needs. The climate change data in the above future scenarios refer to the
research of Zeng et al. because the location of the study area of Zeng et al. is adjacent to
this study area, and the climate data can be used for reference [48].

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 21 
 

 
Figure 4. Interactive coupling mechanism of the SD and FLUS models. 

2.3. Scenario Description and Parameterization 
2.3.1. Drive Factor Setting for SD Model 

The SD model constructed in this study considers the impact of population, econ-
omy, technological innovation, and climate change on land use demand under four fu-
ture scenarios from 2015 to 2035 (Figure 5). Based on the Intergovernmental Panel on 
Climate Change (IPCC) assessment report, four scenarios were designed, taking into 
account regional climate change and different socioeconomic developments in the study 
area [47].  

 
Figure 5. Configurations of four development scenarios with regard to human and natural effects. 

We considered five parameters in different scenarios: annual economic growth, 
annual population growth, annual technological innovation, annual temperature growth, 
and annual precipitation growth. These parameters are set to be slightly different in the 
four scenarios to reflect the socioeconomic and natural condition differences among these 
scenarios (Table 2). The development trend of the economy, population, and climate 
change in the current priority (CP)_ scenario maintains the current growth level. This 
scenario’s parameters are calculated based on the statistical yearbook and meteorological 
data of the study area from 2000 to 2015, and they are used as reference values for other 
scenario parameters. In the production priority (PP)_ scenario, we assume that the es-

Figure 5. Configurations of four development scenarios with regard to human and natural effects.

Table 2. Parameterization of the socioeconomic and natural factors in the four designed scenarios.

Parameters CP_ Scenario PP_ Scenario EP_ Scenario LP_ Scenario

Annual economic growth (%/a) 13.88 20 8 8
Annual population growth (%/a) 0.53 1 0.3 0.53

Annual technological innovation (%/a) 10 15 5 15
Annual precipitation growth (%/a) 0.04 0.17 0.03 0.20
Annual temperature growth (%/a) 0.02 0.03 0.02 0.04

2.3.2. Internal Transfer Feature Settings for FLUS Models

In this study, we designed four different conversion costs to correspond to the internal
transfer characteristics of land use under different development scenarios in the future in
order to meet the actual characteristics of land use conversion under different scenarios
(Table 3). In the CP_ scenario, all land use types can be converted to each other. In the PP_
scenario, all land except construction land can be converted into cultivated land. In the
LP_ scenario, each land is ranked according to the social development needs: construction,
cultivated land, woodland, grassland, waters, and bare land. The conversion principle is
implemented to prevent the conversion of high-grade land to low-grade land. In the EP_
scenario, the ecological benefits of various types of land are ranked as follows: forest land,
waters, grassland, and others, and the conversion principle is the same as the LP_ scenario.
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Table 3. Conversion cost matrix under the four future scenarios.

CP_ Scenario PP_ Scenario EP_ Scenario LP_ Scenario

a b c d e f a b c d e f a b c d e f a b c d e f

a 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0
b 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0
c 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0
d 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0
e 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: a, b, c, d, e, and f represent cultivated land, forest land, grassland, waters, construction land, and bare land, respectively; 0 means
conversion is not possible, and 1 means conversion is allowed.

2.4. Evaluation of the Ecosystem Service Value (ESV)

In this study, we used the equivalent coefficients table of the ecosystem services
proposed by Xie et al. [8] as a basis and modified the equivalent coefficients according
to the actual situation of the study area. According to previous studies in the study area,
we settled the correction coefficient for ESV of one standard equivalent factor as 0.70 [38].
The increase in construction land caused by rapid urbanization will cause air and water
pollution, which will destroy the natural ecological environment [49,50]. Therefore, we
set the service value coefficient of construction land as 0. The final value tables of the
ecosystem services per unit area of different land use types were obtained (Table 4) [38].
This work was guided on “Observation Methodology for Longterm Forest Ecosystem
Research” of the National Standards of the People’s Republic of China (GB/T 33027-2016).

Table 4. Ecosystem service value per unit area for different land use types in the upstream of Xiong’an New Area.

Ecosystem Service Functions Cultivated Land Forest Land Grassland Waters Bare Land

Provisioning services
Food production 2035.18 502.81 694.36 1915.46 0.00

Raw material production 957.73 1149.28 1005.62 550.70 0.00
Water supply 47.89 598.58 550.70 19,849.00 0.00

Regulating services

Gas regulation 1604.20 3735.15 3543.61 1843.63 47.89
Climate regulation 861.96 11,133.63 9385.77 5483.02 0.00

Environment purification 239.43 3328.12 3088.69 13,288.53 239.43
Hydrological regulation 646.47 7997.06 6871.73 24,4796.30 71.83

Supporting services
Soil conservation 2466.16 4525.28 4333.74 2226.73 47.89

Nutrient cycle maintenance 287.32 359.15 335.21 167.60 0.00
Biodiversity 311.26 4142.19 3926.70 6105.54 47.89

Cultural services Aesthetic landscape 143.66 1819.69 1723.92 4525.28 23.94

Total 9601.26 39,290.96 35,460.03 30,0751.79 478.87

The ESV was calculated using the following equations [51]:

ESVk = ∑
f

Ak ×VCk f (3)

ESVf = ∑
k

Ak ×VCk f (4)

ESV = ∑
k

∑
f

Ak ×VCk f = ∑
k

Ak ×VCk (5)

where ESVk, ESVf and ESV refer to the ESVs of land use type k, ecosystem service function
f and the entire ecosystem, respectively; Ak is the area of land use type k; VCk f is the value
coefficient for land use type k with the ecosystem service function f ; and VCk represents
the value coefficient of land use type k.
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2.5. Ecological Contribution Rate of Land Use Change

The contribution rate of land use changes for ESV referring to the change rate of ESV
caused by the conversion of class i land use type to class e land use type [38]. Its expression
is as follows:

ELk−e =
(VCe−VCk)×Ak−e

∑n
k=1 ∑n

e=1[(VCe−VCk)×Ak−e ]
× 100% (6)

where ELk−e represents the contribution of land use change to the ecosystem service value;
VCk and VCe represent the value coefficients of land use types k and e, respectively; and
Ak−e is the area from land use type k to land use type e during the study period.

3. Results
3.1. Land Use Change in 2035

Under the different scenarios, the spatial pattern of land use in the study area is
basically consistent, but changes in local areas were obvious (Figure 6). Compared with
2015, the area of each land use type was considerably different in 2035, and the degree of
overall land use fragmentation was more prominent (Table 5).
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Table 5. Areas of six land use types in 2015 and under the four future scenarios in 2035 (km2).

2015
2035

CP_ Scenario PP_ Scenario EP_ Scenario LP_ Scenario

Cultivated land 1120.82 1174.19 1280.92 960.66 1174.2
Forest land 2474.36 2827.86 2120.88 3039.92 2466.81
Grassland 3460.34 2889.69 3505.65 2959.55 3366.94

Waters 98.28 118.36 79.63 173.36 89.89
Construction land 163.88 307.52 330.94 184.5 220.06

Bare land 0.87 0.93 0.53 0.56 0.65

Under the CP_ scenario, the areas of cultivated land, forest land, waters, construction
land and bare land increased by 53.37, 353.5, 20.08, 143.64 and 0.06 km2, respectively.
However, the areas of grassland decreased by 570.65 km2. It can be seen that the increase in
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the area of forest land and construction land mostly came from the occupation of grassland
(Figure 6 and Table 6). Under the PP_ scenario, the construction land showed a dramatic
growth to 330.94 km2 by 2035, almost twice that in 2015. Construction land growth was
characterized by extension; that is, most of the growth was located in the periphery of the
original countryside and towns, occupying a considerable amount of the cultivated land.
Forest land sharply declined, with a total reduction of 353.48 km2 that mainly converted
into cultivated land (Tables 5 and 6). Under the EP_ scenario, the area of construction land
increased the least among all scenarios, with an increase of only 20.62 km2. Forest land
increased significantly, with a value of 565.56 km2 that mainly resulted from the transfer
of grassland. Under the LP_ scenario, the area of cultivated land and construction land
increased the most prominently, increasing by 53.38 and 56.18 km2, respectively, mainly
due to the transfer of grassland. The areas of other land use types changed only slightly.

Table 6. Land use transition matrix under the four future scenarios from 2015 to 2035 (km2).

Land Use in 2035.
Land Use in 2015

1 2 3 4 5 6 Transfer in

CP_ scenario

1 1092.49 9.25 57.02 6.19 9.24 0 81.7
2 2.93 2414.13 409.68 0.28 0.84 0 413.73
3 22.84 49.25 2814.75 1.09 1.74 0.02 74.94
4 0.2 0.17 27.51 90.46 0.02 0 27.9
5 2.36 1.56 151.3 0.26 152.04 0 155.48
6 0 0 0.08 0 0 0.85 0.08

Transfer out 28.33 60.23 645.59 7.82 11.84 0.02

PP_ scenario

1 964.31 275.33 29.27 11.9 0 0.11 316.61
2 0 2102.72 17.98 0 0 0.18 18.16
3 0 91.12 3411.01 3.47 0 0.05 94.64
4 0 0 0 79.63 0 0 0
5 156.51 5.19 2.08 3.28 163.88 0 167.06
6 0 0 0 0 0 0.53 0

Transfer out 156.51 371.64 49.33 18.65 0 0.34

EP_ scenario

1 960.66 0 0 0 0 0 0
2 15.55 2474.36 549.86 0 0 0.15 565.56
3 120.5 0 2838.89 0 0 0.16 120.66
4 3.49 0 71.59 98.28 0 0 75.08
5 20.62 0 0 0 163.88 0 20.62
6 0 0 0 0 0 0.56 0

Transfer out 160.16 0 621.45 0 0 0.31

LP_ scenario

1 1119.21 6.08 42.94 5.97 0 0 54.99
2 0 2466.26 0 0.44 0 0.11 0.55
3 0 0 3365 1.83 0 0.11 1.94
4 0 0 0 89.89 0 0 0
5 1.61 2.02 52.4 0.15 163.88 0 56.18
6 0 0 0 0 0 0.65 0

Transfer out 1.61 8.1 95.34 8.39 0 0.22
Note: 1, 2, 3, 4, 5, and 6 represent cultivated land, forest land, grassland, waters, construction land, and bare land,
respectively.

3.2. Changes in Ecosystem Service Values in 2035

The changes in ESV in the upstream of Xiong’an New Area under the different
scenarios in 2035 are shown in Table 7. The ESV of the PP_ scenario and LP_ scenario
showed a downward trend, while they increased under the EP_ scenario. The ESV of the
CP_ scenario changed only slightly.
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Table 7. Ecosystem service values of the upstream of Xiong’an New Area under the four future scenarios (CNY 106).

Ecosystem Service Functions 2015
2035

CP_ Scenario PP_ Scenario EP_ Scenario LP_ Scenario

Provisioning services

Food production 611.62 604.47 626.00 587.07 614.01
Raw material production 745.11 734.57 723.35 748.54 739.50

Water supply 539.11 568.96 484.20 693.65 517.12
Total 1895.84 1908.00 1833.54 2029.26 1870.63

Regulating services

Gas regulation 2348.35 2290.43 2254.62 2370.28 2319.44
Climate regulation 6153.16 6026.74 5805.71 6340.16 6057.09

Environment purification 2049.74 2019.10 1925.14 2179.22 2008.51
Hydrological regulation 6834.93 7220.50 6137.19 8770.66 6562.78

Total 17,386.18 17,556.77 16,122.65 19,660.32 16,947.82

Supporting services

Soil conservation 2917.64 2847.94 2812.64 2933.76 2885.04
Nutrient cycle
Maintenance 238.71 234.15 231.82 238.89 236.70

Biodiversity 2478.60 2414.87 2343.56 2557.07 2435.33
Total 5634.94 5496.95 5388.03 5729.72 5557.07

Cultural services
Aesthetic landscape 1107.37 1083.17 1044.72 1155.63 1086.86

Total 1107.37 1083.17 1044.72 1155.63 1086.86

Total 26,024.33 26,044.89 24,388.94 28,574.92 25,462.38

According to the type of ecosystem service, compared with 2015, the value of pro-
visioning services increased the most in the EP_ scenario, reaching CNY 133.42 million,
while the value of provisioning services in the PP_ scenario and LP_ scenario declined
significantly by CNY 62.3 million and 25.21 million, respectively. The values of regulating
services under the PP_ scenario and LP_ scenario decreased significantly, with decreases of
CNY 1263.53 million and 438.36 million, respectively. In contrast, the value of regulating
services increased significantly in the CP_ scenario and EP_ scenario, with an increase of
CNY 170.59 million and 2274.14 million, respectively. The value of supporting services de-
creased under the CP_ scenario, PP_ scenario, and LP_ scenario, while it increased slightly
under the EP_ scenario. In addition, the value of cultural services declined under both the
PP_ scenario and LP_ scenario, with decreases of CNY 1635.39 million and 561.95 million,
respectively. The value of cultural services increased the most in the EP_ scenario, reaching
CNY 2550.59 million.

According to the land use types, compared with 2015, the ESV of cultivated land
increased under the CP_ scenario, PP_ scenario, and LP_ scenario, with increases of CNY
51.24 million, 153.72 million, and 51.25 million, respectively, while it decreased under the
EP_ scenario, with decreases of CNY 153.78 million (Figure 7). The ESV of forest land
increased the most in the EP_ scenario, reaching CNY 2222.14 million, while the value of
provisioning services in the PP_ scenario declined significantly by CNY 1388.86 million.
The ESV of grassland under the PP_ scenario increased significantly, with increases of CNY
160.66 million. In contrast, the ESV of grassland decreased significantly in the CP_ scenario,
EP_ scenario, and LP_ scenario with a decrease of CNY 2023.53 million, 1775.81 million,
and 331.2 million, respectively. The ESV of waters increased under both the CP_ scenario
and EP_ scenario, with increases of CNY 603.91 million and 2258.04 million, respectively.
The value of waters services decreased the most in the PP_ scenario, reaching CNY 560.90
million. Moreover, the ESV of bare land did not significantly change.
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3.3. Influence of Future Land Use Changes on Ecosystem Services Value (ESV)

From 2015 to 2035, the area of ESV changes in the CP_ scenario, PP_ scenario, EP_ sce-
nario and LP_ scenario was 753.83, 596.47, 781.92, and 113.66 km2, respectively (Figure 8).
The area that ESV increased in the CP_ scenario and EP_ scenario was 475.19 and 761.30
km2, respectively, which mainly occurred in the region where grassland converted into for-
est land. The area that ESV decreased in the CP_ scenario, PP_ scenario, and LP_ scenario
was 278.64, 578.14, and 113.44 km2, respectively, which mainly occurred on river banks
and the surrounding areas of towns.
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Quantitative calculation of the influence of land use change on ESV showed that land
use change has both positive and negative effects on ESV in the study period (2015 to 2035)
(Table 8). The conversion of grassland to waters was the main reason for the increase in
ESV in the CP_ scenario, with a contribution rate of 74.18%. The conversion of grassland to
construction land was the main reason for the decrease in ESV in the CP_ scenario, with a
contribution rate of 55.70%. The conversion of forest land to cultivated land contributed the
most to the total decreasing ESV in the PP_ scenario, followed by the waters converted to
cultivated land. In the LP_ scenario, the conversion of grassland to construction land and
the conversion of waters to cultivated land contributed 33.02% and 30.89% to the reduction
of ESV, respectively. The conversion of grassland to waters played an important role in the
increase in ESV in the EP_ scenario, with a contribution rate of 73.89%.

Table 8. The contribution rate of land use change to ecosystem service value (ESV) under the four future scenarios from
2015 to 2035.

Change Pattern Types of Land Use
Change

Contribution Rate/%

CP_ Scenario PP_ Scenario EP_ Scenario LP_ Scenario

Improvement of
ecosystem function

1→2 0.88 1.80
1→3 6.00 12.12
1→4 0.59 3.95
2→4 0.45
3→2 15.95 87.61 8.20
3→4 74.18 73.89
5→1 0.90
5→2 0.34
5→3 0.63
5→4 0.06
6→1 1.28
6→2 8.89 0.02 52.60
6→3 0.01 2.22 0.02 47.40
Total 100.00 100.00 100.00 100.00

Deterioration of
ecosystem function

1→5 0.24 9.14 100.00 0.27
2→1 2.85 49.75 3.21
2→3 1.96 2.12
2→5 0.64 1.24 1.41
3→1 15.31 4.61 19.73
3→5 55.70 0.45 33.02
3→6 0.03
4→1 18.71 21.08 30.89
4→2 0.76 2.04
4→3 3.00 5.60 8.63
4→5 0.81 6.00 0.80
Total 100.00 100.00 100.00 100.00

Note: 1, 2, 3, 4, 5, and 6 represent cultivated land, forest land, grassland, waters, construction land, and bare land, respectively; 1→2
represents the conversion of cultivated land to forest land, and so on for other codes.

4. Discussion
4.1. Review and Synthesis Analyses of Simulation Results

This paper focuses on the impacts of land use change on ecosystem services in the
upstream of Xiong’an New Area. Our results show that in the CP_ scenario, the grassland
on the river bank is occupied by construction land, resulting in a decrease in ESV in the
occupied area. On the contrary, the conversion of grassland to waters increases ESV in
the area. Since the two trends of ESV increase and decrease occur at the same time, they
offset each other within a certain range, which makes the overall change of ESV in the CP_
scenario insignificant. In the PP_ scenario and the LP_ scenario, the urbanization process
and technological innovation capabilities rapidly improve, which requires an increase in
construction land and cultivated land to adapt to population and economic growth [52].
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Through the occupation of forest land, grassland, and waters, the area of construction land
and cultivated land increases significantly, but this significantly reduces the ESV in the
region. This is similar to the results of the study conducted on the Guizhou mountainous
area [53] and Tianshan Mountain area [54]. Forest land and grassland can regulate regional
temperature and humidity through vegetation transpiration and soil evaporation, thereby
regulating the climate [55,56]. Moreover, carbon fixation and oxygen release also are among
the most important services provided by the forest and grassland ecosystem [57,58]. Waters
have outstanding water resource supply and hydrological regulation capabilities [59].
Therefore, when forest land, grassland, and waters are occupied by cultivated land and
construction land, the ecosystem service functions in the region will decrease significantly.
In the EP_ scenario, the slowdown of social and economic activities will reduce the impact
of humans on the natural environment, which will make the terrestrial ecosystem and
climate system form a virtuous circle, thereby accelerating the succession of vegetation.
Therefore, a large amount of grassland in the EP_ scenario is converted into forest land, and
the area of waters also increases significantly, which enhances the stability of the ecosystem
and significantly increases ESV.

Spatially, ESV changes in most parts of the study area in the CP_ scenario. This shows
that if the trends of population growth and climate change continue, the stability of the
region’s ecosystem will be destroyed, which is in line with other studies carried out in
other China mountains, such as the Qinling Mountains [60] and Qilian Mountains [61].
In the EP scenario, land use change positively impacts ecosystem services in most of
the regions, which indicates that the “Grain-for-Green”, “ecological red line”, and other
political strategies can protect ecological land and gradually improve ecosystem quality [62].
In the LP scenario, the ESV of most areas remains unchanged and only decreases in towns
and river banks. In the LP_ scenario, the ESV increases significantly in the area where it
decreases in the PP_ scenario. In the LP_ scenario, as the population size is controlled
and technological innovation increases, resources are used efficiently. In this way, humans
can meet their own needs by consuming the least natural resources, thereby reducing the
scope of disturbance to the natural ecosystem [63,64]. In contrast, the population size in
the PP_ scenario is not controlled, leading to increasing demand for natural resources by
humans coupled with the continuous improvement in technological innovation capabilities,
which ultimately leads to a sharp increase in human disturbance to the natural ecosystem
area [65]. In many developing countries, economic benefits are the primary consideration
in land resources management, while the ecological benefits are often ignored, which
continues to increase the pressure on natural resources and ecosystems and threatens
regional ecological security [66,67]. Therefore, the land transfer restriction measures and
socioeconomic management policies in the LP_ scenario can provide a reference for policy
makers to make sound decisions that balance the socioeconomic and ecological benefits.

4.2. Advice for Future Strategies and Policies

The water supply safety and flood controlling ability of Xiong’an New Area largely
depend on the upstream ecosystem [38]. Land use changes directly affect the structure
and function of the ecosystem. Therefore, it is necessary for decision makers to formulate
reasonable land use strategies and policies to ensure the ecological security of the region.
In order to enhance the ecological stability of the region and ensure the ecological safety
of the downstream Xiong’an New Area, combined with the above research results, we
suggest that focus be placed on the following aspects in future work: (1) Strict laws and
regulations should be formulated in the study area to prohibit grazing, felling of trees, and
occupation of waters in order to ensure that the existing ecological environment does not
deteriorate. (2) Under the condition of not affecting the normal food supply, large-scale
afforestation should be implemented to convert arable land and grassland into forest
land. (3) The scale of construction land should be controlled, population density should
be reasonably controlled, the ecological structure should be stabilized, the burden on
ecosystems should be eased, and ecosystem service capability should be improved. (4)
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The ability to respond to climate change should be strengthened, especially in the context
of rising extreme weather events, to reduce the risk of drought and flood disasters. (5) It
is necessary to consider balancing the relationship between natural resources, economy,
and society; strengthening cooperation between the upstream and downstream to achieve
integrated river basin management; and revising the ecological environment protection
strategy for a more sustainable future.

4.3. Strengths and Limitations

This study has its strengths and weakness, which we summarize here. In this study,
we constructed an SD-FLUS coupling model that takes into account human activities and
climate change to predict land use change, which helps to improve the accuracy of future
land use change simulations. We also set different land use demands and internal transfer
characteristics for different development scenarios to adapt to the various possibilities
of regional land use changes. The coupling model is especially suitable for the areas
which are greatly affected by human activities and climate change, such as agropastoral
interlaced regions, coastal areas, and hilly regions. When applying this model to other
regions, we should fully consider the characteristics the region in question and understand
the interaction between climate and socioeconomic changes and future land use changes
so as to establish a suitable coupling model. The equivalent coefficients table proposed by
Xie et al. is suitable for ESV estimation at the national scale in China [38]. Therefore, we
used the grain yield correction coefficient to make regional corrections to the equivalent
coefficients table, which improved the accuracy of ESV assessment. We quantified and
mapped the response of ecosystem service value to multi-scenario land use changes. The
advantages of this method are its quick assessment and the low cost associated with
collecting the primary data needed to achieve our objectives, which can be used for
the scientific evaluation and rapid accounting of ecological assets in specific regions.
This method also has strong generalizability. It can be used to comprehensively and
objectively evaluate the development status of the ecological environment and future
sustainable development potential of other similar regions, and it can provide theoretical
support and a scientific basis for formulating relevant ecological asset compensation
policies and measures.

Despite these strengths, this study also has some limitations. The limitations and
accuracy of the results in this paper are mainly related to the accuracy of land use data.
The land use data were provided by the Resource and Environmental Science Data Center
of the Chinese Academy of Sciences with a spatial resolution of 100 × 100 m. The land use
datasets do not have detailed classification [68]. For example, the grasslands of different
coverage are not further differentiated, which may have an impact on the research results.
Thus, to overcome these limitations, a land use dataset with high resolution is needed [69].

5. Conclusions

We predicted and evaluated ESV in the upstream of Xiong’an New Area in 2035
using the SD-FLUS coupling model and the equivalent coefficient table method. We also
quantitatively calculated the impact of future land use changes on ESV under different
scenarios. Based on the results, we can draw the following conclusions:

1. From 2015 to 2035, the area of construction land in the four scenarios increased.
Among them, the area of construction land in the CP_ scenario and PP_ scenario is
almost twice that in 2015. In the PP_ scenario, the area of forest land decreased the
most, from 2474.36 km2 in 2015 to 2120.88 km2 in 2035. In the ecological scenario,
the forest area increased significantly, accounting for 41.51% of the total area, and the
waters had a dramatic growth to 2.37 km2 by 2035, almost twice that in 2015. In the
LP_ scenario, the land use structure of the study area is relatively stable.

2. From 2015 to 2035, the ESV of the PP_ scenario and LP_ scenario showed a downward
trend, while they increased under the EP_ scenario. The ESV of the CP_ scenario
changed only slightly. Among the different scenarios, the value of each ecosystem
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service function is the smallest in the PP_ scenario, and the value of each ecosystem
service function is the largest in the EP_ scenario. The ESV of cultivated land and
grassland is the largest in the PP scenario, and the ESV of forest land and waters is
the largest in the EP scenario.

3. From 2015 to 2035, the areas where ESV decreased mainly appeared in river banks
and surrounding areas of towns. In the CP_ scenario and LP_ scenario, the conversion
of grassland to construction land is the main reason for the decline in ESV, and
the contribution rates are 55.70% and 33.02%, respectively. In the PP_ scenario, the
conversion of forest land to cultivated land is the main reason for the decline in
ESV. In the CP_ scenario and EP_ scenario, the conversion of grassland to waters is
the main reason for the increase in ESV, and the contribution rates are 74.18% and
73.89%, respectively.

This study quantified the effects of land use change on ESV by evaluating the land
use changes and ESVs under future scenarios in the upstream of Xiong’an New Area. The
results of this study can help decision makers to optimize land use structure and promote
sustainable development of the ecological environment.
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