Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Restoration Activities
2.3. Site Profiling and Soil Samples Collection
2.4. Soil Samples Processing and Analyses
2.4.1. Soil Physiochemical Analyses
2.4.2. Available Nutrients Analyses
2.5. Data Analyses and Statistics
3. Results and Discussion
3.1. Soil Physiochemical Properties as Indicators for Degradation and Restoration
3.1.1. Soil Texture
3.1.2. Soil pH and EC
3.1.3. Soil Organic Matter, Soil Organic Carbon, and CaCO3
3.2. Soil Nutrient Contents as Indicators for Degradation and Restoration
3.2.1. Phosphorus and Potassium
3.2.2. Soil Micronutrients
3.3. Correlation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesfin, S.; Taye, G.; Desta, Y.; Sibhatu, B.; Muruts, H.; Mohammedbrhan, M. Short-Term Effects of Bench Terraces on Selected Soil Physical and Chemical Properties: Landscape Improvement for Hillside Farming in Semi-Arid Areas of Northern Ethiopia. Environ. Earth. Sci. 2018, 77, 399. [Google Scholar] [CrossRef]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.M.; Joly, C.A.; Martinelli, L.A. Forest Structure and Live Aboveground Biomass Variation along an Elevational Gradient of Tropical Atlantic Moist Forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of Degraded Tropical Forest Landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, J.D.; Osorio, N.W. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia. Sci. World J. 2014, 2014, e693981. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Martínez, F.J.; Sierra, M.; Sierra, C.; Roca, A. Assessing Sustainable Use of Land under Olive Cultivation in Alcala La Real (Jaen, Spain) Using GIS. Adv. Geoecol. 2005, 36, 75–84. [Google Scholar]
- Khresat, S.A.; Qudah, E.A. Formation and Properties of Aridic Soils of Azraq Basin in Northeastern Jordan. J. Arid Environ. 2006, 64, 116–136. [Google Scholar] [CrossRef]
- Mbagwu, J.S.C. Aggregate Stability and Soil Degradation in the Tropics; ETDEWEB: Trieste, Italy, 2004; pp. 246–252. Available online: http://users.ictp.it/~pub_off/lectures/lns018/22Mbagwu1.pdf (accessed on 10 December 2020).
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop Pollination from Native Bees at Risk from Agricultural Intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, R.; Williams, N.; Ellis, J.; Pitts-Singer, T.L.; Bommarco, R.; Vaughan, M. Integrated Crop Pollination: Combining Strategies to Ensure Stable and Sustainable Yields of Pollination-Dependent Crops. Basic Appl. Ecol. 2017, 22, 44–60. [Google Scholar] [CrossRef]
- Koh, I.; Lonsdorf, E.V.; Williams, N.M.; Brittain, C.; Isaacs, R.; Gibbs, J.; Ricketts, T.H. Modeling the Status, Trends, and Impacts of Wild Bee Abundance in the United States. Proc. Natl. Acad. Sci. USA 2016, 113, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Espíndola, A.; Vanbergen, A.J.; Settele, J.; Kremen, C.; Dicks, L.V. Ecological Intensification to Mitigate Impacts of Conventional Intensive Land Use on Pollinators and Pollination. Ecol. Lett. 2017, 20, 673–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ghamdi, A.A.; Tadesse, Y.; Adgaba, N. Evaluation of Major Acacia Species in the Nursery towards Apicultural Landscape Restoration around Southwestern Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 3385–3389. [Google Scholar] [CrossRef]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA—Jointly published by International Center for Agricultural Research in Dry areas, Syria and The National Agriculture Research Center: Islamabad, Pakistan, 2001; ISBN 978-92-9127-118-4.
- Koehler, F.E.; Moodie, C.D.; McNeal, B.L. Laboratory Manual for Soil Fertility; Washington State University: Pulman, WA, USA, 1984. [Google Scholar]
- Horváth, B.; Opara-Nadi, O.; Beese, F. A Simple Method for Measuring the Carbonate Content of Soils. Soil Sci. Soc. Am. J. 2005, 69, 1066–1068. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Schwab, A.P. A New Soil Test for Simultaneous Extraction of Macro- and Micro-nutrients in Alkaline Soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Pattison, A.B.; Moody, P.W.; Badcock, K.A.; Smith, L.J.; Armour, J.A.; Rasiah, V.; Cobon, J.A.; Gulino, L.-M.; Mayer, R. Development of Key Soil Health Indicators for the Australian Banana Industry. Appl. Soil Ecol. 2008, 40, 155–164. [Google Scholar] [CrossRef]
- Khadka, D.; Lamichhane, S.; Shrestha, K.; Joshi, S.; Karna, M.; Pant, B.B.; Yadav, S. Soil Fertility Assessment and Mapping of Agricultural Research Station, Jaubari, Illam, Nepal. Int. J. Environ. 2017, 6, 46–70. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, B.; Mesfin, S.; Tesfay, G.; Abay, F. Effect of Integrated Soil Bunds on Key Soil Properties and Soil Carbon Stock in Semi-Arid Areas of Northern Ethiopia. S. Afr. J. Plant Soil 2016, 33, 297–302. [Google Scholar] [CrossRef]
- Wang, X.P.; Li, X.R.; Xiao, H.L.; Pan, Y.X. Evolutionary Characteristics of the Artificially Revegetated Shrub Ecosystem in the Tengger Desert, Northern China. Ecol. Res. 2006, 21, 415–424. [Google Scholar] [CrossRef]
- Hartemink, A.E. Soil Chemical and Physical Properties as Indicators of Sustainable Land Management under Sugar Cane in Papua New Guinea. Geoderma 1998, 85, 283–306. [Google Scholar] [CrossRef]
- Shukla, A.; Vyas, D.; Anuradha, J. Soil Depth: An Overriding Factor for Distribution of Arbuscular Mycorrhizal Fungi. J. Soil Sci. Plant Nutr. 2013, 13, 23–33. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, L.J.; Chen, X.H.; Tan, M.L.; Duan, Z.H.; Wu, Z.J.; Li, X.J.; Fan, X.H. Response of Soil Enzyme Activity to Long-Term Restoration of Desertified Land. Catena 2015, 133, 64–70. [Google Scholar] [CrossRef]
- Scianna, J. Salt-Affected Soils: Their Causes, Measure, and Classification. Res. Method Hort. Note 2002, 5, 1–3. [Google Scholar]
- He, B.; Cai, Y.; Ran, W.; Jiang, H. Spatial and Seasonal Variations of Soil Salinity Following Vegetation Restoration in Coastal Saline Land in Eastern China. Catena 2014, 118, 147–153. [Google Scholar] [CrossRef]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and Water Quality Effects on Soil Salinity and Sodicity Dynamics and Cotton Productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O.; Baldock, J.A. Functions of Soil Organic Matter and the Effect on Soil Properties; Cooperative Research Centre for Greenhouse Accounting: Canberra, Australia, 2004. [Google Scholar]
- Obalum, S.E.; Okpara, I.M.; Obi, M.E.; Wakatsuki, T. Short Term Effects of Tillage-Mulch Practices under Sorghum and Soybean on Organic Carbon and Eutrophic Status of a Degraded Ultisol in Southeastern Nigeria. Trop. Subtrop. Agroecosyst. 2011, 14, 393–403. [Google Scholar]
- Spaccini, R.; Piccolo, A.; Mbagwu, J.S.C.; Teshale, A.Z.; Igwe, C.A. Influence of the Addition of Organic Residues on Carbohydrate Content and Structural Stability of Some Highland Soils in Ethiopia. Soil Use Manag. 2002, 18, 404–411. [Google Scholar] [CrossRef]
- du Preez, C.C.; van Huyssteen, C.W.; Mnkeni, P.N.S. Land Use and Soil Organic Matter in South Africa 2: A Review on the Influence of Arable Crop Production. S. Afr. J. Sci. 2011, 107, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, O.; Cherkinsky, A.; Chertov, O.; Goryachkin, S.; Kurganova, I.; Lopes de Gerenyu, V.; Lyuri, D.; Kuzyakov, Y.; Giani, L. Post-Agricultural Restoration: Implications for Dynamics of Soil Organic Matter Pools. Catena 2019, 181, 104096. [Google Scholar] [CrossRef]
- Hoyle, F.C.; Baldock, J.A.; Murphy, D.V. Soil Organic Carbon—Role in Rainfed Farming Systems. In Rainfed Farming Systems; Tow, P., Cooper, I., Partridge, I., Birch, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 339–361. ISBN 978-1-4020-9132-2. [Google Scholar]
- Dexter, A.R.; Pagliai, M.; Jones, R. Soil Structure: The Key to Soil Function. Adv. GeoEcol. 2002, 35, 57–69. [Google Scholar]
- Banaszak-Cibicka, W.; Takacs, V.; Kesy, M.; Langowska, A.; Blecharczyk, A.; Sawinska, Z.; Sparks, T.H.; Tryjanowski, P. Manure application improves both bumblebee flower visitation and crop yield in intensive farmland. Basic Appl. Ecol. 2019, 36, 26–33. [Google Scholar] [CrossRef]
- Sáez, A.; Morales, C.L.; Ramos, L.Y.; Aizen, M.A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 2014, 51, 1603–1612. [Google Scholar] [CrossRef]
- Baldock, J.; Skjemstad, J.O. Soil Organic Carbon/Soil Organic Matter; CSIRO Publishing: Collingwood, VIC, Australia, 1999; ISBN 978-0-643-06376-1. [Google Scholar]
- Tashi, S.; Singh, B.; Keitel, C.; Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 2016, 22, 2255–2268. [Google Scholar] [CrossRef] [PubMed]
- do Carmo, F.F.; Jacobi, C.M. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant Soil 2016, 403, 7–20. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-Mediated Stabilisation of Soil Organic Carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.K.; Wen, L.; Li, Y.Y.; Wang, X.X.; Zhu, L.; Li, X.Y. Soil-Quality Effects of Grassland Degradation and Restoration on the Qinghai-Tibetan Plateau. Soil Sci. Soc. Am. J. 2012, 76, 2256–2264. [Google Scholar] [CrossRef]
- Chen, D.D.; Zhang, S.H.; Dong, S.K.; Wang, X.T.; Du, G.Z. Effect of Land-Use on Soil Nutrients and Microbial Biomass of an Alpine Region on the Northeastern Tibetan Plateau, China. Land Degrad. Dev. 2010, 21, 446–452. [Google Scholar] [CrossRef]
- Feng, R.; Long, R.; Shang, Z.; Ma, Y.; Dong, S.; Wang, Y. Establishment of Elymus Natans Improves Soil Quality of a Heavily Degraded Alpine Meadow in Qinghai-Tibetan Plateau, China. Plant Soil 2010, 327, 403–411. [Google Scholar] [CrossRef]
- Wu, G.L.; Liu, Z.H.; Zhang, L.; Hu, T.M.; Chen, J.M. Effects of Artificial Grassland Establishment on Soil Nutrients and Carbon Properties in a Black-Soil-Type Degraded Grassland. Plant Soil 2010, 333, 469–479. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Li, P.; Guo, Z.; Wulan, E.; Xue, S. Stocks and Stoichiometry of Soil Organic Carbon, Total Nitrogen, and Total Phosphorus after Vegetation Restoration in the Loess Hilly Region, China. Forests 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Barreto, P.A.B.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Fontes, A.G.; Polidoro, J.C.; Moço, M.K.S.; Machado, R.C.R.; Baligar, V.C. Distribution of Oxidizable Organic C Fractions in Soils under Cacao Agroforestry Systems in Southern Bahia, Brazil. Agrofor. Syst. 2011, 81, 213–220. [Google Scholar] [CrossRef]
- Ruiz-Sinoga, J.D.; Diaz, A.R. Soil Degradation Factors along a Mediterranean Pluviometric Gradient in Southern Spain. Geomorphology 2010, 118, 359–368. [Google Scholar] [CrossRef]
- Seenivasan, R.; Prasath, V.; Mohanraj, R. Restoration of Sodic Soils Involving Chemical and Biological Amendments and Phytoremediation by Eucalyptus Camaldulensis in a Semiarid Region. Environ. Geochem. Health 2015, 37, 575–586. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. Quantifying Heavy Metal Inputs to Agricultural Soils in England and Wales. Water Environ. J. 2006, 20, 87–95. [Google Scholar] [CrossRef]
- Qadir, M.; Tubeileh, A.; Akhtar, J.; Larbi, A.; Minhas, P.S.; Khan, M.A. Productivity Enhancement of Salt-Affected Environments through Crop Diversification. Land Degrad. Dev. 2008, 19, 429–453. [Google Scholar] [CrossRef]
- Nan, Z.; Zhao, C.; Li, J.; Chen, F.; Sun, W. Relations Between Soil Properties and Selected Heavy Metal Concentrations in Spring Wheat (Triticum Aestivum L.) Grown in Contaminated Soils. Water Air Soil Pollut. 2002, 133, 205–213. [Google Scholar] [CrossRef]
- Sharma, M.R.; Raju, N.S. Correlation of Heavy Metal Contamination with Soil Properties of Industrial Areas of Mysore, Karnataka, India by Cluster Analysis. Int. J. Environ. Sci. 2013, 2, 22–27. [Google Scholar]
- Ludovisi, A.; Minozzo, M.; Pandolfi, P.; Taticchi, M.I. Modelling the Horizontal Spatial Structure of Planktonic Community in Lake Trasimeno (Umbria, Italy) Using Multivariate Geostatistical Methods. Ecol. Modell. 2005, 181, 247–262. [Google Scholar] [CrossRef]
No. | Area | Code | Land Use | Type | No. of Samples | Latitude | Longitude |
---|---|---|---|---|---|---|---|
1 | Al-Jenebeen | AJ-R | Restored | Profile-1 | 3 | 19.86045 | 41.69706 |
2 | Al-Jenebeen | AJ-R | Restored | Profile-2 | 3 | 19.86009 | 41.696915 |
3 | Al-Jenebeen | AJ-R | Restored | Profile-3 | 3 | 19.86002 | 41.696861 |
4 | Al-Jenebeen | AJ-R | Restored | Composite and surface | 4 | -- | -- |
5 | Al-Jenebeen | AJ-C | Control | Profile-1 | 3 | 19.85999 | 41.69712 |
6 | Al-Jenebeen | AJ-C | Control | Profile-2 | 3 | 19.86037 | 41.69768 |
7 | Al-Jenebeen | AJ-C | Control | Profile-3 | 3 | 19.85830 | 41.68455 |
8 | Al-Jenebeen | AJ-C | Control | Composite and surface | 4 | -- | -- |
9 | Queen Rearing Center | QRC-R | Restored | Profile-1 | 3 | 19.84864 | 41.58691 |
10 | Queen Rearing Center | QRC-R | Restored | Profile-2 | 3 | 19.84804 | 41.58657 |
11 | Queen Rearing Center | QRC-R | Restored | Profile-3 | 3 | 19.84823 | 41.58625 |
12 | Queen Rearing Center | QRC-R | Restored | Composite and surface | 4 | -- | -- |
13 | Queen Rearing Center | QRC-C | Control | Profile-1 | 3 | 19.84755 | 41.58692 |
14 | Queen Rearing Center | QRC-C | Control | Profile-2 | 3 | 19.84808 | 41.58704 |
15 | Queen Rearing Center | QRC-C | Control | Profile-3 | 3 | 19.84854 | 41.58651 |
16 | Queen Rearing Center | QRC-C | Control | Composite and surface | 4 | -- | -- |
17 | Shekiran | SK-R | Restored | Profile-1 | 3 | 19.85031 | 41.58733 |
18 | Shekiran | SK-R | Restored | Profile-2 | 3 | 19.85037 | 41.58776 |
19 | Shekiran | SK-R | Restored | Profile-3 | 3 | 19.85032 | 41.58773 |
20 | Shekiran | SK-R | Restored | Composite and surface | 4 | -- | -- |
21 | Shekiran | SK-C | Control | Profile-1 | 3 | 19.84889 | 41.58808 |
22 | Shekiran | SK-C | Control | Profile-2 | 3 | 19.84916 | 41.58823 |
23 | Shekiran | SK-C | Control | Profile-3 | 3 | 19.84955 | 41.58846 |
24 | Shekiran | SK-C | Control | Composite and surface | 4 | -- | -- |
Parameter | Location | Land Use | Mean | Median | Min. | Max. | SD | CV | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
pH | AJ | Control (n = 13) | 8.07 | 8.03 | 7.82 | 8.27 | 1.16 | 1.99 | −0.092 | −1.438 |
Restored (n = 13) | 8.15 | 8.24 | 7.87 | 8.31 | 0.67 | 2.07 | −0.993 | −0.718 | ||
QRC | Control (n = 13) | 7.74 | 7.70 | 7.28 | 8.25 | 0.29 | 3.75 | 0.406 | −0.622 | |
Restored (n = 13) | 7.99 | 8.02 | 7.60 | 8.29 | 0.21 | 2.63 | −0.619 | −0.646 | ||
SK | Control (n = 13) | 8.01 | 7.96 | 7.81 | 8.36 | 0.18 | 2.23 | 0.914 | −0.303 | |
Restored (n = 13) | 7.81 | 7.82 | 7.39 | 8.07 | 0.2 | 2.51 | −0.678 | −0.041 | ||
EC (dS m−1) | AJ | Control (n = 13) | 0.45 | 0.39 | 0.24 | 1.18 | 0.25 | 56.57 | 2.015 | 3.602 |
Restored (n = 13) | 0.36 | 0.30 | 0.20 | 1.09 | 0.24 | 64.64 | 2.450 | 5.181 | ||
QRC | Control (n = 13) | 0.43 | 0.48 | 0.20 | 0.60 | 0.14 | 31.25 | −0.503 | −1.103 | |
Restored (n = 13) | 0.38 | 0.37 | 0.19 | 0.55 | 0.11 | 28.34 | −0.013 | −0.971 | ||
SK | Control (n = 13) | 0.34 | 0.31 | 0.24 | 0.56 | 0.09 | 26.97 | 1.026 | 0.666 | |
Restored (n = 13) | 0.40 | 0.36 | 0.24 | 0.60 | 0.13 | 32.46 | 0.305 | −1.423 |
Parameter | Location | Land Use | Mean | Median | Min. | Max. | SD | CV | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
SOM (%) | AJ | Control (n = 13) | 1.27 | 1.13 | 0.25 | 2.19 | 0.55 | 43.47 | 0.183 | −0.304 |
Restored (n = 13) | 1.02 | 0.96 | 0.56 | 1.46 | 0.28 | 27.24 | 0.242 | −1.007 | ||
QRC | Control (n = 13) | 0.88 | 0.63 | 0.13 | 1.89 | 0.60 | 68.40 | 0.244 | −1.326 | |
Restored (n = 13) | 0.80 | 0.83 | 0.26 | 1.32 | 0.30 | 37.25 | −0.214 | −0.556 | ||
SK | Control (n = 13) | 1.16 | 1.21 | 0.53 | 1.78 | 0.39 | 33.99 | −0.059 | −1.212 | |
Restored (n = 13) | 1.40 | 1.53 | 0.13 | 2.56 | 0.66 | 46.83 | −0.361 | −0.375 | ||
CaCO3 (%) | AJ | Control (n = 13) | 0.62 | 0.48 | 0.52 | 1.52 | 0.00 | 83.89 | 0.533 | −0.910 |
Restored (n = 13) | 0.35 | 0.30 | 0.25 | 0.96 | 0.04 | 73.07 | 0.886 | 0.460 | ||
QRC | Control (n = 13) | 0.52 | 0.26 | 0.62 | 2.22 | 0.04 | 120.55 | 1.777 | 2.279 | |
Restored (n = 13) | 0.78 | 0.35 | 0.79 | 2.39 | 0.00 | 101.47 | 0.898 | −0.699 | ||
SK | Control (n = 13) | 0.39 | 0.30 | 0.41 | 1.39 | 0.00 | 105.51 | 1.123 | 0.570 | |
Restored (n = 13) | 0.57 | 0.26 | 0.70 | 1.96 | 0.00 | 122.70 | 1.039 | −0.521 |
Parameter | Location | Land Use | Mean | Median | Min. | Max. | SD | CV | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
P (mg kg−1) | AJ | Control (n = 13) | 2.27 | 1.65 | 0.04 | 9.46 | 2.55 | 112.36 | 1.788 | 2.917 |
Restored (n = 13) | 1.21 | 1.56 | 0.04 | 2.57 | 0.93 | 76.50 | −0.115 | −1.560 | ||
QRC | Control (n = 13) | 1.09 | 0.28 | 0.11 | 3.49 | 1.21 | 111.12 | 0.907 | −0.726 | |
Restored (n = 13) | 2.57 | 2.57 | 0.04 | 6.24 | 1.97 | 76.78 | 0.172 | −0.916 | ||
SK | Control (n = 13) | 1.82 | 1.65 | 0.04 | 3.49 | 1.32 | 72.55 | −0.014 | −1.448 | |
Restored (n = 13) | 1.80 | 1.19 | 0.04 | 6.24 | 1.72 | 95.77 | 1.303 | 1.347 | ||
K (mg kg−1) | AJ | Control (n = 13) | 56.36 | 31.00 | 11.20 | 210 | 56.72 | 100.63 | 1.645 | 2.065 |
Restored (n = 13) | 75.58 | 43.00 | 12.00 | 208 | 67.45 | 89.24 | 1.106 | −0.332 | ||
QRC | Control (n = 13) | 33.23 | 27.60 | 9.40 | 70.20 | 17.59 | 52.96 | 0.623 | −0.410 | |
Restored (n = 13) | 81.26 | 32.40 | 8.20 | 216.00 | 84.68 | 104.21 | 0.797 | −1.255 | ||
SK | Control (n = 13) | 41.21 | 32.40 | 18.20 | 98.80 | 25.19 | 61.13 | 1.368 | 0.503 | |
Restored (n = 13) | 41.10 | 25.00 | 7.60 | 137.60 | 36.99 | 89.99 | 1.643 | 1.601 |
Parameter | Location | Land use | Mean | Median | Min. | Max. | SD | CV | Skew | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
Cu (mg kg−1) | AJ | Control (n = 13) | 1.61 | 1.21 | 0.67 | 4.12 | 1.05 | 65.25 | 1.466 | 0.854 |
Restored (n = 13) | 1.84 | 1.55 | 0.51 | 4.21 | 1.16 | 62.99 | 0.805 | −0.420 | ||
QRC | Control (n = 13) | 1.20 | 1.16 | 0.31 | 2.64 | 0.66 | 54.50 | 0.583 | 0.058 | |
Restored (n = 13) | 0.97 | 0.82 | 0.31 | 2.02 | 0.58 | 60.15 | 0.732 | −0.665 | ||
SK | Control (n = 13) | 1.32 | 1.48 | 0.36 | 2.46 | 0.71 | 53.99 | 0.088 | −1.270 | |
Restored (n = 13) | 1.49 | 1.64 | 0.38 | 2.29 | 0.53 | 35.73 | −0.657 | −0.330 | ||
Fe (mg kg−1) | AJ | Control(n = 13) | 5.04 | 4.53 | 0.52 | 12.45 | 4.01 | 79.61 | 0.797 | −0.646 |
Restored (n = 13) | 4.04 | 2.85 | 0.02 | 8.63 | 2.59 | 64.15 | 0.185 | −1.185 | ||
QRC | Control (n = 13) | 5.79 | 6.82 | 0.00 | 9.28 | 2.61 | 45.12 | −0.804 | −0.211 | |
Restored (n = 13) | 2.64 | 2.86 | 0.00 | 5.43 | 2.01 | 76.06 | 0.008 | 1.497 | ||
SK | Control (n = 13) | 7.11 | 7.88 | 2.67 | 13.18 | 2.99 | 42.06 | 0.312 | −0.600 | |
Restored (n = 13) | 7.44 | 7.15 | 3.74 | 11.53 | 2.56 | 34.46 | 0.265 | −1.085 | ||
Mn (mg kg−1) | AJ | Control (n = 13) | 2.82 | 1.38 | 0.56 | 10.21 | 3.27 | 115.71 | 1.603 | 1.000 |
Restored (n = 13) | 1.80 | 1.57 | 0.15 | 4.43 | 1.27 | 70.47 | 0.631 | −0.502 | ||
QRC | Control (n = 13) | 2.82 | 2.61 | 0.09 | 7.67 | 2.40 | 85.13 | 0.618 | −0.776 | |
Restored (n = 13) | 1.07 | 0.89 | 0.10 | 3.47 | 0.92 | 86.01 | 1.425 | 1.630 | ||
SK | Control (n = 13) | 2.13 | 1.44 | 0.69 | 5.54 | 1.65 | 77.48 | 0.993 | −0.406 | |
Restored (n = 13) | 3.31 | 1.44 | 0.48 | 15.64 | 4.28 | 129.11 | 2.084 | 3.403 | ||
Zn (mg kg−1) | AJ | Control(n = 13) | 0.25 | 0.03 | 0.00 | 1.39 | 0.45 | 176.19 | 1.829 | 1.802 |
Restored (n = 13) | 0.14 | 0.00 | 0.00 | 0.64 | 0.20 | 147.05 | 1.416 | 0.947 | ||
QRC | Control (n = 13) | 0.08 | 0.04 | 0.00 | 0.36 | 0.10 | 135.60 | 1.581 | 1.983 | |
Restored (n = 13) | 0.12 | 0.00 | 0.00 | 1.09 | 0.32 | 262.62 | 2.431 | 4.495 | ||
SK | Control (n = 13) | 0.13 | 0.03 | 0.00 | 0.58 | 0.18 | 135.61 | 1.279 | 0.787 | |
Restored (n = 13) | 0.23 | 0.00 | 0.00 | 1.48 | 0.48 | 206.45 | 1.920 | 2.018 |
p | Depth | pH | EC | SOC | SOM | CaCO3 | P | K | Cu | Fe | Mn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | r2 | −0.128 | ||||||||||
p-value | 0.265 | |||||||||||
EC | r2 | −0.119 | −0.295 | |||||||||
p-value | 0.301 | 0.009 * | ||||||||||
SOC | r2 | −0.068 | −0.148 | −0.005 | ||||||||
p-value | 0.553 | 0.197 | 0.967 | |||||||||
SOM | r2 | −0.069 | −0.147 | −0.003 | 1.000 | |||||||
p-value | 0.547 | 0.199 | 0.979 | 0.000 * | ||||||||
CaCO3 | r2 | 0.108 | 0.139 | −0.006 | 0.113 | 0.113 | ||||||
p-value | 0.348 | 0.226 | 0.958 | 0.325 | 0.324 | |||||||
P | r2 | 0.186 | 0.047 | −0.014 | 0.102 | 0.101 | −0.017 | |||||
p-value | 0.102 | 0.685 | 0.902 | 0.372 | 0.379 | 0.881 | ||||||
K | r2 | 0.070 | 0.209 | −0.130 | −0.032 | −0.033 | −0.106 | 0.637 | ||||
p-value | 0.545 | 0.067 | 0.257 | 0.783 | 0.773 | 0.356 | 0.000 * | |||||
Cu | r2 | −0.023 | 0.037 | −0.041 | −0.001 | −0.001 | 0.019 | 0.145 | 0.105 | |||
p-value | 0.841 | 0.746 | 0.723 | 0.991 | 0.992 | 0.869 | 0.204 | 0.360 | ||||
Fe | r2 | 0.073 | −0.446 | 0.392 | 0.279 | 0.280 | −0.020 | 0.003 | −0.180 | 0.297 | ||
p-value | 0.525 | 0.000 * | 0.000 * | 0.013 * | 0.013 * | 0.865 | 0.980 | 0.115 | 0.008 * | |||
Mn | r2 | 0.137 | −0.191 | 0.293 | 0.107 | 0.107 | −0.116 | 0.353 | 0.166 | 0.081 | 0.496 | |
p-value | 0.233 | 0.095 | 0.009 * | 0.351 | 0.353 | 0.311 | 0.002 * | 0.147 | 0.483 | 0.000 * | ||
Zn | r2 | −0.069 | −0.034 | 0.414 | 0.001 | 0.001 | −0.155 | 0.184 | 0.061 | 0.029 | 0.392 | 0.638 |
p-value | 0.551 | 0.771 | 0.000 * | 0.992 | 0.991 | 0.176 | 0.107 | 0.594 | 0.800 | 0.000 * | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghamdi, A.A.; Tadesse, Y.; Adgaba, N.; Alghamdi, A.G. Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators. Sustainability 2021, 13, 9169. https://doi.org/10.3390/su13169169
Al-Ghamdi AA, Tadesse Y, Adgaba N, Alghamdi AG. Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators. Sustainability. 2021; 13(16):9169. https://doi.org/10.3390/su13169169
Chicago/Turabian StyleAl-Ghamdi, Ahmad A., Yilma Tadesse, Nuru Adgaba, and Abdulaziz G. Alghamdi. 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators" Sustainability 13, no. 16: 9169. https://doi.org/10.3390/su13169169
APA StyleAl-Ghamdi, A. A., Tadesse, Y., Adgaba, N., & Alghamdi, A. G. (2021). Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators. Sustainability, 13(16), 9169. https://doi.org/10.3390/su13169169