Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters
Abstract
:1. Introduction
- Contamination of groundwater determined outbreaks in Walkerton, Canada in 2000 with Campylobacter and E. coli, in Southern Finland in 2001, and Ohio, the USA in 2004 with Campylobacter. The contamination of surface water via heavy rain-led mud, for which protections were inadequate after heavy rainfall conditions, was mentioned in Spain in 2002 with Shigella and in Oregon, USA in 2005 with Campylobacter and E. coli.
- Outbreaks generated by deficiencies in the disinfection treatment procedures in water treatment plants and from failures/malfunctions in the distribution network systems are more frequent, with Campylobacter (Gourdon, France in 2000; South Wales, the UK in 2000; New Zealand in 2000 and 2012; Spain in 2001; Indiana, the USA in 2006; Ohio, the USA in 2004; Koge, Denmark in 2007 and 2010; Nokia, Finland in 2007; Zurich, Switzerland in 2008; and Utah, the USA in 2010), Shigella (New Zealand in 2004 and Valencia d’Aneu, Spain in 2006), Salmonella (Montana, USA in 2004 and Colorado, USA in 2008), and E. coli (Ahus, Sweden in 2010; Ohio, the USA in 2000; Darcy le Fort, France in 2001; Koge, Denmark in 2007; and Vuorela, Finland in 2012). Between contamination from animal barns, the filtering of wastewater in drinking water systems due to human/technical errors, and broken pipes, the causes of drinking water are multiple and difficult to assess in a short timespan to avoid contamination of the targeted population with all the implied consequences [7].
2. Waterborne Bacteria Short Overview
Pathogen Bacteria | Taxonomic Family | Localization | Disease | Symptoms | Infectivity | Resistance to Chlorine [15] |
---|---|---|---|---|---|---|
Burkholderia pseudomallei | Burkholderiaceae | Southeast Asia and Northern Australia [16] | Melioidosis [17] | Septic shock, pulmonary infection, acute suppurative parotitis, prostatic abscesses, brainstem encephalitis | Low | Low [18] |
Campylobacter jejuni, C. coli | Campylobacteraceae | Worldwide (increasing incidence in North America, Europe, Australia, Asia) | Campylobacteriosis [19] | Gastroenteritis, extraintestinal infection, postinfection complications (reactive arthritis, Guillain–Barré syndrome, irritable bowel syndrome) | Moderate | Low |
E. coli—pathogenic (ETEC, EPEC, EAEC, EIEC, DAEC) | Enterobacteriaceae | Worldwide | Gastroenteritis [20] | Acute and chronic diarrhea, chronic gut inflammation | Low | Low |
E. coli O157:H7—enterohemorrhagic | Enterobacteriaceae | Worldwide | Gastroenteritis, hemolytic uremia [20] | Bloody diarrhea, hemolytic uremic syndrome | High | Low |
Legionella pneumophila | Legionellaceae | Worldwide | Legionnaires’ disease [21] | Fever, nonproductive cough, headache, muscle pain, dyspnea, diarrhea, delirium | Moderate | Low |
Mycobacterium avium complex (non-tuberculous) | Mycobacteriaceae | Worldwide | Pulmonary disease, skin infection [22] | Dyspnea, cough, bronchiectasis, lymphadenitis | Low | High |
Pseudomonas aeruginosa | Pseudomonadaceae | Worldwide | Pulmonary disease, skin infection [23] | Acute, chronic lung infection, soft tissue infections | Low [24] | Moderate |
Salmonella typhi | Enterobacteriaceae | High incidence in southeast Asia, sub-Saharan Africa | Typhoid fever [25] | Fever, headache, muscle pain, constipation, diarrhea | Low | Low |
Salmonella enterica | Enterobacteriaceae | Highest incidence in sub-Saharan Africa | Salmonellosis [26] | Diarrheal disease, bacteremia, meningitis | Low | Low |
Shigella spp. | Enterobacteriaceae | Globally | Shigellosis [27] | Acute watery diarrhea, dysentery, bloody stools, fever | High | Low |
Vibrio cholera | Vibrionaceae | Endemic in Asia and Africa | Cholera [28] | Acute watery diarrhea, vomiting, hypotensive shock | Low | Low |
3. Methods for Bacterial Detection
3.1. Bacterial Culturing Methods
3.2. ELISA
3.3. LAMP and PCR
3.4. Chromatography
3.5. Capillary Electrophoresis
3.6. Hyphenated Methods
3.7. Magnetic Field-Assisted Methods
3.8. Surface-Enhanced Raman Scattering
Detection Method | Type of Method | Advantages | Disadvantages | Analysis Duration | Estimated Cost * | On-Site Testing | Ref. |
---|---|---|---|---|---|---|---|
Microbiological culturing | Conventional | High sensitivity, accuracy, can provide diagnosis of acute infections | Intensive labor, lengthy analysis, requires sterile laboratory conditions | Several days (48–72 h) | Low | No | [61] |
ELISA | Conventional | High specificity and sensitivity | Requires enrichment for quantification, expensive plate reader | >8 h | High | No | [33] |
Paper-based | Lightweight, disposable, biodegradable, chemically compatible, low LOD | 175 min/sample | Low | Yes | |||
PCR | Conventional | High specificity and sensitivity | Requires sterile laboratory conditions, costly reagents, and highly trained personnel; false negatives due to sample cross-contamination; inhibition of amplification reaction by matrix sample compounds; challenges in differentiating viable from nonviable cells | 1–4 h | High | No | [61,62] |
MS | MALDI-TOF | High sensitivity, rapid, robust, high throughput | Lower resolution spectrometer, incompatibility with tandem analysis, lack of sufficient reference spectra | Several hours | High | No | [63] |
Optical | SPR sensors | High-sensitivity, rapid, label-free, real-time analysis with reproducible results | Chance of false results due to fluctuations in refractive index with the temperature or composition of the sample, nonspecific interactions from nontarget or structurally similar molecules to the sensor surface | <30 min | High | No | [64] |
SERS sensors | High sensitivity and high spectra resolution, the possibility of multiplexed detection, label-free SERS also helps in the differentiation of viable and nonviable bacterial cells | Limited usage of label-based SERS for in situ and high-throughput recognition of pathogens because of increased requirements of reactant volumes, preparation steps, and analytical time | 10 min–2 h | High | No | [64] | |
CL sensors | Easy device handling, flexibility, specificity, sensitivity, rapidity, wide dynamic range, relatively simple equipment (no sophisticated optics with excitation source required), low instrumentation costs | Requirement of chemiluminescent labels | A few minutes to a few hours | Low | Yes | [65] | |
Electrochemistry | Simplicity, specificity, low detection limit, ease of use, real-time measurement, multitarget testing and automation, portability, miniaturization, rapid detection | A few minutes to a few hours | Low | Yes | [66] | ||
Paper-based sensors | Low cost, single-use, portable, environmentally friendly | Low | Yes | [67] |
4. Sensors
4.1. Optical Sensors
4.2. Electrochemical Sensors
5. Challenges
6. Perspectives
6.1. Commercial Rapid Tests
6.2. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanakoudis, V.; Papadopoulou, A.; Tsitsifli, S.; Curk, B.C.; Karleusa, B.; Matic, B.; Altran, E.; Banovec, P. Policy recommendation for drinking water supply cross-border networking in the Adriatic region. J. Water Supply Res. Technol. AQUA 2017, 66, 489–508. [Google Scholar] [CrossRef]
- Water Sanitation and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/drinking-water-quality-guidelines (accessed on 26 April 2021).
- International Water Association. Available online: https://iwa-network.org/ (accessed on 26 April 2021).
- World Health Organization. WHO Microbial Aspects. WHO Guidel. Drink. Qual. 2011, 38, 117–153. [Google Scholar]
- Coalition for Water Security. Available online: https://www.coalitionforwatersecurity.org/ (accessed on 26 April 2021).
- UN World Water Development Report Archives|UN-Water. Available online: https://www.unwater.org/publication_categories/world-water-development-report/ (accessed on 26 April 2021).
- Moreira, N.A.; Bondelind, M. Safe drinking water and waterborne outbreaks. J. Water Health 2017, 15, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Matzeu, G.; Florea, L.; Diamond, D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuators B Chem. 2015, 211, 403–418. [Google Scholar] [CrossRef]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Water Sanitation and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health (accessed on 26 April 2021).
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO|Progress on Sanitation and Drinking-Water. Available online: https://apps.who.int/iris/bitstream/handle/10665/81245/9789241505390_eng.pdf;jsessi (accessed on 26 April 2021).
- WHO|Millennium Development Goals (MDGs). Available online: https://www.who.int/news-room/fact-sheets/detail/millennium-development-goals-(mdgs) (accessed on 26 April 2021).
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO—World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Munakata, N.; Kuo, J. Disinfection Processes. Water Environ. Res. 2015, 87, 1127–1146. [Google Scholar] [CrossRef]
- Thaipadungpanit, J.; Chierakul, W.; Pattanaporkrattana, W.; Phoodaeng, A.; Wongsuvan, G.; Huntrakun, V.; Amornchai, P.; Chatchen, S.; Kitphati, R.; Wuthiekanun, V.; et al. Burkholderia pseudomallei in water supplies, Southern Thailand. Emerg. Infect. Dis. 2014, 20, 1947–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersinga, W.J.; van der Poll, T.; White, N.J.; Day, N.P.; Peacock, S.J. Melioidosis: Insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 2006, 4, 272–282. [Google Scholar] [CrossRef]
- Howard, K.; Inglis, T.J.J. Disinfection of Burkholderia pseudomallei in potable water. Water Res. 2005, 39, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Hur, H.-G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, B.S.; Benson, R.F.; Besser, R.E. Legionella and legionnaires’ disease: 25 Years of investigation. Clin. Microbiol. Rev. 2002, 15, 506–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loret, J.F.; Dumoutier, N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int. J. Hyg. Environ. Health 2019, 222, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Caskey, S.; Stirling, J.; Moore, J.E.; Rendall, J.C. Occurrence of Pseudomonas aeruginosa in waters: Implications for patients with cystic fibrosis (CF). Lett. Appl. Microbiol. 2018, 66, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Dhiman, A.; Kapil, A.; Bansal, V.; Sharma, T.K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019, 411, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Mylona, E.; Frankel, G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cell. Microbiol. 2018, 20, e12939. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Parisi, A.; Sarkar, K.; Blacker, B.F.; Reiner, R.C.; Hay, S.I.; Nixon, M.R.; Dolecek, C.; James, S.L.; Mokdad, A.H.; et al. The global burden of non-typhoidal salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Chompook, P. Shigellosis. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; Volume 43, pp. 626–632. [Google Scholar] [CrossRef]
- Harris, J.B.; LaRocque, R.C.; Qadri, F.; Ryan, E.T.; Calderwood, S.B. Cholera. In The Lancet; Lancet Publishing Group: London, UK, 2012; Volume 379, pp. 2466–2476. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhang, Y.; Gao, Z.F.; Ye, Y.; Wu, Q.; Chen, H.; Xu, J. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today 2021, 38, 101121. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Y.; Li, X.; Wang, L.; Xu, Y.; He, L.; Li, G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal. Chim. Acta 2021, 338279. [Google Scholar] [CrossRef]
- Deshmukh, R.A.; Joshi, K.; Bhand, S.; Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. Microbiologyopen 2016, 5, 901–922. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Ali, Z.; Zou, J.; Jin, G.; Zhu, J.; Yang, J.; Dai, J. Detection methods for: Pseudomonas aeruginosa: History and future perspective. RSC Adv. 2017, 7, 51789–51800. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Zhao, C.; Li, L.; Song, X.; Xu, K.; Wang, J.; Liu, Y.; Fu, K.; Bao, H.; Song, D.; et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal. Biochem. 2018, 542, 58–62. [Google Scholar] [CrossRef]
- Saptalena, L.G.; Kuklya, A.; Telgheder, U. Gas Chromatography-Differential Mobility Spectrometry and Gas Chromatography-Mass Spectrometry for the detection of coliform bacteria. Int. J. Mass Spectrom. 2015, 388, 17–25. [Google Scholar] [CrossRef]
- Ma, X.; Ding, W.; Wang, C.; Wu, H.; Tian, X.; Lyu, M.; Wang, S. DNAzyme biosensors for the detection of pathogenic bacteria. Sens. Actuators B Chem. 2021, 331, 129422. [Google Scholar] [CrossRef]
- Maguire, M.; Kase, J.A.; Roberson, D.; Muruvanda, T.; Brown, E.W.; Allard, M.; Musser, S.M.; González-Escalona, N. Precision long-read metagenomics sequencing for food safety by detection and assembly of Shiga toxin-producing Escherichia coli in irrigation water. PLoS ONE 2021, 16, e0245172. [Google Scholar] [CrossRef]
- Hosu, M.C.; Vasaikar, S.; Okuthe, G.E.; Apalata, T. Molecular Detection of Antibiotic-Resistant Genes in Pseudomonas aeruginosa from Nonclinical Environment: Public Health Implications in Mthatha, Eastern Cape Province, South Africa. Int. J. Microbiol. 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Ravindran, V.B.; Surapaneni, A.; Shahsavari, E.; Haleyur, N.; Mantri, N.; Ball, A.S. Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes. Sci. Rep. 2021, 11, 1881. [Google Scholar] [CrossRef]
- Brandt, J.; Albertsen, M. Investigation of Detection Limits and the Influence of DNA Extraction and Primer Choice on the Observed Microbial Communities in Drinking Water Samples Using 16S rRNA Gene Amplicon Sequencing. Front. Microbiol. 2018, 9, 2140. [Google Scholar] [CrossRef] [PubMed]
- Urban, L.; Holzer, A.; Baronas, J.J.; Hall, M.B.; Braeuninger-Weimer, P.; Scherm, M.J.; Kunz, D.J.; Perera, S.N.; Martin-Herranz, D.E.; Tipper, E.T.; et al. Freshwater monitoring by nanopore sequencing. eLife 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Song, Y.; Kim, Y.T.; Lee, S.J.; Lee, K.G.; Im, S.G. Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen Detection. ACS Appl. Mater. Interfaces 2021. [Google Scholar] [CrossRef]
- Li, Y.; Bai, C.; Yang, L.; Fu, J.; Yan, M.; Chen, D.; Zhang, L. High flux isothermal assays on pathogenic, virulent and toxic genetics from various pathogens. Microb. Pathog. 2018, 116, 68–72. [Google Scholar] [CrossRef]
- Kouremenos, K.A.; Beale, D.J.; Antti, H.; Palombo, E.A. Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida Bacteria in potable water. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 179–186. [Google Scholar] [CrossRef]
- Kartsova, L.A.; Makeeva, D.V.; Kravchenko, A.V.; Moskvichev, D.O.; Polikarpova, D.A. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. TrAC Trends Anal. Chem. 2021, 134, 116110. [Google Scholar] [CrossRef]
- Buszewski, B.; Rogowska, A.; Pomastowski, P.; Złoch, M.; Railean-Plugaru, V. Identification of microorganisms by modern analytical techniques. J. AOAC Int. 2017, 100, 1607–1623. [Google Scholar] [CrossRef] [PubMed]
- Fiori, J.; Turroni, S.; Candela, M.; Gotti, R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J. Pharm. Biomed. Anal. 2020, 177, 112867. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 2011, 11, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Dilger, T.; Melzl, H.; Gessner, A. Rapid and reliable identification of waterborne Legionella species by MALDI-TOF mass spectrometry. J. Microbiol. Methods 2016, 127, 154–159. [Google Scholar] [CrossRef]
- Pascale, M.R.; Mazzotta, M.; Salaris, S.; Girolamini, L.; Grottola, A.; Simone, M.L.; Cordovana, M.; Bisognin, F.; Dal Monte, P.; Bucci Sabattini, M.A.; et al. Evaluation of MALDI–TOF Mass Spectrometry in Diagnostic and Environmental Surveillance of Legionella Species: A Comparison With Culture and Mip-Gene Sequencing Technique. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Suzuki, Y.; Niina, K.; Matsuwaki, T.; Nukazawa, K.; Iguchi, A. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry. J. Environ. Sci. Health Part A Toxic Subst. Environ. Eng. 2018, 53, 160–173. [Google Scholar] [CrossRef]
- Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E. Characterization of bacteria in Ballast water using MALDI-TOF mass spectrometry. PLoS ONE 2012, 7, e0038515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timperio, A.M.; Gorrasi, S.; Zolla, L.; Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS ONE 2017, 12, e0181860. [Google Scholar] [CrossRef] [PubMed]
- Sala-Comorera, L.; Caudet-Segarra, L.; Galofré, B.; Lucena, F.; Blanch, A.R.; García-Aljaro, C. Unravelling the composition of tap and mineral water microbiota: Divergences between next-generation sequencing techniques and culture-based methods. Int. J. Food Microbiol. 2020, 334, 108850. [Google Scholar] [CrossRef]
- Horká, M.; Šalplachta, J.; Karásek, P.; Ružička, F.; Roth, M. Online Concentration of Bacteria from Tens of Microliter Sample Volumes in Roughened Fused Silica Capillary with Subsequent Analysis by Capillary Electrophoresis and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Infect. Dis. 2020, 6, 355–365. [Google Scholar] [CrossRef]
- Chiu, S.W.Y.; Cheng, H.W.; Chen, Z.X.; Wang, H.H.; Lai, M.Y.; Wang, J.K.; Wang, Y.L. Quantification of biomolecules responsible for biomarkers in the surface-enhanced Raman spectra of bacteria using liquid chromatography-mass spectrometry. Phys. Chem. Chem. Phys. 2018, 20, 8032–8041. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, S.; Ahn, M.M.; Kang, I.S.; Park, K.H.; Jeon, S. Colorimetric detection of pathogenic bacteria using platinum-coated magnetic nanoparticle clusters and magnetophoretic chromatography. Anal. Chim. Acta 2015, 883, 61–66. [Google Scholar] [CrossRef]
- Park, C.; Lee, J.; Kim, Y.; Kim, J.; Lee, J.; Park, S. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 2017, 132, 128–133. [Google Scholar] [CrossRef]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7. Sens. Actuators B Chem. 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Suaifan, G.A.R.Y.; Alhogail, S.; Zourob, M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2017, 92, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Torres, K.Y.; Arnold, D.P.; McLamore, E.S. Rapid isolation of Escherichia coli from water samples using magnetic microdiscs. Sens. Actuators B Chem. 2019, 291, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nehra, M.; Mehta, J.; Dilbaghi, N.; Marrazza, G.; Kaushik, A. Point-of-care strategies for detection of waterborne pathogens. Sensors 2019, 19, 4476. [Google Scholar] [CrossRef] [Green Version]
- Simoska, O.; Stevenson, K.J. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2019, 144, 6461–6478. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.S.; Kim, Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. J. Microbiol. 2018, 56, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Bhardwaj, S.K.; Bhatt, D.; Kwon, D.; Kim, K.; Deep, A. Trends in Analytical Chemistry Optical detection of waterborne pathogens using nanomaterials. Trends Anal. Chem. 2019, 113, 280–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Fei, R.; Liu, X.; Zhou, Y.; Chen, J.; Chen, H.; Zhou, R.; Hu, Y. Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. Anal. Chem. 2014, 86, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent progress on the electrochemical biosensing of Escherichia coli O157:H7: Material and methods overview. Biosensors 2020, 10, 54. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Xie, L.; Ying, Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci. Technol. 2018, 81, 61–73. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal. Chem. 2019, 111. [Google Scholar] [CrossRef]
- Hosu, O.; Florea, A.; Cristea, C.; Sandulescu, R. Functionalized Advanced Hybrid Materials for Biosensing Applications. In Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171–207. [Google Scholar] [CrossRef]
- Bouguelia, S.; Roupioz, Y.; Slimani, S.; Mondani, L.; Casabona, M.G.; Durmort, C.; Vernet, T.; Calemczuk, R.; Livache, T. On-chip microbial culture for the specific detection of very low levels of bacteria. Lab Chip 2013, 13, 4024–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Højris, B.; Christensen, S.C.B.; Albrechtsen, H.J.; Smith, C.; Dahlqvist, M. A novel, optical, on-line bacteria sensor for monitoring drinking water quality. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tawil, N.; Sacher, E.; Mandeville, R.; Meunier, M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron. 2012, 37, 24–29. [Google Scholar] [CrossRef]
- Petrovszki, D.; Valkai, S.; Gora, E.; Tanner, M.; Bányai, A.; Fürjes, P.; Dér, A. An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria. Microelectron. Eng. 2021, 239–240, 111523. [Google Scholar] [CrossRef]
- Kaushal, S.; Priyadarshi, N.; Pinnaka, A.K.; Soni, S.; Deep, A.; Singhal, N.K. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens. Actuators B Chem. 2019, 289, 207–215. [Google Scholar] [CrossRef]
- Massad-Ivanir, N.; Shtenberg, G.; Raz, N.; Gazenbeek, C.; Budding, D.; Bos, M.P.; Segal, E. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, M.; Rahimi, F.; Negahdari, B.; Rezayan, A.H.; Shafiekhani, A. A lectin-coupled porous silicon-based biosensor: Label-free optical detection of bacteria in a real-time mode. Sci. Rep. 2020, 10, 16017. [Google Scholar] [CrossRef]
- Sivakumar, S.; Wark, K.L.; Gupta, J.K.; Abbott, N.L.; Caruso, F. Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. Adv. Funct. Mater. 2009, 19, 2260–2265. [Google Scholar] [CrossRef]
- Verbarg, J.; Plath, W.D.; Shriver-Lake, L.C.; Howell, P.B.; Erickson, J.S.; Golden, J.P.; Ligler, F.S. Catch and release: Integrated system for multiplexed detection of bacteria. Anal. Chem. 2013, 85, 4944–4950. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, D.; Stadden, E.; Hashem, E.; Sparrow, I.J.G.; Emmerson, G.D. Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins. Sens. Actuators B Chem. 2010, 149, 233–238. [Google Scholar] [CrossRef]
- Massad-Ivanir, N.; Shtenberg, C.; Zeidman, T.; Segal, E. Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv. Funct. Mater. 2010, 20, 2269–2277. [Google Scholar] [CrossRef]
- Yang, X.; Feng, L.; Qin, X. Preparation of the Cf-GQDs-Escherichia coli O157: H7 Bioprobe and Its Application in Optical Imaging and Sensing of Escherichia coli O157: H7. Food Anal. Methods 2018, 11, 2280–2286. [Google Scholar] [CrossRef]
- Hosu, O.; Lettieri, M.; Papara, N.; Ravalli, A.; Sandulescu, R.; Cristea, C.; Marrazza, G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019, 204, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Nejad, M.A.F.; Parolo, C.; Shahrokhian, S.; Merkoçi, A. Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline. Anal. Chem. 2019, 91, 14960–14966. [Google Scholar] [CrossRef]
- Vaisocherová-Lísalová, H.; Víšová, I.; Ermini, M.L.; Špringer, T.; Song, X.C.; Mrázek, J.; Lamačová, J.; Scott Lynn, N.; Šedivák, P.; Homola, J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens. Bioelectron. 2016, 80, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.H.; Li, M.; Wang, Y.; Ouyang, H.X.; Wang, L.; Li, X.C.; Cao, Y.C.; Meng, Q.H.; Lu, J.X. Aptasensors for rapid detection of Escherichia coli O157: H7 and Salmonella typhimurium. Nanoscale Res. Lett. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Stefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in Biomedicine: Selection Strategies and Recent Advances. Electrochim. Acta 2021, 376, 137994. [Google Scholar] [CrossRef]
- Jyoti, A.; Tomar, R.S.; Shanker, R. Nanosensors for the Detection of Pathogenic Bacteria. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2016; Volume 20, pp. 129–150. [Google Scholar]
- Wang, C.; Meloni, M.M.; Wu, X.; Zhuo, M.; He, T.; Wang, J.; Wang, C.; Dong, P. Magnetic plasmonic particles for SERS-based bacteria sensing: A review. AIP Adv. 2019, 9, 10701. [Google Scholar] [CrossRef] [Green Version]
- Tripp, R.A.; Dluhy, R.A.; Zhao, Y. Novel nanostructures for SERS biosensing. Nano Today 2008, 3, 31–37. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review on SERS of bacteria. Biosensors 2017, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, N.; Long, F.; Gu, A.Z. Aptamer based E-coli detection in waste waters by portable optical biosensor system. In Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, Boston, MA, USA, 25–27 April 2014. [Google Scholar] [CrossRef]
- Wan, J.; Ai, J.; Zhang, Y.; Geng, X.; Gao, Q.; Cheng, Z. Signal-off impedimetric immunosensor for the detection of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Vu, Q.K.; Tran, Q.H.; Vu, N.P.; Anh, T.; Dang, T.T.; Matteo, T.; Nguyen, T.H.H. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens. Mater. Today Commun. 2020, 26, 101726. [Google Scholar] [CrossRef]
- Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sens. Bio-Sensing Res. 2020, 29, 100317. [Google Scholar] [CrossRef]
- Fatema, K.N.; Liu, Y.; Cho, K.Y.; Oh, W.C. Comparative study of electrochemical biosensors based on highly efficient mesoporous ZrO2-Ag-G-SiO2 and In2O3-G-SiO2 for rapid recognition of E. coli O157:H7. ACS Omega 2020, 5, 22719–22730. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.J.; Hsu, Y.C.; Gu, B.C.; Wu, C.C. Voltammetric measurement of Escherichia coli concentration through p-APG hydrolysis by endogenous β-galactosidase. Microchem. J. 2020, 154, 104641. [Google Scholar] [CrossRef]
- Bayat, F.; Didar, T.F.; Hosseinidoust, Z. Emerging investigator series: Bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environ. Sci. Nano 2021. [Google Scholar] [CrossRef]
- Moghtader, F.; Congur, G.; Zareie, H.M.; Erdem, A.; Piskin, E. Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes. RSC Adv. 2016, 6, 97832–97839. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chen, J.; Nugen, S.R. Electrochemical Detection of Escherichia coli from Aqueous Samples Using Engineered Phages. Anal. Chem. 2017, 89, 1650–1657. [Google Scholar] [CrossRef]
- Singh, S.; Hinkley, T.; Nugen, S.R.; Talbert, J.N. Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system. Anal. Bioanal. Chem. 2019, 411, 7273–7279. [Google Scholar] [CrossRef]
- Webster, T.A.; Sismaet, H.J.; Conte, J.L.; Chan, I.; Ping, J.; Goluch, E.D. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 2014, 60, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Sismaet, H.J.; Pinto, A.J.; Goluch, E.D. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens. Bioelectron. 2017, 97, 65–69. [Google Scholar] [CrossRef]
- Cernat, A.; Tertis, M.; Gandouzi, I.; Bakhrouf, A.; Suciu, M.; Cristea, C. Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem. Commun. 2018, 88, 5–9. [Google Scholar] [CrossRef]
- Gandouzi, I.; Tertis, M.; Cernat, A.; Bakhrouf, A.; Coros, M.; Pruneanu, S.; Cristea, C. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry 2018, 120, 94–103. [Google Scholar] [CrossRef]
- Gandouzi, I.; Tertis, M.; Cernat, A.; Saidane-Mosbahi, D.; Ilea, A.; Cristea, C. A Nanocomposite Based on Reduced Graphene and Gold Nanoparticles for Highly Sensitive Electrochemical Detection of Pseudomonas aeruginosa through Its Virulence Factors. Materials 2019, 12, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatraktchi, F.A.Z.; Dimaki, M.; Støvring, N.; Johansen, H.K.; Molin, S.; Svendsen, W.E. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Anal. Biochem. 2020, 593, 113586. [Google Scholar] [CrossRef]
- Ciui, B.; Tertiş, M.; Cernat, A.; Sǎndulescu, R.; Wang, J.; Cristea, C. Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of Pseudomonas aeruginosa Virulence Factors. Anal. Chem. 2018, 90, 7761–7768. [Google Scholar] [CrossRef]
- Wu, Z.; He, D.; Cui, B.; Jin, Z. A bimodal (SERS and colorimetric) aptasensor for the detection of Pseudomonas aeruginosa. Microchim. Acta 2018, 185, 1–7. [Google Scholar] [CrossRef]
- Jia, F.; Xu, L.; Yan, W.; Wu, W.; Yu, Q.; Tian, X.; Dai, R.; Li, X. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim. Acta 2017, 184, 1539–1545. [Google Scholar] [CrossRef]
- Mejri, M.B.; Baccar, H.; Baldrich, E.; Del Campo, F.J.; Helali, S.; Ktari, T.; Simonian, A.; Aouni, M.; Abdelghani, A. Impedance biosensing using phages for bacteria detection: Generation of dual signals as the clue for in-chip assay confirmation. Biosens. Bioelectron. 2010, 26, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Vinay, M.; Franche, N.; Grégori, G.; Fantino, J.-R.; Pouillot, F.; Ansaldi, M. Phage-Based Fluorescent Biosensor Prototypes to Specifically Detect Enteric Bacteria Such as E. coli and Salmonella enterica Typhimurium. PLoS ONE 2015, 10, e0131466. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Luan, T.; Yang, X.; Wang, S.; Zheng, Y.; Huang, T.; Zhu, S.; Yan, X. Trace detection of specific viable bacteria using tetracysteine-tagged bacteriophages. Anal. Chem. 2014, 86, 907–912. [Google Scholar] [CrossRef]
- Sedki, M.; Chen, X.; Chen, C.; Ge, X.; Mulchandani, A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens. Bioelectron. 2020, 148, 111794. [Google Scholar] [CrossRef]
- Peng, H.; Chen, I.A. Rapid Colorimetric Detection of Bacterial Species through the Capture of Gold Nanoparticles by Chimeric Phages. ACS Nano 2019, 13, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Alcaine, S.D.; Law, K.; Ho, S.; Kinchla, A.J.; Sela, D.A.; Nugen, S.R. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosens. Bioelectron. 2016, 82, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hinkley, T.; Chen, J.; Talbert, J.N.; Nugen, S.R. Phage based electrochemical detection of: Escherichia coli in drinking water using affinity reporter probes. Analyst 2019, 144, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, D.; Kinchla, A.J.; Sela, D.A.; Nugen, S.R. Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection. Anal. Bioanal. Chem. 2016, 408, 4169–4178. [Google Scholar] [CrossRef]
- Burnham, S.; Hu, J.; Anany, H.; Brovko, L.; Deiss, F.; Derda, R.; Griffiths, M.W. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 2014, 406, 5685–5693. [Google Scholar] [CrossRef]
- Hinkley, T.; Garing, S.; Jain, P.; Williford, J.; Le Ny, A.-L.; Nichols, K.; Peters, J.; Talbert, J.; Nugen, S. A Syringe-Based Biosensor to Rapidly Detect Low Levels of Escherichia coli (ECOR13) in Drinking Water Using Engineered Bacteriophages. Sensors 2020, 20, 1953. [Google Scholar] [CrossRef] [Green Version]
- Hinkley, T.C.; Garing, S.; Singh, S.; Le Ny, A.L.M.; Nichols, K.P.; Peters, J.E.; Talbert, J.N.; Nugen, S.R. Reporter bacteriophage T7NLC utilizes a novel NanoLuc::CBM fusion for the ultrasensitive detection of: Escherichia coli in water. Analyst 2018, 143, 4074–4082. [Google Scholar] [CrossRef] [Green Version]
- Hinkley, T.C.; Singh, S.; Garing, S.; Le Ny, A.L.M.; Nichols, K.P.; Peters, J.E.; Talbert, J.N.; Nugen, S.R. A phage-based assay for the rapid, quantitative, and single CFU visualization of E. coli (ECOR #13) in drinking water. Sci. Rep. 2018, 8, 14630. [Google Scholar] [CrossRef]
- Chen, J.; Alcaine, S.D.; Jiang, Z.; Rotello, V.M.; Nugen, S.R. Detection of Escherichia coli in Drinking Water Using T7 Bacteriophage-Conjugated Magnetic Probe. Anal. Chem. 2015, 87, 8977–8984. [Google Scholar] [CrossRef]
- Zurier, H.S.; Duong, M.M.; Goddard, J.M.; Nugen, S.R. Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, in Situ Bacteria Detection. ACS Appl. Bio Mater. 2020, 3, 5824–5831. [Google Scholar] [CrossRef]
- Kosack, C.S.; Page, A.L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639–645. [Google Scholar] [CrossRef]
- Foschi, J.; Turolla, A.; Antonelli, M. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters for wastewater disinfection control. Water Res. 2021, 191, 116806. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhao, Z.; Han, S.; Liu, Z. Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 2020, 172, 115471. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, M.H.; Wiwasuku, T.; Day, A.S.; Youngme, S.; Hwang, D.S.; Yoon, J.-Y. Human sensor-inspired supervised machine learning of smartphone-based paper microfluidic analysis for bacterial species classification. Biosens. Bioelectron. 2021, 188, 113335. [Google Scholar] [CrossRef]
Target Bacteria | Detection Method | Samples | LR | LOD | Assay Time | Ref. |
---|---|---|---|---|---|---|
E. coli O157:H7 | DPV | Water | 1.3 × 10−18–10 × 10−12 M | 1.3 × 10−18 M | 2 h incubation | [96] |
E. coli BCRC 11634 | SWV | Culture, spiked lake water | 102–104 CFU/mL | 102 CFU/mL | <100 min | [105] |
P. aeruginosa | DPV | Tap water, human serum, saliva | 1–100 μM | 0.33 μM | [108] | |
E. coli ATCC 25922 | Fluorescence | Municipal wastewater | 102 CFU/100 mL | <45 min | [60] | |
P. aeruginosa | Colorimetry, amperometry | Water | 60–6 × 107 CFU/mL | ~60 CFU/mL | 10 min | [24] |
P. aeruginosa | SERS, colorimetry | Spiked tap water, chicken meat | 102–107 CFU/mL | 20 CFU/mL; 50 CFU/mL | [110] | |
P. aeruginosa | Magnetic relaxation switch assay | Spiked drinking water, food samples | 102–106 CFU/mL | 50 CFU/mL | 40 min, 4 h preparation | [111] |
E. coli K12 | EIS | Culture, mineral water | 104–107 CFU/mL | 104 CFU/mL | [112] | |
E. coli TD2158 | Flow cytometry | Sea water | [113] | |||
E. coli ER2738 | Flow cytometry, fluorescence | Drinking water | 1 CFU/mL | <3 h | [114] | |
E. coli | EIS | Artificial river water | 10–105 CFU/mL | 14 cells/mL | 30 min incubation/<1 h | [115] |
E. coli, P. aeruginosa, Vibrio cholerae | Colorimetry | Sea water, tap water, human serum | 100 CFU | <1 h | [116] | |
E. coli | LFI | Broth, river water | 103 CFU/mL; 100 CFU/100 mL | 7 h; 9 h | [117] | |
E. coli | DPV | Drinking water, apple juice, skim milk | 105 CFU/mL; 102 CFU/mL | 3 h; 7 h | [101] | |
E. coli | LSV | Drinking water | 105 CFU/mL; 1 CFU/100 mL | 4 h; 12 h | [118] | |
E. coli | qPCR | Agricultural water, municipal water | 102–106 CFU/mL | 102 CFU/mL | <2 h | [119] |
E. coli | Luminescence, colorimetry | Water | <10 CFU/mL | 5.5 h | [120] | |
E. coli BL21, E. coli ECOR13 | Luminescence | Drinking water | <20 CFU/100 mL | 5 h | [121] | |
E. coli | Luminescence | Lake water, drinking water | <10 CFU/mL | 3 h | [122] | |
E. coli | Luminescence, colorimetry | Drinking water | 1 CFU/mL | 10 h | [123] | |
E. coli BL21 | Colorimetry | Drinking water | 1 × 104 CFU/mL; 1 CFU/mL (after pre-enrichment) | 2.5 h; 6 h (pre-enrichment) | [124] | |
E. coli | Luminescence | Mixed culture, tap water | <10 CFU/100 mL | 7 h | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canciu, A.; Tertis, M.; Hosu, O.; Cernat, A.; Cristea, C.; Graur, F. Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters. Sustainability 2021, 13, 7229. https://doi.org/10.3390/su13137229
Canciu A, Tertis M, Hosu O, Cernat A, Cristea C, Graur F. Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters. Sustainability. 2021; 13(13):7229. https://doi.org/10.3390/su13137229
Chicago/Turabian StyleCanciu, Alexandra, Mihaela Tertis, Oana Hosu, Andreea Cernat, Cecilia Cristea, and Florin Graur. 2021. "Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters" Sustainability 13, no. 13: 7229. https://doi.org/10.3390/su13137229
APA StyleCanciu, A., Tertis, M., Hosu, O., Cernat, A., Cristea, C., & Graur, F. (2021). Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters. Sustainability, 13(13), 7229. https://doi.org/10.3390/su13137229