Exergames to Prevent the Secondary Functional Deterioration of Older Adults during Hospitalization and Isolation Periods during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Videogame Consoles
2.1.1. Wii Nintendo®
2.1.2. Xbox® and Kinect®
2.1.3. Sony PlayStation EyeToy® and PlayStation Move®
3. Results
3.1. Selection, Graduation and Adaptation of Commercial Exergames to the Rehabilitation of Processes Secondary to SARS-CoV-2
3.1.1. Change and Maintain the Position of the Body
3.1.2. Balance
3.1.3. Promote the Use of the Upper Limbs for the Activities of Daily Living
3.1.4. Stimulation of Cognitive Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministerio de Sanidad, Consumo y Bienestar Social. Profesionales—Situación Actual Coronavirus. Available online: https://www.mscbs.gob.es/en/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.htm (accessed on 20 May 2021).
- Lotfi, M.; Rezaei, N. SARS-CoV-2: A Comprehensive Review from Pathogenicity of the Virus to Clinical Consequences. J. Med. Virol. 2020, 92, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and Characterisation of Post-COVID-19 Manifestations. Int. J. Clin. Pr. 2020, e13746. [Google Scholar] [CrossRef]
- Lamprecht, B. Gibt Es Ein Post-COVID-Syndrom? Pneumologe 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Musich, S.; Wang, S.S.; Ruiz, J.; Hawkins, K.; Wicker, E. The Impact of Mobility Limitations on Health Outcomes among Older Adults. Geriatr. Nurs. 2018, 39, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Yamaguchi, S.; Sato, K.; Fuji, T.; Ohe, T. The COVID-19 Outbreak Limits Physical Activities and Increases Sedentary Behavior: A Possible Secondary Public Health Crisis for the Elderly. J. Orthop. Sci. 2020, 25, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.D.; Apolinario, D.; Avelino-Silva, T.J.; Tavares, C.D.A.M.; Gattás-Vernaglia, I.F.; Fernandes, C.M.; Rabelo, L.M.; Yamaguti, S.T.F.; Karnakis, T.; Kalil-Filho, R.; et al. The Impact of Frailty on the Relationship between Life-Space Mobility and Quality of Life in Older Adults during the COVID-19 Pandemic. J. Nutr. Health Aging 2021, 25, 440–447. [Google Scholar] [CrossRef]
- Rantanen, T.; Guralnik, J.M.; Foley, D.; Masaki, K.; Leveille, S.; Curb, J.D.; White, L. Midlife Hand Grip Strength as a Predictor of Old Age Disability. JAMA 1999, 281, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Salawu, A.; Green, A.; Crooks, M.G.; Brixey, N.; Ross, D.H.; Sivan, M. A Proposal for Multidisciplinary Tele-Rehabilitation in the Assessment and Rehabilitation of COVID-19 Survivors. Int. J. Environ. Res. Public Health 2020, 17, 4890. [Google Scholar] [CrossRef] [PubMed]
- Corregidor-Sánchez, A.-I.; Segura-Fragoso, A.; Criado-Álvarez, J.-J.; Rodríguez-Hernández, M.; Mohedano-Moriano, A.; Polonio-López, B. Effectiveness of Virtual Reality Systems to Improve the Activities of Daily Life in Older People. Int. J. Environ. Res. Public Health 2020, 17, 6283. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Donna, V.D.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J. Clin. Med. 2019, 8, 1882. [Google Scholar] [CrossRef] [Green Version]
- Meekes, W.; Stanmore, E.K. Motivational Determinants of Exergame Participation for Older People in Assisted Living Facilities: Mixed-Methods Study. J. Med. Internet Res. 2017, 19, e238. [Google Scholar] [CrossRef]
- Gerling, K.M.; Schild, J.; Masuch, M. Exergame Design for Elderly Users: The Case Study of SilverBalance. In Proceedings of the 7th International Conference on Advances in Computer Entertainment Technology, Association for Computing Machinery, New York, NY, USA, 17 November 2010; pp. 66–69. [Google Scholar]
- Adcock, M.; Thalmann, M.; Schättin, A.; Gennaro, F.; de Bruin, E.D. A Pilot Study of an In-Home Multicomponent Exergame Training for Older Adults: Feasibility, Usability and Pre-Post Evaluation. Front. Aging Neurosci. 2019, 11, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahouh, M.; González-Bernal, J.; González-Santos, J.; Fernández-Lázaro, D.; Soto-Cámara, R.; Mielgo-Ayuso, J. Impact of an Intervention with Wii Video Games on the Autonomy of Activities of Daily Living and Psychological–Cognitive Components in the Institutionalized Elderly. Int. J. Environ. Res. Public Health 2021, 18, 1570. [Google Scholar] [CrossRef]
- Pacheco, T.B.F.; de Medeiros, C.S.P.; de Oliveira, V.H.B.; Vieira, E.R.; de Cavalcanti, F.A.C. Effectiveness of Exergames for Improving Mobility and Balance in Older Adults: A Systematic Review and Meta-Analysis. Syst. Rev. 2020, 9, 163. [Google Scholar] [CrossRef]
- Viana, R.B.; de Lira, C.A.B. Exergames as Coping Strategies for Anxiety Disorders during the COVID-19 Quarantine Period. Games Health J. 2020, 9, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.-Y.; Chiu, H.-L. Virtual Reality Exergames for Improving Older Adults’ Cognition and Depression: A Systematic Review and Meta-Analysis of Randomized Control Trials. J. Am. Med. Dir. Assoc. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hung, E.S.-W.; Chen, S.-C.; Chang, F.-C.; Shiao, Y.; Peng, C.-W.; Lai, C.-H. Effects of Interactive Video Game-Based Exercise on Balance in Diabetic Patients with Peripheral Neuropathy: An Open-Level, Crossover Pilot Study. Evid Based Complement. Altern. Med. 2019, 2019, 4540709. [Google Scholar] [CrossRef] [Green Version]
- Morat, M.; Bakker, J.; Hammes, V.; Morat, T.; Giannouli, E.; Zijlstra, W.; Donath, L. Effects of Stepping Exergames under Stable versus Unstable Conditions on Balance and Strength in Healthy Community-Dwelling Older Adults: A Three-Armed Randomized Controlled Trial. Exp. Gerontol. 2019, 127, 110719. [Google Scholar] [CrossRef]
- Diverse Exercises Similarly Reduce Older Adults’ Mobility Limitations. PubMed—NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/?term=diverse+exercises+similary+reduce+older+adults (accessed on 25 September 2019).
- Liao, Y.-Y.; Chen, I.-H.; Lin, Y.-J.; Chen, Y.; Hsu, W.-C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Nonino, F.; Bertolini, S.; Bortolozzi, F.; Branco, B.H.M. The Effectiveness of a Home Exercise Program for Sedentary Elderly with Nintendo WII®. J. Phys. Educ. 2018, 29, 2971. [Google Scholar] [CrossRef] [Green Version]
- Willaert, J.; De Vries, A.W.; Tavernier, J.; Van Dieen, J.H.; Jonkers, I.; Verschueren, S. Does a Novel Exergame Challenge Balance and Activate Muscles More than Existing Off-the-Shelf Exergames? J. Neuroeng. Rehabil. 2020, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.-Y.; Tseng, H.-Y.; Lin, Y.-J.; Wang, C.-J.; Hsu, W.-C. Using Virtual Reality-Based Training to Improve Cognitive Function, Instrumental Activities of Daily Living and Neural Efficiency in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. Eur. J. Phys. Rehabil. Med. 2019. [Google Scholar] [CrossRef]
- Gamito, P.; Oliveira, J.; Morais, D.; Coelho, C.; Santos, N.; Alves, C.; Galamba, A.; Soeiro, M.; Yerra, M.; French, H.; et al. Cognitive Stimulation of Elderly Individuals with Instrumental Virtual Reality-Based Activities of Daily Life: Pre-Post Treatment Study. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 69–75. [Google Scholar] [CrossRef]
- Contreras, K.; Cubillos, R.; Hernández, Ó.; Reveco, C.; Santis, N. Rehabilitación virtual en la intervención de terapia ocupacional. Rev. Chil. Ter. Ocup. 2014, 14, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Chtourou, H.; Trabelsi, K.; H’mida, C.; Boukhris, O.; Glenn, J.M.; Brach, M.; Bentlage, E.; Bott, N.; Shephard, R.J.; Ammar, A.; et al. Staying Physically Active During the Quarantine and Self-Isolation Period for Controlling and Mitigating the COVID-19 Pandemic: A Systematic Overview of the Literature. Front. Psychol. 2020, 11, 1708. [Google Scholar] [CrossRef]
- Jalink, M.B.; Heineman, E.; Pierie, J.-P.E.N.; ten Cate Hoedemaker, H.O. Nintendo Related Injuries and Other Problems: Review. BMJ 2014, 349, g7267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, B.-C.; Clark, R.A.; Pua, Y.-H. Novel Use of the Wii Balance Board to Prospectively Predict Falls in Community-Dwelling Older Adults. Clin. Biomech. 2015, 30, 481–484. [Google Scholar] [CrossRef]
- Morrison, S.; Simmons, R.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Supervised Balance Training and Wii Fit-Based Exercises Lower Falls Risk in Older Adults with Type 2 Diabetes. J. Am. Med. Dir. Assoc. 2018, 19, 185.e7–185.e13. [Google Scholar] [CrossRef] [PubMed]
- Comeras-Chueca, C.; Villalba-Heredia, L.; Pérez-Llera, M.; Lozano-Berges, G.; Marín-Puyalto, J.; Vicente-Rodríguez, G.; Matute-Llorente, Á.; Casajús, J.A.; González-Agüero, A. Assessment of Active Video Games’ Energy Expenditure in Children with Overweight and Obesity and Differences by Gender. Int. J. Environ. Res. Public Health 2020, 17, 6714. [Google Scholar] [CrossRef]
- Neil, A.; Ens, S.; Pelletier, R.; Jarus, T.; Rand, D. Sony PlayStation EyeToy Elicits Higher Levels of Movement than the Nintendo Wii: Implications for Stroke Rehabilitation. Eur. J. Phys. Rehabil. Med. 2013, 49, 13–21. [Google Scholar] [PubMed]
- Rand, D.; Kizony, R.; Weiss, P.T.L. The Sony PlayStation II EyeToy: Low-Cost Virtual Reality for Use in Rehabilitation. J. Neurol. Phys. Ther. 2008, 32, 155–163. [Google Scholar] [CrossRef]
- Yavuzer, G.; Senel, A.; Atay, M.B.; Stam, H.J. “‘Playstation Eyetoy Games’” Improve Upper Extremity-Related Motor Functioning in Subacute Stroke: A Randomized Controlled Clinical Trial. Eur. J. Phys. Rehabil. Med. 2008, 44, 237–244. [Google Scholar] [PubMed]
- Flynn, S.; Palma, P.; Bender, A. Feasibility of Using the Sony PlayStation 2 Gaming Platform for an Individual Poststroke: A Case Report. J. Neurol. Phys. Ther. 2007, 31, 180–189. [Google Scholar] [CrossRef]
- Pichierri, G.; Murer, K.; de Bruin, E.D. A Cognitive-Motor Intervention Using a Dance Video Game to Enhance Foot Placement Accuracy and Gait under Dual Task Conditions in Older Adults: A Randomized Controlled Trial. BMC Geriatr. 2012, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Sagarra-Romero, L.; Viñas-Barros, A. COVID-19: Short and Long-Term Effects of Hospitalization on Muscular Weakness in the Elderly. Int. J. Environ. Res. Public Health 2020, 17, 8715. [Google Scholar] [CrossRef]
- Stainsby, B.; Howitt, S.; Porr, J. Neuromusculoskeletal Disorders Following SARS: A Case Series. J. Can. Chiropr. Assoc. 2011, 55, 32–39. [Google Scholar]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint Jan, S. The Use of Commercial Video Games in Rehabilitation: A Systematic Review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Belchior, P.; Yam, A.; Thomas, K.R.; Bavelier, D.; Ball, K.K.; Mann, W.C.; Marsiske, M. Computer and Videogame Interventions for Older Adults’ Cognitive and Everyday Functioning. Games Health J. 2019, 8, 129–143. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Classification of Functioning, Disability and Health (ICF). Available online: http://www.who.int/classifications/icf/en/ (accessed on 7 August 2019).
- Delbaere, K.; Valenzuela, T.; Lord, S.R.; Clemson, L.; Zijlstra, G.A.R.; Close, J.C.T.; Lung, T.; Woodbury, A.; Chow, J.; McInerney, G.; et al. E-Health StandingTall Balance Exercise for Fall Prevention in Older People: Results of a Two Year Randomised Controlled Trial. BMJ 2021, 373, 740. [Google Scholar] [CrossRef]
- Jehu, D.A.; Davis, J.C.; Falck, R.S.; Bennett, K.J.; Tai, D.; Souza, M.F.; Cavalcante, B.R.; Zhao, M.; Liu-Ambrose, T. Risk Factors for Recurrent Falls in Older Adults: A Systematic Review with Meta-Analysis. Maturitas 2021, 144, 23–28. [Google Scholar] [CrossRef]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef] [Green Version]
- Lesinski, M.; Hortobágyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 1721–1738. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Muehlbauer, T.; Zahner, L.; Gollhofer, A.; Kressig, R.W. Comparison of Traditional and Recent Approaches in the Promotion of Balance and Strength in Older Adults. Sports Med. 2011, 41, 377–400. [Google Scholar] [CrossRef]
- Sato, A.; Goh, A.-C. Concurrent and Discriminant Validity of Nintendo Wii Fit Exergame for the Assessment of Postural Sway. J. Phys. Ther. Sci. 2021, 33, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-D.; Chang, W.-Y.; Lee, C.-L.; Feng, C.-Y. Validity and Reliability of Wii Fit Balance Board for the Assessment of Balance of Healthy Young Adults and the Elderly. J. Phys. Ther. Sci 2013, 25, 1251–1253. [Google Scholar] [CrossRef] [Green Version]
- Leach, J.M.; Mancini, M.; Peterka, R.J.; Hayes, T.L.; Horak, F.B. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures. Sensors 2014, 14, 18244–18267. [Google Scholar] [CrossRef] [Green Version]
- Weaver, T.B.; Ma, C.; Laing, A.C. Use of the Nintendo Wii Balance Board for Studying Standing Static Balance Control: Technical Considerations, Force-Plate Congruency, and the Effect of Battery Life. J. Appl. Biomech. 2017, 33, 48–55. [Google Scholar] [CrossRef]
- Fang, Q.; Ghanouni, P.; Anderson, S.E.; Touchett, H.; Shirley, R.; Fang, F.; Fang, C. Effects of Exergaming on Balance of Healthy Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Games Health J. 2020, 9, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, Y.-Y.; Scherer, Y.K.; Montgomery, C.A. Effects of Using Nintendo WiiTM Exergames in Older Adults: A Review of the Literature. J. Aging Health 2015, 27, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.M.; Kerse, N.; Frakking, T.; Maddison, R. Active Video Games for Improving Physical Performance Measures in Older People: A Meta-Analysis. J. Geriatr. Phys. Ther. 2018, 41, 108–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahmosybayat, R.; Baker, K.; Godfrey, A.; Caplan, N.; Barry, G. A Systematic Review and Meta-Analysis of Outcome Measures to Assess Postural Control in Older Adults Who Undertake Exergaming. Maturitas 2017, 98, 35–45. [Google Scholar] [CrossRef]
- Sibley, K.M.; Beauchamp, M.K.; Van Ooteghem, K.; Straus, S.E.; Jaglal, S.B. Using the Systems Framework for Postural Control to Analyze the Components of Balance Evaluated in Standardized Balance Measures: A Scoping Review. Arch. Phys. Med. Rehabil. 2015, 96, 122–132.e29. [Google Scholar] [CrossRef] [Green Version]
- Toosizadeh, N.; Wendel, C.; Hsu, C.-H.; Zamrini, E.; Mohler, J. Frailty Assessment in Older Adults Using Upper-Extremity Function: Index Development. BMC Geriatr. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Toosizadeh, N.; Joseph, B.; Heusser, M.R.; Orouji Jokar, T.; Mohler, J.; Phelan, H.A.; Najafi, B. Assessing Upper-Extremity Motion: An Innovative, Objective Method to Identify Frailty in Older Bed-Bound Trauma Patients. J. Am. Coll. Surg. 2016, 223, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Joseph, B.; Toosizadeh, N.; Orouji Jokar, T.; Heusser, M.R.; Mohler, J.; Najafi, B. Upper-Extremity Function Predicts Adverse Health Outcomes among Older Adults Hospitalized for Ground-Level Falls. Gerontology 2017, 63, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinna, P.; Grewal, P.; Hall, J.P.; Tavarez, T.; Dafer, R.M.; Garg, R.; Osteraas, N.D.; Pellack, D.R.; Asthana, A.; Fegan, K.; et al. Neurological Manifestations and COVID-19: Experiences from a Tertiary Care Center at the Frontline. J. Neurol. Sci. 2020, 415, 116969. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Kuroda, N. Exacerbation of Neurological Symptoms and COVID-19 Severity in Patients with Preexisting Neurological Disorders and COVID-19: A Systematic Review. Clin. Neurol. Neurosurg. 2021, 200, 106349. [Google Scholar] [CrossRef]
- Barguilla, A.; Fernández-Lebrero, A.; Estragués-Gázquez, I.; García-Escobar, G.; Navalpotro-Gómez, I.; Manero, R.M.; Puente-Periz, V.; Roquer, J.; Puig-Pijoan, A. Effects of COVID-19 Pandemic Confinement in Patients with Cognitive Impairment. Front. Neurol. 2020, 11, 589901. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Maitra, K.; Achon, J.; Loyola, E.; Rincón, M. Effects of Early Intervention on Mental or Neuromusculoskeletal and Movement-Related Functions in Children Born Low Birthweight or Preterm: A Meta-Analysis. Am. J. Occup. Ther. 2014, 68, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Okuma, N.; Westen, S.C.; Merz, M.E.; Pence, B.D.; Woods, J.A.; Kramer, A.F.; et al. Exergaming and Older Adult Cognition. Am. J. Prev. Med. 2012, 42, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Maillot, P.; Perrot, A.; Hartley, A. Effects of Interactive Physical-Activity Video-Game Training on Physical and Cognitive Function in Older Adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Thirumalai, M.; Kirkland, W.B.; Misko, S.R.; Padalabalanarayanan, S.; Malone, L.A. Adapting the Wii Fit Balance Board to Enable Active Video Game Play by Wheelchair Users: User-Centered Design and Usability Evaluation. JMIR Rehabil. Assist. Technol. 2018, 5, e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milgrom, R.; Foreman, M.; Standeven, J.; Engsberg, J.R.; Morgan, K.A. Reliability and Validity of the Microsoft Kinect for Assessment of Manual Wheelchair Propulsion. J. Rehabil. Res. Dev. 2016, 53, 901–918. [Google Scholar] [CrossRef]
- Straudi, S.; Severini, G.; Sabbagh Charabati, A.; Pavarelli, C.; Gamberini, G.; Scotti, A.; Basaglia, N. The Effects of Video Game Therapy on Balance and Attention in Chronic Ambulatory Traumatic Brain Injury: An Exploratory Study. BMC Neurol. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Allegue, D.R.; Kairy, D.; Higgins, J.; Archambault, P.; Michaud, F.; Miller, W.; Sweet, S.N.; Tousignant, M. Optimization of Upper Extremity Rehabilitation by Combining Telerehabilitation with an Exergame in People With Chronic Stroke: Protocol for a Mixed Methods Study. JMIR Res. Protoc. 2020, 9, e14629. [Google Scholar] [CrossRef]
- Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Oña-Simbaña, E.D.; Martínez-Medina, A.; Ortiz-Comino, C.; Balaguer-Bernaldo-de-Quirós, C.; Jardón-Huete, A.; Cano-de-la-Cuerda, R. Effects of Virtual Reality Associated with Serious Games for Upper Limb Rehabilitation Inpatients with Multiple Sclerosis: Randomized Controlled Trial. J. Neuroeng. Rehabil. 2020, 17, 90. [Google Scholar] [CrossRef]
- Taylor, M.J.D.; Griffin, M. The Use of Gaming Technology for Rehabilitation in People with Multiple Sclerosis. Mult. Scler. 2015, 21, 355–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Getting up/Sitting Down | Bending Over | Changing Center of Gravity | |
---|---|---|---|
Perfect 10 (Wii Fit®) | x | ||
Table Tilt (Wii Fit®) | x | x | |
Rhythm Parade (Wii Fit®) | x | x | |
Soccer Heading (Wii Fit®) | x | ||
Leaks (Kinect Adventure) | x | x | x |
Ski Jump (Wii Fit®) | |||
Zazen (Wii Fit®) | |||
Segway Circuit (Wii Fit®) | |||
Reflex Ridge (Kinect Adventure®) | |||
River Rush (Kinect Adventure®) | x | x | x |
Super Goalkeeper (Kinect Sport®) | x | x | |
Crash Test Dummy (Kinect Carnival®) | x | x | |
Bowling (Kinect Sport®) | x | x | |
20,000 Leaks (Kinect Adventure®) | x | x | |
Squats (Ring Fit®) | x | ||
Bank Balance (Ring Fit®) | x |
Bipodal Static Balance | Unipodal Balance | Dynamic Balance | Proactive Balance | |
---|---|---|---|---|
Soccer Heading (Wii Fit®) | x | |||
Ski Slalom (Wii Fit®) | x | x | ||
Ski Jump (Wii Fit®) | x | x | ||
Table Tilt (Wii Fit®) | x | x | ||
Tightrope (Wii Fit®) | x | x | ||
River Rush (Wii Fit®) | x | x | x | |
Penguin Slide (Wii Fit®) | x | x | ||
Obstacle Course (Wii Fit®) | x | x | ||
Cycling (Wii Fit®) | x | x | ||
Running Plus (Wii Fit®) | x | x | ||
Rhythm Kung Fu (Wii Fit®) | x | x | x | |
Rhythm Parade (Wii Fit®) | x | x | ||
Skateboard (Wii Fit®) | x | x | ||
20,000 Leaks (Kinect Adventure®) | x | x | x | x |
Super Striker (Kinect Sport®) | x | |||
Soccer (Kinect Sport®) | x | x | ||
Table Tennis (Kinect Sport®) | x | x | x | |
Bowling (Kinect Sport®) | x | x | ||
Super Goalkeeper (Kinect Sport®) | x | x | x | |
Ski (Kinect sport®) | x | x | x | |
Track and Field (Kinect Sport®) | x | x | ||
Bank Balance (Ring Fit®) | x | x | x |
Upper limbs Below the Shoulders | Upper Limbs above the Shoulders | |
---|---|---|
Rhythm Parade (Wii Fit®) | x | |
Rhythm Kung-Fu (Wii Fit®) | x | |
Golf (Wii Fit®) | x | x |
Big Top Juggling (Wii Fit®) | x | x |
Tilt City (Wii Fit®) | x | |
Tennis (Wii Sport®) | x | |
Bowling (Wii Sport®) | x | |
Golf (Wii Sport®) | x | x |
Boxing (Wii Sport®) | x | x |
Baseball (Wii Sport®) | x | |
Tennis (Kinect Sport2®) | x | |
Darts (Kinect Sport2®) | x | |
Table Tennis (Kinect Sport®) | x | |
Super Goalkeeper (Kinect Sport®) | x | x |
Beach Volleyball (Kinect Sport®) | x | x |
Boxing (Kinect Sport®) | x | |
Tennis (Kinect Sport®) | x | |
20,000 Leaks (Kinect Adventures) | x | x |
Space Pop (Kinect Adventures®) | x | x |
Leaks (Kinect Sport®) | x | x |
Crushing Blow (Kinect Sport®) | x | x |
Robo-Wrecker (Ring Fit®) | x | |
Crate Crasher (Ring Fit®) | x | |
Smack Back (Ring Fit®) | x | |
Bank Balance (Ring Fit®) | x | |
Squattery Wheel (Ring Fit®) | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corregidor-Sánchez, A.I.; Polonio-López, B.; Martin-Conty, J.L.; Rodríguez-Hernández, M.; Mordillo-Mateos, L.; Schez-Sobrino, S.; Criado-Álvarez, J.J. Exergames to Prevent the Secondary Functional Deterioration of Older Adults during Hospitalization and Isolation Periods during the COVID-19 Pandemic. Sustainability 2021, 13, 7932. https://doi.org/10.3390/su13147932
Corregidor-Sánchez AI, Polonio-López B, Martin-Conty JL, Rodríguez-Hernández M, Mordillo-Mateos L, Schez-Sobrino S, Criado-Álvarez JJ. Exergames to Prevent the Secondary Functional Deterioration of Older Adults during Hospitalization and Isolation Periods during the COVID-19 Pandemic. Sustainability. 2021; 13(14):7932. https://doi.org/10.3390/su13147932
Chicago/Turabian StyleCorregidor-Sánchez, Ana Isabel, Begoña Polonio-López, José Luis Martin-Conty, Marta Rodríguez-Hernández, Laura Mordillo-Mateos, Santiago Schez-Sobrino, and Juan José Criado-Álvarez. 2021. "Exergames to Prevent the Secondary Functional Deterioration of Older Adults during Hospitalization and Isolation Periods during the COVID-19 Pandemic" Sustainability 13, no. 14: 7932. https://doi.org/10.3390/su13147932
APA StyleCorregidor-Sánchez, A. I., Polonio-López, B., Martin-Conty, J. L., Rodríguez-Hernández, M., Mordillo-Mateos, L., Schez-Sobrino, S., & Criado-Álvarez, J. J. (2021). Exergames to Prevent the Secondary Functional Deterioration of Older Adults during Hospitalization and Isolation Periods during the COVID-19 Pandemic. Sustainability, 13(14), 7932. https://doi.org/10.3390/su13147932