An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes
Abstract
:1. Introduction
2. Time-Variant Reliability Analysis and Crude MCS
2.1. Time-Variant Reliability Analysis
2.2. Crude Monte Carlo Simulation
3. Importance Sampling for Time-Variant Reliability Analysis
3.1. The Importance Sampling Framework
3.2. Auxiliary PDF
3.2.1. Single MPP-Based Auxiliary PDF
3.2.2. Multiple MPP-Based Auxiliary PDF
4. Validation of the Proposed Method
4.1. A Numerical Example
4.2. A Corroded Beam
4.3. A Cantilever Tube Structure
5. Conclusions
6. Replication of Results
Author Contributions
Funding
Conflicts of Interest
References
- Rackwitz, R. Reliability analysis—A review and some perspectives. Struct. Saf. 2001, 23, 365–395. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Ono, T. A general procedure for first/second-order reliability method (FORM/SORM). Struct. Saf. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Lelièvre, N.; Beaurepaire, P.; Mattrand, C.; Gayton, N. AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models. Struct. Saf. 2018, 73, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z.; Cao, R.; Yan, Y. An efficient and robust adaptive Kriging for structural reliability analysis. Struct. Multidiscip. Optim. 2020, 62, 3189–3204. [Google Scholar] [CrossRef]
- Lutes, L.D.; Sarkani, S. Reliability Analysis of Systems Subject to First-Passage Failure. Comput. Sci. 2009. Available online: https://ntrs.nasa.gov/citations/20100011340 (accessed on 1 July 2021).
- Andrieu-Renaud, C.; Sudret, B.; Lemaire, M. The PHI2 method: A way to compute time-variant reliability. Reliab. Eng. Syst. Saf. 2004, 84, 75–86. [Google Scholar] [CrossRef]
- Breitung, K. Asymptotic crossing rates for stationary Gaussian vector processes. Stoch. Process. Their Appl. 1988, 29, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, X.; Wang, R.; Chen, X. Time-Dependent Reliability Modeling and Analysis Method for Mechanics Based on Convex Process. Math. Probl. Eng. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- Sudret, B. Analytical derivation of the outcrossing rate in time-variant reliability problems. Struct. Infrastruct. Eng. 2008, 4, 353–362. [Google Scholar] [CrossRef]
- Hu, Z.; Du, X.P. Time-dependent reliability analysis with joint upcrossing rates. Struct. Multidiscip. Optim. 2013, 48, 893–907. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Li, Y.; Wang, Z. Time-variant reliability analysis via approximation of the first-crossing PDF. Struct. Multidiscip. Optim. 2020, 62, 2653–2667. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Gong, C.L.; Li, C.N. Efficient time-variant reliability analysis through approximating the most probable point trajectory. Struct. Multidiscip. Optim. 2020, 63, 289–309. [Google Scholar] [CrossRef]
- Singh, A.; Mourelatos, Z.P.; Li, J. Design for Lifecycle Cost Using Time-Dependent Reliability. J. Mech. Des. 2010, 132, 1105–1119. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Chen, Z. Developing an improved composite limit state method for time-dependent reliability analysis. Qual. Eng. 2020, 32, 298–311. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.L. A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures. J. Mech. Des. 2018, 140, 051401. [Google Scholar] [CrossRef]
- Mourelatos, Z.P.; Majcher, M.; Pandey, V.; Baseski, I. Time-Dependent Reliability Analysis Using the Total Probability Theorem. J. Mech. Des. 2015, 137, 031405. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, X.P.; Han, X.; Zhang, D.Q. A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization. J. Mech. Des. 2014, 136, 091009. [Google Scholar] [CrossRef]
- Gong, C.Q.; Frangopol, D.M. An efficient time-dependent reliability method. Struct. Saf. 2019, 81, 101864. [Google Scholar] [CrossRef]
- Hu, Z.; Du, X. A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis. J. Mech. Des. 2013, 135, 071003. [Google Scholar] [CrossRef]
- Ping, M.H.; Han, X.; Jiang, C.; Xiao, X.Y. A time-variant extreme-value event evolution method for time-variant reliability analysis. Mech. Syst. Signal. Process. 2019, 130, 333–348. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.L.; Meng, D.B. Time-variant reliability assessment for multiple failure modes and temporal parameters. Struct. Multidiscip. Optim. 2018, 58, 1705–1717. [Google Scholar] [CrossRef]
- Hawchar, L.; El Soueidy, C.P.; Schoefs, F. Time-variant reliability analysis using polynomial chaos expansion. In Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, BC, Canada, 12–15 July 2015. [Google Scholar]
- Hawchar, L.C.-P.; Soueidy, E.; Schoefs, F. Principal component analysis and polynomial chaos expansion for time-variant reliability problems. Reliab. Eng. Syst. Saf. 2017, 167, 406–416. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, D.; Qiu, H.; Gao, L.; Chen, L.; Yang, Z. An active failure-pursuing Kriging modeling method for time-dependent reliability analysis. Mech. Syst. Signal. Process. 2019, 129, 112–129. [Google Scholar] [CrossRef]
- Hu, Z.; Mahadevan, S. A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis. J. Mech. Des. 2016, 138, 061406. [Google Scholar] [CrossRef]
- Hu, Z.; Du, X.P. Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis. J. Mech. Des. 2015, 137, 051401. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P. A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization. J. Mech. Des. 2012, 134, 121007. [Google Scholar] [CrossRef]
- Echard, B.; Gayton, N.; Lemaire, M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Struct. Saf. 2011, 33, 145–154. [Google Scholar] [CrossRef]
- Zafar, T.; Wang, Z.L. Time-dependent reliability prediction using transfer learning. Struct. Multidiscip. Optim. 2020, 62, 147–158. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Z.; He, R. Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model. Proc. Inst. Mech. Eng. Part. O J. Risk Reliab. 2020, 234, 588–600. [Google Scholar] [CrossRef]
- Ching, J.; Au, S.K.; Beck, J.L. Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting. Comput. Methods Appl. Mech. Eng. 2005, 194, 1557–1579. [Google Scholar] [CrossRef]
- Sonal, S.D.; Ammanagi, S.; Kanjilal, O.; Manohar, C.S. Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting. Reliab. Eng. Syst. Saf. 2018, 178, 55–68. [Google Scholar] [CrossRef]
- Wang, Z.; Mourelatos, Z.P.; Li, J.; Baseski, I.; Singh, A. Time-Dependent Reliability of Dynamic Systems Using Subset Simulation with Splitting Over a Series of Correlated Time Intervals. J. Mech. Des. 2014, 136, 061008. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Luo, Y.; Wang, Y. Time-variant reliability analysis using the parallel subset simulation. Reliab. Eng. Syst. Saf. 2019, 182, 250–257. [Google Scholar] [CrossRef]
- Yun, W.; Lu, Z.; Jiang, X. A modified importance sampling method for structural reliability and its global reliability sensitivity analysis. Struct. Multidiscip. Optim. 2018, 57, 1625–1641. [Google Scholar] [CrossRef]
- Grooteman, F. Adaptive radial-based importance sampling method for structural reliability. Struct. Saf. 2008, 30, 533–542. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Mi, C.; Wang, X. Active Learning Kriging Model Combining with Kernel-Density-Estimation-Based Importance Sampling Method for the Estimation of Low Failure Probability. J. Mech. Des. 2018, 140, 051402. [Google Scholar] [CrossRef]
- Richard, J.-F.; Zhang, W. Efficient high-dimensional importance sampling. J. Econom. 2007, 141, 1385–1411. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, W. Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Struct. Saf. 2017, 64, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Lu, Z.; Wei, N.; Zhou, C. A single-loop Kriging surrogate model method by considering the first failure instant for time-dependent reliability analysis and safety lifetime analysis. Mech. Syst. Signal. Process. 2020, 145, 106963. [Google Scholar] [CrossRef]
Method | |||||||
---|---|---|---|---|---|---|---|
t = 0 | [0, 0.1] | [0, 0.2] | [0, 0.3] | [0, 0.4] | [0, 0.5] | ||
Benchmark | NMC = 109 | 1.77 × 10−5 | 1.1 × 10−4 | 1.21 × 10−3 | 8.46 × 10−3 | 3.09 × 10−2 | 7.02 × 10−2 |
MCS | NMC = 5 × 104 | 2 × 10−5 (100%) | 10−4 (44.7%) | 1.5 × 10−3 (11.5%) | 8.24 × 10−3 (4.91%) | 3.16 × 10−2 (2.47%) | 7.15 × 10−2 (1.61%) |
NMC = 105 | 10−5 (100%) | 8 × 10−5 (35.4%) | 1.28 × 10−3 (8.83%) | 8.31 × 10−3 (3.45%) | 3.14 × 10−2 (1.76%) | 7.04 × 10−2 (1.15%) | |
Single-MPP IS | NMC = 104 | 1.62 × 10−5 (58%) | 1.37 × 10−4 (23.6%) | 9.08 × 10−4 (13.3%) | 7.17 × 10−3 (6.99%) | 2.97 × 10−2 (4.27%) | 6.69 × 10−2 (3.26%) |
NMC = 5 × 104 | 1.53 × 10−5 (25.7%) | 1.14 × 10−4 (11.7%) | 1.18 × 10−3 (5.34%) | 8.26 × 10−3 (2.81%) | 3.18 × 10−2 (1.82%) | 7.02 × 10−2 (1.42%) | |
Multiple-MPP IS | NMC = 104 | 1.75 × 10−5 (3.91%) | 1.04 × 10−4 (5.52%) | 1.07 × 10−3 (7.28%) | 7.01 × 10−3 (7.45%) | 3.27 × 10−2 (5.95%) | 7.33 × 10−2 (5.08%) |
NMC = 5 × 104 | 1.77 × 10−5 (1.74%) | 1.09 × 10−4 (2.52%) | 1.21 × 10−3 (3.48%) | 8.28 × 10−3 (3.29%) | 3.24 × 10−2 (2.62%) | 7.12 × 10−2 (2.27%) |
Variable | Distribution | Mean | Standard Deviation | Autocorrelation Coefficient Function |
---|---|---|---|---|
fy | Lognormal | 240 MPa | 24 MPa | - |
b0 | Lognormal | 0.2 m | 0.01 m | - |
h0 | Lognormal | 0.04 m | 0.004 m | - |
F(t) | Gaussian | 3500 N | 700 N |
Method | ||||||
---|---|---|---|---|---|---|
t = 0 | [0, 5] | [0, 10] | [0, 15] | [0, 20] | ||
Benchmark | NMC = 109 | 2.25 × 10−6 | 2.12 × 10−5 | 4.58 × 10−5 | 7.9 × 10−5 | 1.24 × 10−4 |
MCS | NMC = 106 | 7 × 10−6 (37.8%) | 3.3 × 10−5 (17.4%) | 6.3 × 10−3 12.6%) | 1.0 × 10−4 (10%) | 1.47 × 10−4 (8.25%) |
NMC = 5 × 106 | 2.6 × 10−6 (27.7%) | 2.5 × 10−5 (8.94%) | 5.66 × 10−5 (5.94%) | 8.98 × 10−5 (4.72%) | 1.31 × 10−4 (3.9%) | |
Single-MPP IS | NMC = 104 | 1.76 × 10−6 (15.4%) | 1.93 × 10−5 (5.77%) | 4.38 × 10−5 (5.47%) | 7.35 × 10−5 (4.25%) | 1.13 × 10−4 (3.72%) |
NMC = 5 × 104 | 2.31 × 10−6 (6.28%) | 2.2 × 10−5 (2.91%) | 4.66 × 10−5 (2.37%) | 7.78 × 10−5 (1.97%) | 1.2 × 10−4 (1.87%) | |
Multiple-MPP IS | NMC = 104 | 1.82 × 10−6 (12.4%) | 2.16 × 10−5 (7.58%) | 4.52 × 10−5 (5.66%) | 7.84 × 10−5 (5.6%) | 1.17 × 10−4 (4.42%) |
NMC = 5 × 104 | 2.35 × 10−6 (6.01%) | 2.19 × 10−5 (3.07%) | 4.7 × 10−5 (2.71%) | 7.96 × 10−5 (2.32%) | 1.23 × 10−4 (2.09%) |
Time Instant (t) | |
---|---|
0 | [−1.88, −0.776, −3.43] |
5 | [−1.83, −0.754, −3.37] |
10 | [−1.78, −0.733, −3.31] |
15 | [−1.72, −0.711, −3.25] |
20 | [−1.67, −0.69, −3.19] |
Variable | Distribution | Mean | Standard Deviation | Autocorrelation Coefficient Function |
---|---|---|---|---|
F1(t) (N) | Gaussian process | 1800 | 180 | |
F2(t) (N) | Gaussian process | 1800 | 180 | |
T(t) (Nm) | Gaussian process | 1900 | 190 | |
P(t) (N) | Gaussian process | 1800 | 180 | |
d (mm) | Normal | 42 | 0.5 | - |
h (mm) | Normal | 5 | 0.1 | - |
σ0 (MPa) | Normal | 560 | 56 | - |
L1 (mm) | Deterministic | 60 | - | - |
L2 (mm) | Deterministic | 120 | - | - |
θ1 (°) | Deterministic | 10 | - | - |
θ2 (°) | Deterministic | 5 | - | - |
Method | |||||||
---|---|---|---|---|---|---|---|
t = 0 | [0, 1] | [0, 2] | [0, 3] | [0, 4] | [0, 5] | ||
Benchmark | NMC = 109 | 6.83 × 10−4 | 2.25 × 10−3 | 3.92 × 10−3 | 5.73 × 10−3 | 7.76 × 10−3 | 9.94 × 10−3 |
MCS | NMC = 104 | 1.5 × 10−3 (25.8%) | 3.7 × 10−3 (16.4%) | 5.5 × 10−3 (13.4%) | 7.2 × 10−3 (11.7%) | 9.9 × 10−3 (10%) | 1.13 × 10−2 (9.35%) |
NMC = 105 | 8.2 × 10−4 (11%) | 2.43 × 10−3 (6.41%) | 4.17 × 10−3 (4.89%) | 6.02 × 10−3 (4.06%) | 7.92 × 10−3 (3.54%) | 1.03 × 10−2 (3.11%) | |
Single-MPP IS | NMC = 103 | 6.5 × 10−4 (15.3%) | 2.06 × 10−3 (13.6%) | 4.32 × 10−3 (10.6%) | 6.11 × 10−3 (10.9%) | 8.49 × 10−3 (10.4%) | 1.08 × 10−2 (9.9%) |
NMC = 104 | 6.71 × 10−4 (5.46%) | 2.16 × 10−3 (4.23%) | 2.72 × 10−3 (3.67%) | 5.42 × 10−3 (3.31%) | 7.55 × 10−3 (2.99%) | 9.82 × 10−3 (3.03%) | |
Multiple-MPP IS | NMC = 103 | 6.7 × 10−4 (16%) | 2.35 × 10−3 (12.7%) | 4.05 × 10−3 (9.69%) | 5.6 × 10−3 (11.5%) | 8.37 × 10−3 (10.3%) | 1.08 × 10−2 (9.54%) |
NMC = 104 | 6.81 × 10−4 (5.5%) | 2.16 × 10−3 (4.08%) | 3.78 × 10−3 (4.18%) | 5.42 × 10−3 (3.62%) | 7.51 × 10−3 (3.1%) | 9.85 × 10−3 (3.03%) |
Time Instant (t) | |
---|---|
0 | [−0.554, −0.25, −2.67] |
1.25 | [−0.544, −0.245, −2.59] |
2.5 | [−0.534, −0.24, −2.52] |
3.75 | [−0.523, −0.236, −2.44] |
5 | [−0.511, −0.23, −2.37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gao, X.; Sun, Z. An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes. Sustainability 2021, 13, 7776. https://doi.org/10.3390/su13147776
Wang J, Gao X, Sun Z. An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes. Sustainability. 2021; 13(14):7776. https://doi.org/10.3390/su13147776
Chicago/Turabian StyleWang, Jian, Xiang Gao, and Zhili Sun. 2021. "An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes" Sustainability 13, no. 14: 7776. https://doi.org/10.3390/su13147776
APA StyleWang, J., Gao, X., & Sun, Z. (2021). An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes. Sustainability, 13(14), 7776. https://doi.org/10.3390/su13147776