Zinc Concentration and Distribution in Vineyard Soils and Grapevine Leaves from Valdepeñas Designation of Origin (Central Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Laboratory Analysis
2.3. Statistical and Geostatistical Methods
3. Results
Leaves | n | Percentile | Max. | Min. | Mean (a) | St | BAC (b) | |||
---|---|---|---|---|---|---|---|---|---|---|
50 | 95 | |||||||||
All soils | 60 | 20.5 | 40.0 | 93.3 | 11.5 | 23.8 | Optimal | 12.9 | 0.43 | Adequate |
Alfisol | 32 | 20.3 | 37.8 | 40.0 | 11.6 | 22.8 | Optimal | 8.0 | 0.37 | Adequate |
Inceptisol | 33 | 18.8 | 50.2 | 93.3 | 11.5 | 23.8 | Optimal | 18.8 | 0.53 | Adequate |
Entisol | 4 | 17.8 | 26.4 | 27.4 | 12.0 | 17.8 | Optimal | 6.9 | 0.24 | Low-marginal |
Without CaCO3 | 60 | 20.6 | 40.1 | 93.3 | 11.5 | 23.8 | Optimal | 12.9 | 0.24 | Low-marginal |
With CaCO3 | 9 | 18.5 | 26.4 | 29.8 | 11.6 | 18.1 | Optimal | 5.5 | 0.45 | Adequate |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; de Rességuier, L. Major Soil-Related Factors in Terroir Expression and Vineyard Siting. Elements 2018, 14, 159–165. [Google Scholar] [CrossRef]
- Marschner, P. Nutrition of Higher Plants, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; p. 672. [Google Scholar]
- Wild, A. Russell´s Soil Conditions and Plant Growth, 11th ed.; Longman Scientific and Technical: Harlow, UK, 1988; p. 1014. [Google Scholar]
- Holmgrem, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B. Cadmiun, lead, zinc, cooper and nickel in agricultural soils of the United States of America. J. Environ. Qual. 1993, 22, 335–348. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soil and Their Bioavailability, 3rd ed.; Springer Science and Business Media: Dordrecht, The Netherlands, 2013; p. 614. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Elservier: San Diego, CA, USA, 2002; p. 368. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment of Finland (MEF) Government Decree on the Assessment of Soil Contamination and Remediation Needs. 214/2007. Available online: http://www.finlex.fi/en/laki/kaannokset/2007/en20070214 (accessed on 19 April 2021).
- Micó, C.; Peris, M.; Recatalá, L.; Sánchez, J. Baseline values for heavy metals in agricultural soils in a European Mediterranean region. Sci. Total Environ. 2007, 378, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Ferreira, P.A.; Brunetto, G.; Giachini, A.J.; Soares, C.R.F.S. Heavy metal remediation. In Heavy Metals Remediation Transport and Accumulation in Plants, 1st ed.; Gupta, D.K., Chatterjee, S., Eds.; Nova Sciences Publishers: New York, NY, USA, 2014; pp. 127–154. [Google Scholar]
- García-Navarro, F.J.; Amorós, J.A.; Pérez-de-los-Reyes, C.; Bravo, S.; Jiménez-Ballesta, R. Mapa de los Suelos de la Denominación de Origen Valdepeñas; Universidad de Castilla-La Mancha: Ciudad Real, Spain, 2019. [Google Scholar]
- FAO-ISRIC-ISSS. World Reference Base for Soil Resources. In Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2014. [Google Scholar]
- Soil Survey Staff. Key to Soil Taxonomy, 12nd ed.; USDA-Natural Resources, Conservation Service: Washington, DC, USA, 2014; p. 379. [Google Scholar]
- Jiménez-Ballesta, R.; Conde Bueno, P.; Martín Rubí, J.A.; García Giménez, R. Pedogeochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla-La Mancha, Spain). Cent. Eur. J. Geosci. 2010, 2, 441–454. [Google Scholar]
- Bravo, S.; Amorós, J.A.; Pérez-De-Los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the soil pH in the uptake and bioaccumulation of heavy metal (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Neuendorf, K.E.; Mehl, J.P., Jr.; Jackson, J. Glossary of Geology, 5th ed.; American Geological Institute: Alexandria, VA, USA, 2005; p. 799. [Google Scholar]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Soil Survey Staff. Field Book for Describing and Sampling Soils, Version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, The Netherland, 2012; p. 298. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Mertens, J.; Smolders, E. Zinc. In Heavy Metals in Soils. Environmental Pollution; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 283–311. [Google Scholar]
- García-Escudero, E.; Martin, I. Apuntes sobre fertilización del viñedo. Cuad. Campo 2019, 62, 32–39. [Google Scholar]
- White, R.E. Understanding Vineyard Soils, 2nd ed.; Oxford University Press: Oxford, UK, 2009; p. 280. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001; p. 867. ISBN 978-0-387-21510-5. [Google Scholar]
- Huzum, R.; Iancu, G.O.; Buzgar, N. Geochemical distribution of selected trace elements in vineyard soils from the Huşi area, Romania. Carpath. J. Earth Environ. Sci. 2012, 7, 61–70. [Google Scholar]
- Peris, M.; Micó, C.; Recatalá, L.; Sánchez, J. Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci. Total Environ. 2007, 378, 42–48. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, C.L.; Rusu, T.; Pop, N. Vertical distribution and analysis of micro, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania. Chem. Cent. J. 2015, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Angelova, V.R.; Ivanov, A.S.; Braikov, D.M. Heavy metals (Pb, Cu, Zn and Cd) in the system soil-grapevine-grape. J. Sci. Food Agri. 1999, 79, 713–721. [Google Scholar] [CrossRef]
- Iñigo, V.; Marin, A.; Andrades, M.; Jiménez-Ballesta, R. Evaluation of the Copper and Zinc Contents of Soils in the Vineyards of La Rioja (Spain). Environments 2020, 7, 55. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hashimoto, Y.; Kang, J.; Kobayashi, K. Speciation of phosphorus zinc and copper in soil and water-dispersible colloid affected by a long-term application of swine manure compost. Environ. Sci. Technol. 2018, 52, 13270–13278. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ. Polut. 2007, 149, 10–17. [Google Scholar] [CrossRef]
- Sipos, P.; Németh, T.; Kis, V.K.; Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 2008, 73, 461–469. [Google Scholar] [CrossRef]
- Manceau, A.; Lanson, B.; Schlegel, M.L.; Harge, J.C.; Musso, M.; Eybert-Berard, L.; Hazemann, J.L.; Chateigner, D.; Lamble, G.M. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 2020, 300, 289–343. [Google Scholar] [CrossRef]
- Jacquat, O.; Voegelin, A.; Kretzschmar, R. Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils. Geochim. Cosmochim. Acta 2009, 73, 348–363. [Google Scholar] [CrossRef]
- ATDSR (United States Agency for Toxic Substances and Disease). Toxicological Profile for Zinc; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2007; p. 352. [Google Scholar]
- Ambrosini, V.G.; Rosa, D.J.; Prado, J.P.C.; Borghezan, M.; Melo, G.W.B.; Soares, J.J.; Comin, C.R.F.S.; Simao, D.G.; Brunetto, G. Plant Physiology and Biochemistry Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol. Biochem. 2015, 96, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Berjon, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Úbeda, X.; Francos, M.; Eguzkiza, P.; Stefanuto, E.B. Soil and grapevine leaf quality in organic vineyards of different ages in DO Rioja-Alavesa, northern Spain. Span. J. Soil Sci. 2021, 11, 6–21. [Google Scholar]
- Johnson, L.F.; Roczen, D.E.; Youkhana, S.K.; Nemani, R.R.; Bosch, D.F. Mapping vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric. 2003, 38, 33–44. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Marin, B.; Mkoungafoko, R.; Rigaux, A.; Hopgood, M.J.; Delannoy, E.; Cancès, B.; Laurain, M. Factors affecting the distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environ. Pollut. 2008, 156, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Vystavna, Y.; Rushenko, L.; Diadin, D.; Klymenko, O.; Klymenko, M. Trace metals in wine and vineyard environment in southern Ukraine. Food Chem. 2014, 146, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Amorós, J.A.; Pérez-de-los-Reyes, C.; García-Navarro, F.J.; Bravo, S.; Chacón, J.L.; Martínez, J.; Jiménez-Ballesta, R. Bioaccumulation of mineral elements in grapevine varieties cultivated in “La Mancha”. J. Plant Nut. Soil Sci. 2013, 176, 843–850. [Google Scholar] [CrossRef]
- Reiman, C.; Birke, M.; Demetriades, A.; Filzmoser, P.; O’Connor, P. Chemistry of Europe’s Agricultural Soils, Part A and B; Schweizerbart Science Publishers: Stuttgart, Germany, 2014; p. 874. ISBN 9783510968480. [Google Scholar]
- Amoros, J.A.; Bravo, S.; Perez-de-los-Reyes, C.; García-Navarro, F.J.; Campos, J.A.; Sanchez-Ormeño, M.; Jimenez-Ballesta, R.; Higueras, P. Iron uptake in vineyard soils and relationships with other elements (Zn, Mn and Ca). The case of Castilla-La Mancha, Central Spain. Appl. Geochem. 2018, 88, 17–22. [Google Scholar] [CrossRef]
Soil Type | n | Percentile | Maximum | Minimum | Mean | St | |
---|---|---|---|---|---|---|---|
50 | 95 | ||||||
All soils | |||||||
Plough layer (Ap) | 80 | 54.4 | 91.9 | 126.3 | 27.3 | 47.6 | 20.3 |
Subsoil (B or C) | 73 | 49.5 | 86.9 | 153.7 | 16.2 | 52.7 | 24.7 |
Alfisol | |||||||
Plough layer (Ap) | 35 | 58.3 | 98.6 | 125.8 | 35.8 | 61.2 | 18.8 |
Subsoil (B or C) | 35 | 56.7 | 81.2 | 153.7 | 34.1 | 61.4 | 20.6 |
Inceptisol | |||||||
Plough layer (Ap) | 39 | 43.1 | 95.3 | 126.3 | 27.3 | 52.2 | 20.1 |
Subsoil (B or C) | 33 | 36.6 | 79.8 | 89.6 | 16.2 | 38.3 | 19.1 |
Entisol | |||||||
Plough layer (Ap) | 6 | 71.5 | 97.9 | 102.3 | 41.9 | 70.9 | 22.6 |
Subsoil (B or C) | 5 | 83.9 | 118.6 | 123.2 | 58.3 | 86.8 | 25.9 |
With CaCO3 | |||||||
Plough layer (Ap) | 70 | 53.3 | 98.5 | 126.3 | 27.3 | 56.2 | 20.5 |
Subsoil (B or C) | 63 | 46.8 | 81.3 | 153.7 | 16.2 | 49.1 | 23.2 |
Without CaCO3 | |||||||
Plough layer (Ap) | 10 | 74.9 | 95.8 | 102.3 | 40.8 | 71.6 | 19.4 |
Subsoil (B or C) | 10 | 74.1 | 112.9 | 123.2 | 48,0 | 77.4 | 21.4 |
Bravo et al., 2019 | 37.6 | 225.0 | 5.0 | 43.5 | |||
Reiman et al., 2014 | 61.0 | 129.9 | 413.0 | 3.0 | 84.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Navarro, F.J.; Jiménez-Ballesta, R.; Garcia-Pradas, J.; Amoros, J.A.; Perez de los Reyes, C.; Bravo, S. Zinc Concentration and Distribution in Vineyard Soils and Grapevine Leaves from Valdepeñas Designation of Origin (Central Spain). Sustainability 2021, 13, 7390. https://doi.org/10.3390/su13137390
García-Navarro FJ, Jiménez-Ballesta R, Garcia-Pradas J, Amoros JA, Perez de los Reyes C, Bravo S. Zinc Concentration and Distribution in Vineyard Soils and Grapevine Leaves from Valdepeñas Designation of Origin (Central Spain). Sustainability. 2021; 13(13):7390. https://doi.org/10.3390/su13137390
Chicago/Turabian StyleGarcía-Navarro, Francisco Jesús, Raimundo Jiménez-Ballesta, Jesus Garcia-Pradas, Jose A. Amoros, Caridad Perez de los Reyes, and Sandra Bravo. 2021. "Zinc Concentration and Distribution in Vineyard Soils and Grapevine Leaves from Valdepeñas Designation of Origin (Central Spain)" Sustainability 13, no. 13: 7390. https://doi.org/10.3390/su13137390
APA StyleGarcía-Navarro, F. J., Jiménez-Ballesta, R., Garcia-Pradas, J., Amoros, J. A., Perez de los Reyes, C., & Bravo, S. (2021). Zinc Concentration and Distribution in Vineyard Soils and Grapevine Leaves from Valdepeñas Designation of Origin (Central Spain). Sustainability, 13(13), 7390. https://doi.org/10.3390/su13137390