Reading Urban Green Morphology to Enhance Urban Resilience: A Case Study of Six Southern European Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Investigating Urban Green Spatial Patterns (UGSPs)
2.2.1. UGSPs Identification
2.2.2. Analysis of UGSPs Spatial Distribution
3. Results
4. Discussion
4.1. Types of UGSPs in Southern European Cities
4.2. Application of the UGSPs Approach for Planning and Management Purposes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleeson, B. Critical commentary. Waking from the dream: An Australian perspective on urban resilience. Urban Stud. 2008, 45, 2653–2668. [Google Scholar] [CrossRef]
- OECD Biodiversity: Finance and the Economic and Business Case for Action. In Proceedings of the G7 Environment Ministers’ Meeting, Metz, France, 5–6 May 2019. [CrossRef]
- Benini, L.; Asquith, M. Understanding Sustainability Challenges. In The European Environment-State and Outlook 2020; Publications Office of the European Union: Luxembourg, 2019; p. 346. [Google Scholar] [CrossRef]
- EEA-FOEN. Landscape Fragmentation in Europe. Joint EEA-FOEN Report; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar] [CrossRef]
- Pauleit, S.; Ennos, R.; Golding, Y. Modeling the environmental impacts of urban land use and land cover change—A study in merseyside, UK. Landsc. Urban Plan. 2005, 71, 295–310. [Google Scholar] [CrossRef]
- Haaland, C.; Van Den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Haq, S. Urban green spaces and an integrative approach to sustainable environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.; Ferreira, C.S.S.; Pereira, P. Environmental and socioeconomic factors influencing the use of urban green spaces in Coimbra. Sci. Total Environ. 2021, 792, 148293. [Google Scholar] [CrossRef]
- EEA. Glossary for Urban Green Infrastructure. Available online: https://www.eea.europa.eu/themes/sustainability-transitions/urban-environment/urban-green-infrastructure/glossary-for-urban-green-infrastructure (accessed on 7 October 2019).
- Cooper, N.; Brady, E.; Steen, H.; Bryce, R. Aesthetic and spiritual values of ecosystems: Recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 2016, 21, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.; Langemeyer, J.; McPhearson, T.; O’Farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 175–251. [Google Scholar] [CrossRef] [Green Version]
- Rakhshandehroo, M.; Mohd Yusof, M.J.; Mohd Tahir, O.; Mohd Yunos, M.Y. The social benefits of urban open green spaces: A Literature review. Manag. Res. Pract. 2015, 7, 60–71. [Google Scholar]
- Kalantari, Z.; Ferreira, C.S.S.; Page, J.; Goldenberg, R.; Olsson, J.; Destouni, G. Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes. J. Environ. Manag. 2019, 245, 471–480. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- European Commission. Commission Staff Working Document: Overview of Natural and Man-Made Disaster Risks the European Union May Face. Available online: https://ec.europa.eu/echo/sites/default/files/overview_of_natural_and_man-made_disaster_risks_the_european_union_may_face.pdf (accessed on 28 April 2021).
- Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D. Degradation in urban areas. Curr. Opin. Environ. Sci. Health 2018, 5, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manage. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Steenhuis, T.S.; Ferreira, A.J.D. Effect of Peri-urban Development and Lithology on Streamflow in a Mediterranean Catchment. Land Degrad. Dev. 2018, 29, 1141–1153. [Google Scholar] [CrossRef]
- European Commission. Soil Sealing-In-Depth Report, Science for Environmental Policy, DG Environment News Alert Service; European Commission: Brussels, Belgum, 2012. [Google Scholar]
- Kalantari, Z.; Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D.; Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban mediterranean catchment. Land Degrad. Dev. 2017, 28, 2207–2221. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ye, L.-P.; Shi, W.-Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- EEA. EEA Report No 15/2017-Climate Change Adaptation and Disasterrisk Reduction in Europe: Enhancing Coherence of the Knowledge Base, Policies and Practices; European Evironment Agency: København, Denmark, 2017. [Google Scholar]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Mukherjee, M.; Takar, K. Urban Green Space as a Countermeasure to Increasing Urban Risk and the UGS-3CC Resilience Framework. Int. J. Disaster Risk Reduct. 2018, 28, 854–861. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Commettee of the Regions: Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Li, H.; Chen, W.; He, W. Planning of green space ecological network in urban areas: An example of Nanchang, China. Int. J. Environ. Res. Public Health 2015, 12, 12889–12904. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; You, H.; Li, D.; Yu, K. Urban Green spaces, their spatial pattern, and ecosystem service value: The case of Beijing. Habitat Int. 2016, 56, 84–95. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derkzen, M.; Teeffelen, A.; Verburg, P. Quantifying urban ecosystem services based on high-resolution data of urban green space: An Assessment for Rotterdam, The Netherlands. J. Appl. Ecol. 2015, 52. [Google Scholar] [CrossRef]
- Trihamdani, A.R.; Lee, H.S.; Kubota, T.; Phuong, T.T.T. Configuration of green spaces for urban heat island mitigation and future building energy conservation in hanoi master plan 2030. Buildings 2015, 5, 933–947. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; De La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking Public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the role of urban green spaces for human well-being: A systematic review. GeoJournal 2021, 7, 1–19. [Google Scholar] [CrossRef]
- Poulsen, M.N.; Neff, R.A.; Winch, P.J. The multifunctionality of urban farming: Perceived benefits for neighbourhood improvement. Local Environ. 2017, 22, 1411–1427. [Google Scholar] [CrossRef]
- Pamukcu-Albers, P.; Ugolini, F.; La Rosa, D.; Grădinaru, S.R.; Azevedo, J.C.; Wu, J. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Moudon, A.V. Urban morphology as an emerging interdisciplinary field. Urban Morphol. 1997, 1, 3–10. [Google Scholar]
- Kropf, K. The Handbook of Urban Morphology; John Wiley & Sons, Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Zou, H.; Wang, X. Progress and gaps in research on urban green space morphology: A review. Sustainability 2021, 13, 1202. [Google Scholar] [CrossRef]
- Cömertler, S. Greens of the European green capitals. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green space availability in European cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Carmen, R.; Jacobs, S.; Leone, M.; Palliwoda, J.; Pinto, L.; Misiune, I.; Priess, J.A.; Pereira, P.; Wanner, S.; Ferreira, C.S.; et al. Keep it real: Selecting realistic sets of urban green space indicators. Environ. Res. Lett. 2020, 15, 095001. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the landscape and ecological quality of urban green spaces in a compact city. Landsc. Urban Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote Sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Haase, D.; Jänicke, C.; Wellmann, T. Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landsc. Urban Plan. 2019, 182, 44–54. [Google Scholar] [CrossRef]
- Rudd, H.; Vala, J.; Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A Connectivity analysis of urban green spaces. Restor. Ecol. 2002, 10, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Zhen, W.; Chen, R.; Meadows, M.E.; Sengupta, D.; Xu, D. Changing urban green spaces in shanghai: Trends, drivers and policy implications. Land Use Policy 2019, 87, 104080. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.; Wang, Y.; Liang, J.; Xie, S.; Guo, S.; Li, X.; Yu, C. Urban green space fragmentation and urbanization: A Spatiotemporal perspective. Forests 2019, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the Drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of urban form on landscape structure of urban green spaces in China using landsat images based on Google Earth engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Hepcan, Ş. Analyzing the pattern and connectivity of urban green spaces: A Case study of Izmir, Turkey. Urban Ecosyst. 2013, 16, 279–293. [Google Scholar] [CrossRef]
- Eurostat. Glossary: Degree of Urbanisation. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Degree_of_urbanisation (accessed on 21 October 2019).
- Kim, H.; Lee, D.-K.; Sung, S. Effect of urban green spaces and flooded area type on flooding probability. Sustainability 2016, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The Influence of spatial configuration of green areas on microclimate and Thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Pauleit, S.; Kindler, A.; Banzhaf, E. Spatial patterns of urban green infrastructure for equity: A Novel exploration. J. Clean. Prod. 2019, 238, 117858. [Google Scholar] [CrossRef]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Borgström, S.T.; Elmqvist, T.; Angelstam, P.; Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 2006, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity Conservation in urban environments. Trends Ecol. Evol. 2009, 25, 90–98. [Google Scholar] [CrossRef]
- Vergnes, A.; Le Viol, I.; Clergeau, P. Green Corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 2012, 145, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Vega, K.; Kueffer, C. Promoting Wildflower biodiversity in dense and green cities: The Important role of small vegetation patches. Urban For. Urban Green. 2021, 62, 127165. [Google Scholar] [CrossRef]
- Stobbelaar, D.; Knaap, W.; Spijker, J. Greening the city: How to get rid of garden pavement! The ‘steenbreek’ program as a dutch example. Sustainability 2021, 13, 3117. [Google Scholar] [CrossRef]
- van Valkengoed, A.; Steg, L. Climate Change Adaptation by Individuals and Households: A Psychological Perspective; University of Groningen: Groningen, The Netherlands, 2019; 25p. [Google Scholar]
- Taleghani, M. Outdoor Thermal comfort by different heat mitigation strategies-a review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Vergnes, A.; Kerbiriou, C.; Clergeau, P. Ecological Corridors also operate in an urban matrix: A Test case with garden shrews. Urban Ecosyst. 2013, 16, 511–525. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Moruzzi, R.; Isidoro, J.M.G.P.; Tudor, M.; Vargas, M.; Ferreira, A.J.D.; de Lima, J.L.M.P. Impacts of Distinct spatial arrangements of impervious surfaces on runoff and sediment fluxes from laboratory experiments. Anthropocene 2019, 28, 100219. [Google Scholar] [CrossRef]
- Ferreira, C.; Frigione, B.; Gazdic, M.; Pezzagno, M.; Ferreira, A. Effectiveness of green areas and impact of the spatial pattern on water infiltration within cities: Abstract. EGU Gen. Assem. 2020, 441. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Y.-J.; Chen, X.-Y.; Li, Q.; Jing, Y.-C.; Wang, X.; Feng, C.-H. Understanding the effects of composition and configuration of land covers on surface runoff in a highly urbanized area. Ecol. Eng. 2018, 125, 11–25. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Deo, R.C.; Yao, L.; Wei, W. Experimental Study on the rainfall-runoff responses of typical urban surfaces and two green infrastructures using scale-based models. Environ. Manag. 2020, 66, 683–693. [Google Scholar] [CrossRef]
City | Population (inhab.) | Area (km2) | Study Site Population (inhab.) | Study Site Area (km2) | Historical City Center (km2) | River | Study Site’s Information |
---|---|---|---|---|---|---|---|
Turin (IT) | 872,367 (2011) | 130.0 | 78,523 (2011) | 6.9 | ~3.5 | Name: Po Total length: 652 km | Historical origins: roman District: Circoscrizione 1 Landscape: plain Location with respect to the river: along Po River |
Parma (IT) | 175,895 (2011) | 260.6 | 28,235 (2011) | 3.5 | ~3.5 | Name: Parma Torrent Total length: 92 km | Historical origins: roman Districts: Quartiere Parma Centro, Quartiere Oltretorrente Landscape: plain Location with respect to the river: crossed by Parma torrent |
Verona (IT) | 252,520 (2011) | 198.9 | 30,577 (2011) | 4.2 | ~1.5 | Name: Adige Total length: 410 km | Historical origins: roman District: Circoscrizione Centro Storico Landscape: plain to hilly Location with respect to the river: crossed by Adige River |
Lisbon (PT) | 547,733 (2011) | 100.0 | 61,321 (2011) | 6.6 | ~1.4 | Name: Tagus Total length: 1007 km | Historical origins: phoenician Districts: Freguesias of São Vicente, Santa Maria Maior, Misericórdia, Estrela Landscape: hilly Location with respect to the river: along Tagus River |
Oporto (PT) | 237,591 (2011) | 41.4 | 40,440 (2011) | 5.3 | ~0.5 | Name: Douro Total length: 897 km | Historical origins: roman Districts: União das freguesias of Cedofeita, Santo Ildefonso, Sé, Miragaia, São Nicolau and Vitória Landscape: hilly Location with respect to the river: along Douro River |
Coimbra (PT) | 143,396 (2011) | 319.4 | 13,971 (2011) | 3.7 | ~0.5 | Name: Mondego Total length: 258 km | Historical origins: roman Districts: União das freguesias de Coimbra (excluding the non-urban areas north of the street N17 and south of the A31) Landscape: plain to hilly Location with respect to the river: crossed by Mondego River |
City | Study Site | Administrative Boundaries Reference | Data Type | Original Reference Scale |
---|---|---|---|---|
Turin (IT) | Circoscrizione 1 | Municipality Website | pdf (boundaries description) | - |
Parma (IT) | Quartiere Parma Centro, Quartiere Oltretorrente | Municipality website | shapefile | 1:10,000 |
Verona (IT) | Circoscrizione Centro Storico | Municipality website | web map | 1:10,000 |
Lisbon (PT) | Freguesias of São Vicente, Santa Maria Maior, Misericórdia, Estrela | Government website of statistical data | shapefile | 1:25,000 |
Oporto (PT) | União das freguesias of Cedofeita, Santo Ildefonso, Sé, Miragaia, São Nicolau, Vitória | Government website of statistical data | shapefile | 1:25,000 |
Coimbra (PT) | União das freguesias de Coimbra (excluding the rural areas north of the street N17 and south of the A31) | Government website of statistical data | shapefile | 1: 25,000 |
UGSPs Taxonomy | Description | UGSPs Subcategory | Description | Graphical Example (1:2000 Reference Scale) |
---|---|---|---|---|
Linear Distribution (LD) | Green areas characterized by a stretched and irregular shape | Vertical (V) and Horizontal (H) | The term vertical/ horizontal is related to the disposition of the green string with respect to the direction of the watercourse: vertical is used to define a crosswise direction; horizontal is used to define a parallel direction | |
Belt Shaped (B) | The term belt shaped is used to addresses a green component that encloses a city portion | |||
Along the Stream (ATS) | The term along the stream is used to addresses a green component that extends along the river | |||
Fragmented Distribution (FD) | Spread and more or less scattered green areas characterized by regular or irregular shapes | Fine-Grain (FG) | Based on the extent of green, the term fine-grain addresses groups of small-sized green components | |
Coarse-Grain (CG) | Based on the extent of green, the term coarse-grain addresses groups of large-sized green components | |||
Compact Distribution (CD) | Large green areas characterized by a low level of fragmentation | - | - |
Study Site | Linear Distribution (LD) Subcategories | Fragmented Distribution (FD) Subcategories | Compact Distribution (C) | ||||
---|---|---|---|---|---|---|---|
Vertical (V) | Horizontal (H) | Belt shaped (B) | Along the Stream (ATS) | Fine-Grain (FG) | Coarse-Grain (CG) | ||
Turin (IT) | x | x | - | x | x | x | x |
Parma (IT) | x | - | - | x | x | x | x |
Verona (IT) | x | x | x | x | x | x | x |
Lisbon (PT) | x | x | x | - | x | x | x |
Oporto (PT) | x | x | - | - | x | x | x |
Coimbra (PT) | x | x | x | x | x | x | x |
Number of samples | 6 | 5 | 3 | 4 | 6 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzagno, M.; Frigione, B.M.; Ferreira, C.S.S. Reading Urban Green Morphology to Enhance Urban Resilience: A Case Study of Six Southern European Cities. Sustainability 2021, 13, 9163. https://doi.org/10.3390/su13169163
Pezzagno M, Frigione BM, Ferreira CSS. Reading Urban Green Morphology to Enhance Urban Resilience: A Case Study of Six Southern European Cities. Sustainability. 2021; 13(16):9163. https://doi.org/10.3390/su13169163
Chicago/Turabian StylePezzagno, Michèle, Barbara M. Frigione, and Carla S. S. Ferreira. 2021. "Reading Urban Green Morphology to Enhance Urban Resilience: A Case Study of Six Southern European Cities" Sustainability 13, no. 16: 9163. https://doi.org/10.3390/su13169163