Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tequila Vinasse
2.2. Inocula
2.3. Experimental Setup and Operating Conditions
2.4. Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Evaluation of Nutrients Present in TV
3.2. Hydrogen Production Performance
3.3. Effect of the Inoculum Type on the Microbial Community Composition
3.4. Effect of the Inoculum Type on the Metabolic Profiles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. The Future of Hydrogen. Available online: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf (accessed on 2 October 2021).
- Kannah, Y.R.; Kavitha, S.; Karthikeyan, P.O.; Kumar, G.; Dai-Viet, N.V.; Banu, R.J. Techno-economic assessment of various hydrogen production methods—A review. Bioresour. Technol. 2021, 319, 124175. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrogen Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Gómez, X.; Fernández, C.; Fierro, J.; Sánchez, M.E.; Escapa, A.; Morán, A. Hydrogen production: Two stage processes for waste degradation. Bioresour. Technol. 2011, 102, 8621–8627. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z. Biological hydrogen production from renewable resources by photofermentation. In Advances in Bioenergy; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 3, pp. 137–160. [Google Scholar]
- García-Depraect, O.; Muñoz, R.; van Lier, J.B.; Rene, E.R.; Diaz-Cruces, V.F.; León-Becerril, E. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour. Technol. 2020, 307, 123160. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, N.C.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- Bundhoo, Z.M.A. Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: A review. Int. J. Hydrogen Energy 2017, 42, 26667–26686. [Google Scholar] [CrossRef]
- García-Depraect, O.; Castro-Muñoz, R.; Muñoz, R.; Rene, E.R.; León-Becerril, E.; Valdez-Vazquez, I.; Kumar, G.; Reyes-Alvarado, L.C.; Martínez-Mendoza, L.J.; Carrillo-Reyes, J.; et al. A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. Bioresour. Technol. 2021, 324, 124595. [Google Scholar] [CrossRef]
- Park, J.-H.; Sim, Y.-B.; Kumar, G.; Anburajan, P.; Park, J.-H.; Park, H.-D.; Kim, S.-H. Kinetic modeling and microbial community analysis for high-rate biohydrogen production using a dynamic membrane. Bioresour. Technol. 2018, 262, 59–64. [Google Scholar] [CrossRef]
- Sim, Y.-B.; Jung, J.-H.; Baik, J.-H.; Park, J.-H.; Kumar, G.; Banu, R.J.; Kim, S.-H. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. Bioresour. Technol. 2021, 340, 125562. [Google Scholar] [CrossRef]
- Jung, J.-H.; Sim, Y.-B.; Park, J.-H.; Pandey, A.; Kim, S.-H. Novel dynamic membrane, metabolic flux balance and PICRUSt analysis for high-rate biohydrogen production at various substrate concentrations. Chem. Eng. J. 2021, 420, 127685. [Google Scholar] [CrossRef]
- Park, J.-H.; Park, J.-H.; Sim, Y.-B.; Kim, S.-H.; Park, H.-D. Formation of a dynamic membrane altered the microbial community and metabolic flux in fermentative hydrogen production. Bioresour. Technol. 2019, 282, 63–68. [Google Scholar] [CrossRef]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef]
- Cai, J.; Wang, G. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge. Int. J. Green Energy 2016, 13, 292–297. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Cabrol, L.; Jeison, D.; Trably, E.; Steyer, J.-P.; Tapia-Venegas, E. Impact of the microbial inoculum source on pre-treatment efficiency for fermentative H2 production from glycerol. Int. J. Hydrogen Energy 2020, 45, 1597–1607. [Google Scholar] [CrossRef]
- García-Depraect, O.; León-Becerril, E. Fermentative biohydrogen production from tequila vinasse via the lactate- acetate pathway: Operational performance, kinetic analysis and microbial ecology. Fuel 2018, 234, 151–160. [Google Scholar] [CrossRef]
- Buitrón, G.; Kumar, G.; Martinez-Arce, A.; Moreno, G. Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. Int. J. Hydrogen Energy 2014, 39, 19249–19255. [Google Scholar] [CrossRef]
- Buitrón, G.; Prato-Garcia, D.; Axue, Z.; Zhang, A. Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Sci. Technol. 2014, 70, 1919–1925. [Google Scholar] [CrossRef]
- García-Depraect, O.; Diaz-Cruces, V.F.; Rene, E.R.; León-Becerril, E. Changes in performance and bacterial communities in a continuous biohydrogen-producing reactor subjected to substrate- and pH-induced perturbations. Bioresour. Technol. 2020, 295, 122182. [Google Scholar] [CrossRef]
- García-Depraect, O.; Muñoz, R.; Rodríguez, E.; Rene, E.R.; León-Becerril, E. Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions. Int. J. Hydrogen Energy 2021, 46, 11284–11296. [Google Scholar] [CrossRef]
- Arellano-García, L.; Velázquez-Fernández, J.B.; Macías-Muro, M.; Marino-Marmolejo, E.N. Continuous hydrogen production and microbial community profile in the dark fermentation of tequila vinasse: Response to increasing loading rates and immobilization of biomass. Biochem. Eng. J. 2021, 172, 108049. [Google Scholar] [CrossRef]
- López-López, A.; Davila-Vazquez, G.; León-Becerril, E.; Villegas-García, E.; Gallardo-Valdez, J. Tequila vinasses: Generation and full scale treatment processes. Rev. Environ. Sci. Biotechnol. 2010, 9, 109–116. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Villafán-Carranza, F.; Arreola-Vargas, J.; Razo-Flores, E.; Méndez-Acosta, H.O. Comparative evaluation of the mesophilic and thermophilic biohydrogen production at optimized conditions using tequila vinasses as substrate. Int. J. Hydrogen Energy 2020, 45, 11000–11010. [Google Scholar] [CrossRef]
- García-Depraect, O.; Gómez-Romero, J.; León-Becerril, E.; López-López, A. A novel biohydrogen production process: Co-digestion of vinasse and Nejayote as complex raw substrates using a robust inoculum. Int. J. Hydrogen Energy 2017, 42, 5820–5831. [Google Scholar] [CrossRef]
- García-Depraect, O.; Diaz-Cruces, V.F.; Rene, E.R.; Castro-Muñoz, R.; León-Becerril, E. Long-term preservation of hydrogenogenic biomass by refrigeration: Reactivation characteristics and microbial community structure. Bioresour. Technol. Rep. 2020, 12, 100587. [Google Scholar] [CrossRef]
- García-Depraect, O.; Rene, E.R.; Diaz-Cruces, V.F.; León-Becerril, E. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. Bioresour. Technol. 2019, 273, 618–626. [Google Scholar] [CrossRef]
- Buitrón, G.; Carvajal, C. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: Effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour. Technol. 2010, 101, 9071–9077. [Google Scholar] [CrossRef]
- W.E. Federation; A.P.H. Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005; Volume 21. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Alcázar, L.A.; Ancheyta, J. Sensitivity analysis based methodology to estimate the best set of parameters for heterogeneous kinetic models. Chem. Eng. J. 2007, 128, 85–93. [Google Scholar] [CrossRef]
- Asunis, F.; De Gioannis, G.; Isipato, M.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour. Technol. 2019, 289, 121722. [Google Scholar] [CrossRef]
- Argun, H.; Kargi, F.; Kapdan, I.K.; Oztekin, R. Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. Int. J. Hydrogen Energy 2008, 33, 1813–1819. [Google Scholar] [CrossRef]
- Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, W.M.; Stahl, D.A. Diversity of Bacteria. In Brock Biology of Microorganisms; Pearson: New York, NY, USA, 2019; pp. 530–565. ISBN 9781292235103. [Google Scholar]
- Mortenson, L.E. Purification and properties of hydrogenase from Clostridium pasteurianum. Methods Enzymol. 1978, 53, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Schönheit, P.; Brandis, A.; Thauer, R.K. Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Arch. Microbiol. 1979, 120, 73–76. [Google Scholar] [CrossRef]
- Lee, Y.J.; Miyahara, T.; Noike, T. Effect of iron concentration on hydrogen fermentation. Bioresour. Technol. 2001, 80, 227–231. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lay, C.H. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrogen Energy 2005, 30, 285–292. [Google Scholar] [CrossRef]
- Oztekin, R.; Kapdan, I.K.; Kargi, F.; Argun, H. Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. Int. J. Hydrogen Energy 2008, 33, 4083–4090. [Google Scholar] [CrossRef]
- Pérez-Rangel, M.; Barboza-Corona, J.E.; Buitrón, G.; Valdez-Vazquez, I. Essential nutrients for improving the direct processing of raw lignocellulosic substrates through the dark fermentation process. Bioenergy Res. 2020, 13, 349–357. [Google Scholar] [CrossRef]
- Fuess, L.T.; dos Santos, G.M.; Delforno, T.P.; de Souza Moraes, B.; da Silva, A.J. Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries. Renew. Energy 2020, 158, 3–12. [Google Scholar] [CrossRef]
- Mugnai, G.; Borruso, L.; Mimmo, T.; Cesco, S.; Luongo, V.; Frunzo, L.; Fabbricino, M.; Pirozzi, F.; Cappitelli, F.; Villa, F. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Bioresour. Technol. 2021, 319, 124157. [Google Scholar] [CrossRef]
- García-Depraect, O.; Valdez-Vázquez, I.; Rene, E.R.; Gómez-Romero, J.; López-López, A.; León-Becerril, E. Lactate-and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: Metabolic and microbial community dynamics. Bioresour. Technol. 2019, 282, 236–244. [Google Scholar] [CrossRef]
- Detman, A.; Laubitz, D.; Chojnacka, A.; Wiktorowska-Sowa, E.; Piotrowski, J.; Salamon, A.; Kaźmierczak, W.; Błaszczyk, M.K.; Barberan, A.; Chen, Y.; et al. Dynamics and complexity of dark fermentation microbial communities producing hydrogen from sugar beet molasses in continuously operating packed bed reactors. Front. Microbiol. 2021, 11, 612344. [Google Scholar] [CrossRef] [PubMed]
- Detman, A.; Laubitz, D.; Chojnacka, A.; Kiela, P.R.; Salamon, A.; Barberan, A.; Chen, Y.; Yang, F.; Błaszczyk, M.K.; Sikora, A. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Microbiome 2021, 9, 158. [Google Scholar] [CrossRef]
- Diaz-Cruces, V.F.; García-Depraect, O.; León-Becerril, E. Effect of lactate fermentation type on the biochemical methane potential of tequila vinasse. BioEnergy Res. 2020, 13, 571–580. [Google Scholar] [CrossRef]
- Freitas, I.B.F.; de Menezes, C.A.; Silva, E.L. An alternative for value aggregation to the sugarcane chain: Biohydrogen and volatile fatty acids production from sugarcane molasses in mesophilic expanded granular sludge bed reactors. Fuel 2020, 260, 116419. [Google Scholar] [CrossRef]
- Andreani, C.L.; Tonello, T.U.; Mari, A.G.; Leite, L.C.C.; Campaña, H.D.; Lopes, D.D.; Rodrigues, J.A.D.; Gomes, S.D. Impact of operational conditions on development of the hydrogen-producing microbial consortium in an AnSBBR from cassava wastewater rich in lactic acid. Int. J. Hydrogen Energy 2019, 44, 1474–1482. [Google Scholar] [CrossRef]
- Cabrol, L.; Marone, A.; Tapia-Venegas, E.; Steyer, J.P.; Ruiz-Filippi, G.; Trably, E. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 2017, 41, 158–181. [Google Scholar] [CrossRef]
- Sikora, A.; Błaszczyk, M.; Jurkowski, M.; Zielenkiewicz, U. Lactic acid bacteria in hydrogen-producing consortia: On purpose or by coincidence? Lact. Acid Bact. Food Health Livest. Purp. 2013, 487–514. [Google Scholar] [CrossRef] [Green Version]
- Noike, T.; Takabatake, H.; Mizuno, O.; Ohba, M. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 2002, 27, 1367–1371. [Google Scholar] [CrossRef]
- Rosa, P.R.F.; Gomes, B.C.; Varesche, M.B.A.; Silva, E.L. Characterization and antimicrobial activity of lactic acid bacteria from fermentative bioreactors during hydrogen production using cassava processing wastewater. Chem. Eng. J. 2016, 284, 1–9. [Google Scholar] [CrossRef]
- Gomes, S.D.; Fuess, L.T.; Mañunga, T.; De Lima Gomes, P.C.F.; Zaiat, M. Bacteriocins of lactic acid bacteria as a hindering factor for biohydrogen production from cassava flour wastewater in a continuous multiple tube reactor. Int. J. Hydrogen Energy 2016, 41, 8120–8131. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Nishimura, Y. Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 2007, 103, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Hsu, S.-C.; Wu, C.-H.; Chang, P.-W.; Lin, C.-Y.; Hung, C.-H. Quantitative analysis of microorganism composition in a pilot-scale fermentative biohydrogen production system. Int. J. Hydrogen Energy 2011, 36, 14153–14161. [Google Scholar] [CrossRef]
- Pattra, S.; Lay, C.-H.; Lin, C.-Y.; O-Thong, S.; Reungsang, A. Performance and population analysis of hydrogen production from sugarcane juice by non-sterile continuous stirred tank reactor augmented with Clostridium butyricum. Int. J. Hydrogen Energy 2011, 36, 8697–8703. [Google Scholar] [CrossRef]
- Rao, R.; Basak, N. Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. Int. J. Hydrogen Energy 2021, 46, 1777–1800. [Google Scholar] [CrossRef]
- Torres de Souza, I.; Moreira, F.S.; de Souza Ferreira, J.; Cardoso, V.L.; Batista, F.R.X. Technological advances in hydrogen production by Enterobacter bacteria upon substrate, luminosity and anaerobic conditions. Int. J. Hydrogen Energy 2019, 44, 16190–16198. [Google Scholar] [CrossRef]
- Jayasinghearachchi, H.S.; Sarma, P.M.; Singh, S.; Aginihotri, A.; Mandal, A.K.; Lal, B. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines. Int. J. Hydrogen Energy 2009, 34, 7197–7207. [Google Scholar] [CrossRef]
- Argun, H.; Kargi, F.; Kapdan, I.K. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. Int. J. Hydrogen Energy 2009, 34, 2195–2200. [Google Scholar] [CrossRef]
- Hung, C.H.; Chang, Y.T.; Chang, Y.J. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—A review. Bioresour. Technol. 2011, 102, 8437–8444. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Soccol, C.R. Evidence of metabolic shift on hydrogen, ethanol and 1,3-propanediol production from crude glycerol by nitrogen sparging under micro-aerobic conditions using co-culture of Enterobacter aerogenes and Clostridium butyricum. Int. J. Hydrogen Energy 2015, 40, 8669–8676. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 3.43 |
Acidity (g CaCO3/L) | 6.8 ± 0.1 |
Total COD (g/L) | 52.1 ± 2.8 |
Soluble COD (g/L) | 50.3 ± 4.3 |
Total organic carbon (g/L) | 23.5 ± 0.02 |
Total reducing sugars (g/L) | 8.1 ± 0.1 |
Total carbohydrates (g/L) | 11.9 ± 0.3 |
Total nitrogen (mg/L) | 182.5 ± 17.6 |
Total phosphorous (mg/L) | 297.5 ± 42.4 |
Sulfate (mg/L) | 225.0 ± 0.0 |
Total solids (g/L) | 37.1 ± 0.6 |
Total volatile solids (g/L) | 33.8 ± 0.6 |
Total suspended solids (g/L) | 5.5 ± 0.8 |
Copper (mg/L) | 1.0 |
Iron (mg/L) | 29.8 |
Manganese (mg/L) | 11.2 |
Zinc (mg/L) | 1.2 |
Sodium (mg/L) | 47.1 |
Nickel (mg/L) | 1.0 |
Magnesium (mg/L) | 374.0 |
Molybdenum (mg/L) | 1.0 |
Sulfur (mg/L) | 61.9 |
Potassium (mg/L) | 655.0 |
Calcium (mg/L) | 493.0 |
Substrate | N | P | Mg | Fe | Ca | Zn | Na | Reference |
---|---|---|---|---|---|---|---|---|
Wheat powder | 0.5 | 0.1 | - | - | - | - | - | [34] |
Anaerobic sewage sludge | 0.2 | - | 0.2 | 0.04 | 7 | 0.003 | 5 | [39] |
Wheat starch | 2 | 0.8 | - | 1.5 | - | - | - | [40] |
Lignocellulose | 5.7 | 0.3 | - | - | 3.8 | - | - | [41] |
Tequila vinasse | 0.8 | 1.3 | 1.6 | 0.10 | 2.1 | 0.005 | 0.2 | This study |
Inoculum | |||
---|---|---|---|
Performance Indicator | HATI | HTI | p-Value |
CHP (NmL H2/L vinasse) | 2644 ± 538 | 2490 ± 804 | 0.797 |
HPRmax (NL H2/L-d) | 1.89 ± 0.72 | 1.43 ± 0.16 | 0.339 |
Lag phase (h) | 63.3 ± 5.3 | 66.9 ± 11.8 | 0.660 |
R2 | 0.996 ± 0.005 | 0.995 ± 0.002 | 0.805 |
t90 | 104 ± 23 | 117 ± 29 | 0.570 |
H2 content (% v/v) | 71 ± 7 | 64 ± 10 | 0.350 |
Hydrogen yield (NmL H2/g VS added) | 78.2 ± 15.9 | 73.6 ± 23.8 | 0.797 |
Hydrogen yield (NmL H2/g COD added) | 50.7 ± 10.3 | 47.8 ± 15.4 | 0.797 |
Soluble COD removal (%) | 15 ± 1 | 17 ± 4 | 0.657 |
TRS removal (%) | 47 ± 9 | 51 ± 7 | 0.437 |
Operation Mode | pH | Temperature (°C) | Inoculum Pretreatment | Hydrogen Production Rate (NL H2/L-d) | Nutrient Supplementation | Feeding Concentration (g COD/L) | Reference |
---|---|---|---|---|---|---|---|
Batch | 5.5 | 35 | Heat-aeration | 3.8 | Yes | 58 | [18] |
Semi-continuous | 4.7 | 35 | Heat | 1.2 | Yes | 16 | [19] |
Continuous | 5.5 | 35 | Heat | 1.7 | Yes | 8.5 | [20] |
Continuous | 5.5 | 35 | Heat-aeration | 12.5 | Yes | 42 | [21] |
Continuous | 5.5 | N.R. | Heat | 0.06 | No | 26 | [23] |
Semi-continuous | 5.5 | 55 | Heat | 0.5 | No | 29 | [25] |
Batch | 6.0 | 35 | Heat-aeration | 1.9 | No | 52 | This study |
Microbial Species | Facultative | Sporulating | H2 Producer | HATI | HTI | ||||
---|---|---|---|---|---|---|---|---|---|
Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 | ||||
Prevotella sp. | No | No | No | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Sporolactobacillus terrae | No | Yes | No | 0.3 | 0.1 | 1.4 | 0.5 | 0.0 | 0.1 |
Enterococcus casseliflavus | No * | No | No | 0.0 | 0.0 | 0.0 | 13.7 | 2.4 | 0.0 |
Lactobacillus casei | No * | No | No | 18.6 | 7.0 | 14.7 | 0.1 | 0.0 | 0.0 |
Lactobacillus harbinensis | No * | No | No | 11.9 | 2.4 | 8.1 | 0.0 | 0.0 | 0.0 |
Lactobacillus rhamnosus | No * | No | No | 0.0 | 0.8 | 1.1 | 0.0 | 0.0 | 0.0 |
Clostridium beijerinckii | No | Yes | Yes | 25.8 | 8.7 | 40.4 | 65.7 | 37.9 | 34.8 |
Clostridium sp. | No | Yes | Yes | 4.2 | 0.9 | 4.7 | 4.4 | 5.1 | 2.9 |
Enterobacter sp. | Yes | No | Yes | 10.9 | 25.0 | 5.6 | 0.0 | 16.3 | 56.1 |
Klebsiella sp. | Yes | No | Yes | 18.8 | 54.6 | 13.4 | 0.0 | 32.4 | 1.2 |
<1.0% | - | - | - | 1.3 | 0.1 | 1.0 | 3.2 | 0.0 | 0.0 |
Unclassified | - | - | - | 8.2 | 0.5 | 9.7 | 8.2 | 5.9 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Reyes, J.J.; García-Depraect, O.; Castro-Muñoz, R.; León-Becerril, E. Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation. Sustainability 2021, 13, 11034. https://doi.org/10.3390/su131911034
Rodríguez-Reyes JJ, García-Depraect O, Castro-Muñoz R, León-Becerril E. Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation. Sustainability. 2021; 13(19):11034. https://doi.org/10.3390/su131911034
Chicago/Turabian StyleRodríguez-Reyes, Juan José, Octavio García-Depraect, Roberto Castro-Muñoz, and Elizabeth León-Becerril. 2021. "Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation" Sustainability 13, no. 19: 11034. https://doi.org/10.3390/su131911034
APA StyleRodríguez-Reyes, J. J., García-Depraect, O., Castro-Muñoz, R., & León-Becerril, E. (2021). Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation. Sustainability, 13(19), 11034. https://doi.org/10.3390/su131911034