Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa
Abstract
:1. Introduction
Literature Gap
2. Materials and Methods
2.1. Scope of the Analysis
2.2. Input Data and Processing
Dataset | Variable (s) | Source | Temporal Resolution | Spatial Resolution | Time Scope |
---|---|---|---|---|---|
OECD-FAO Agricultural Outlook database | Per-capita consumption, by meat type (kg/capita) | [38] | 1 year | Country-level, global: 239 regions | 1961–2050 |
OECD-FAO Agricultural Outlook database | Meat (by meat type) and fundamental crops producer prices (LCU/tonne) | [38] | 1 year | Country-level, global: 200 regions | 1961–2015 |
The future of food and agriculture—Alternative pathways to 2050 | Meat (by meat type) and fundamental crops producer prices (LCU/tonne) | [32] | 5 years | Country-level, global: 178 regions | 2012–2050 |
World Bank Data | PPP conversion factor | [44] | 1 year | Country-level, global: 213 regions | 1990–2019 |
Project Maddison | Historical population and PPP per-capita GDP | [39] | 1 year | Country-level, global: 169 regions | 1000–2016 |
Database | |||||
SSPs database | Projected population and PPP per-capita GDP | [40] | 5 years | Country-level, global: 198 regions | 2010–2100 |
Historical religion adherence | Share of the population | [41] | 5 years | Country-level, global: 200 regions | 1945–2010 |
Forecasted religion adherence | Share of the population | [42] | 10 years | Country-level, global: 198 regions | 2010–2050 |
Historical and forecasted urbanisation levels | Share of the population | [45] | 5 years | Country-level, global: 273 regions | 1950–2050 |
EXIOBASE3 products database | Technical, economic, and impact coefficients | [43] | 1 year | Global coverage: 48 regions | 1995–2011 |
2.3. Demand Drivers Modelling
- is a set of m outcome variables (in our study four, one for each meat type);
- n and t are the number of entities and time-steps measured, respectively (and thus their product is the size of the panel dataset);
- f is a function that associates the outcome variables with the regressors (X);
- k is the number of independent regressors X;
- is the regression residual or error.
- i, c, r, and t refer to each of the four meat types, countries, regions (see below), and years in the dataset, respectively;
- is the per-capita amount of meat consumed (in kg);
- is the purchase-power-parity per-capita GDP in constant 2011 USD;
- is the average real price of each meat type i in each region r in each year t;
- is a composite index of average cereals real price in each region r in each year t;
- are country-level urbanisation levels, i.e., the fraction of the national population living in urban settlements;
- represents a set of seven fractional variables expressing (for each year in each country) the share of the country’s population adhering to each of the major global religions (plus an additional variable for the fraction of non-religious people);
- is a mediating categorical variable which links each country c to the corresponding region among the 20 country groups considered. These variables control for mediating regional socio-cultural factors that affect the link between the regressors and the demand driver variables;
- is a vector of stochastic error terms.
2.4. Projection of Future Consumption Pathways for SSA
2.5. MRIO EEIO Analysis and SSA Resource Efficiency Evolution
- identifies the matrix of environmental extensions coefficients (i.e., matrix of resource efficiencies) in scenario s;
- is the vector of final demand (subscript s refers to the specific scenario while 0 refers to the baseline);
- I the identity matrix with the same dimension of A which is the matrix of intermediate transaction coefficients (i.e., matrix of technology coefficients).
2.6. Environmental Impact Assessment for SSA
2.7. Comparison of Impacts with Current Environmental Stocks and Flows in SSA
2.8. Meat Substitutes Adoption in SSA and Relative Environmental Benefits
3. Results
3.1. Meat Consumption Projections in SSA to 2050
3.2. Estimated Environmental Impacts of SSA Meat Demand Growth
3.3. Environmental Benefits of Meat Substitutes Adoption in SSA
4. Discussion
4.1. Policy Implications
4.2. Limitations and Future Research Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, A.M.; Hof, A.R. Paying the price for the meat we eat. Environ. Sci. Policy 2019, 97, 90–94. [Google Scholar] [CrossRef]
- Anon 2017 FAO Food Balance Sheet. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 15 March 2021).
- Behrens, P.; Kiefte-de Jong, J.C.; Bosker, T.; Rodrigues, J.F.; De Koning ATukker, A. Evaluating the environmental impacts of dietary recommendations. Proc. Natl. Acad. Sci. USA 2017, 114, 13412–13417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. In vitro meat: A future animal-free harvest. Crit. Rev. Food Sci. Nutr. 2017, 57, 782–789. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global food demand scenarios for the 21st century. PLoS ONE 2015, 10, e0139201. [Google Scholar] [CrossRef] [PubMed]
- Bolt, J.; Van Zanden, J.L. The Maddison Project: Collaborative research on historical national accounts. Econ. Hist. Rev. 2014, 67, 627–651. [Google Scholar] [CrossRef] [Green Version]
- Byamugisha, F.F. Securing Africa’s Land for Shared Prosperity: A Program to Scale Up Reforms and Investments; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Caro, D.; Frederiksen, P.; Thomsen, M.; Pedersen, A.B. Toward a more consistent combined approach of reduction targets and climate policy regulations: The illustrative case of a meat tax in Denmark Environ. Sci. Policy 2017, 76, 78–81. [Google Scholar] [CrossRef]
- CleanTechnica. Botswana-Based Accite Holdings Brings Plant-Based Meat Revolution to Africa with beyond Meat CleanTechnica. 2020. Available online: https://cleantechnica.com/2020/01/22/botswana-based-accite-holdings-brings-plant-based-meat-revolution-to-africa-with-beyond-meat/ (accessed on 15 March 2021).
- Clonan, A.; Roberts, K.E.; Holdsworth, M. Socioeconomic and demographic drivers of red and processed meat consumption: Implications for health and environmental sustainability. Proc. Nutr. Soc. 2016, 75, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockx, L.; Colen, L.; De Weerdt, J. From Corn to Popcorn? Urbanization and Food Consumption in Sub-Saharan Africa: Evidence from Rural-Urban Migrants in Tanzania; LICOS—Centre for Institutions and Economic Performance: Leuven, Belgium, 2017. [Google Scholar]
- GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Cornelsen, L.; Alarcon, P.; Häsler, B.; Amendah, D.D.; Ferguson, E.; Fèvre, E.M.; Grace, D.; Dominguez-Salas, P.; Rushton, J. Cross-sectional study of drivers of animal-source food consumption in low-income urban areas of Nairobi, Kenya. BMC Nutr. 2016, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Dagnachew, A.G.; Hof, A.F.; Lucas, P.L.; van Vuuren, D.P. Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy 2019, 192, 116641. [Google Scholar] [CrossRef]
- Desa, U. World Urbanization Prospects 2018; United Nations Department for Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Desiere, S.; Hung, Y.; Verbeke, W.; D’Haese, M. Assessing current and future meat and fish consumption in Sub-Sahara Africa: Learnings from FAO Food Balance Sheets and LSMS household survey data. Glob. Food Secur. 2018, 16, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Mangino, J.; McAllister, T.; Have, D. Emissions from livestock and manure management. In Intergovernmental Panel on Climate Change: 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; Volume 4, pp. 1–87. [Google Scholar]
- Eker, S.; Reese, G.; Obersteiner, M. Modelling the drivers of a widespread shift to sustainable diets. Nat. Sustain. 2019, 2, 725–735. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: London, UK, 2011. [Google Scholar]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; FAO: Rome, Italy, 2018. [Google Scholar]
- FAOSTAT. FAOSTAT Database; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Gallet, C.A. Meat Meets Meta: A Quantitative Review of the Price Elasticity of Meat. Am. J. Agric. Econ. 2010, 92, 258–272. [Google Scholar] [CrossRef]
- Gallet, C.A. The income elasticity of meat: A meta-analysis. Aust. J. Agric. Resour. Econ. 2010, 54, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, P.; Mekonnen, M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Gómez-Luciano, C.A.; de Aguiar, L.K.; Vriesekoop, F.; Urbano, B. Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food Qual. Prefer. 2019, 78, 103732. [Google Scholar] [CrossRef]
- Griffin, S. Assigning Panel Data to Training, Testing and Validation Groups for Machine Learning Models Medium. 2020. Available online: https://towardsdatascience.com/assigning-panel-data-to-training-testing-and-validation-groups-for-machine-learning-models-7017350ab86e (accessed on 15 March 2021).
- Hamilton, H.A.; Ivanova, D.; Stadler, K.; Merciai, S.; Schmidt, J.; van Zelm, R.; Moran, D.; Wood, R. Trade and the role of non-food commodities for global eutrophication. Nat. Sustain. 2018, 1, 314–321. [Google Scholar] [CrossRef]
- Heijungs, R.; Guinée, J.B.; Huppes, G.; Lankreijer, R.M.; Udo de Haes, H.A.; Wegener Sleeswijk, A.; Ansems, A.M.M.; Eggels, P.G.; Duin, R.; van De Goede, H.P. Environmental Life Cycle Assessment of Products: Guide and Backgrounds (Part 1); Centre of Environmental Science, Leiden University: Leiden, The Netherlands, 1992. [Google Scholar]
- Heiman, A.; Just, D.; McWilliams, B.; Zilberman, D. Religion, religiosity, lifestyles and food consumption. ARE Update 2004, 8, 9–11. [Google Scholar]
- Hitaj, C.; Rehkamp, S.; Canning, P.; Peters, C.J. Greenhouse gas emissions in the United States food system: Current and healthy diet scenarios. Environ. Sci. Technol. 2019, 53, 5493–5503. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M.A.J. Life-Cycle Impact Assessment of Acidifying and Eutrophying Air Pollutants Calc. Characterisation Factors RAINS-LCA Interfaculty; Interfaculty Department of Environmental Science, Faculty of Environmental Science, University of Amsterdam: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Van Huis, A. Insects as Food in Sub-Saharan Africa. Int. J. Trop. Insect Sci. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- IEA. Africa Energy Outlook 2019. 2019. Available online: https://webstore.iea.org/africa-energy-outlook-2019 (accessed on 15 March 2021).
- Ishwaran, H.; Kogalur, U.B. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) (Manual). 2020. Available online: https://cran.r-project.org/package=randomForestSRC (accessed on 15 March 2021).
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental Impact Assessment of Household Consumption. J. Ind. Ecol. 2016, 20, 526–536. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. New anthropogenic land use estimates for the Holocene: HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef] [Green Version]
- Maoz, Z.; Henderson, E.A. The world religion dataset, 1945–2010, Logic, estimates, and trends. Int. Interact. 2013, 39, 265–291. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pais, D.F. Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. J. Clean. Prod. 2018, 196, 245–258. [Google Scholar] [CrossRef]
- Martinez, S.; del Mar Delgado, M.; Marin, R.M.; Alvarez, S. How do dietary choices affect the environment? The nitrogen footprint of the European Union and other dietary options. Environ. Sci. Policy 2019, 101, 204–210. [Google Scholar] [CrossRef]
- Mathijs, E. Exploring future patterns of meat consumption. Meat Sci. 2015, 109, 112–116. [Google Scholar] [CrossRef]
- Merciai, S.; Schmidt, J. Methodology for the Construction of Global Multi-Regional Hybrid Supply and Use Tables for the EXIOBASE v3 Database. J. Ind. Ecol. 2018, 22, 516–531. [Google Scholar] [CrossRef] [Green Version]
- Milford, A.B.; Le Mouël, C.; Bodirsky, B.L.; Rolinski, S. Drivers of meat consumption. Appetite 2019, 141, 104313. [Google Scholar] [CrossRef]
- Mulumba, P. Infinite Foods and the Growth of Plant-Based Protein Alternatives in Africa Longev. LIVE. 2020. Available online: https://longevitylive.com/anti-aging/infinite-foods-and-the-growth-of-plant-based-protein-alternatives-in-africa/ (accessed on 15 March 2021).
- Northfield, R. Is the future meatless? Eng. Technol. 2019, 14, 44–45. [Google Scholar] [CrossRef]
- OECD-FAO. Food and Organization a 2017 OECD-FAO Agricultural Outlook 2017–2026. OECD Publishing: Paris, France.
- Ouedraogo, N.S. Africa energy future: Alternative scenarios and their implications for sustainable development strategies. Energy Policy 2017, 106, 457–471. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014, Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Pastor, A.V.; Palazzo, A.; Havlik, P.; Biemans, H.; Wada, Y.; Obersteiner, M.; Kabat, P.; Ludwig, F. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2019, 2, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Pew Research Center. The Future of World Religions: Population Growth: Projections 2010–2050; Pew Research Center: Washington, DC, USA, 2015. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, C.; Patel, M.; Blok, K. How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries. Energy 2006, 31, 2047–2063. [Google Scholar] [CrossRef] [Green Version]
- Raphaely, T. Impact of Meat Consumption on Health and Environmental Sustainability; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Rees, J.H.; Bamberg, S.; Jäger, A.; Victor, L.; Bergmeyer, M.; Friese, M. Breaking the habit: On the highly habitualized nature of meat consumption and implementation intentions as one effective way of reducing it. Basic Appl. Soc. Psychol. 2018, 40, 136–147. [Google Scholar] [CrossRef]
- Rehkamp, S.; Canning, P. Measuring embodied blue water in American diets: An EIO supply chain approach. Ecol. Econ. 2018, 147, 179–188. [Google Scholar] [CrossRef]
- Reuters. Can Africa Deal with an Expected Boom in Demand for Meat? 2017. Available online: https://www.reuters.com/article/us-africa-food-livestock-idUSKBN16K1V3 (accessed on 15 March 2021).
- Revell, B.J. One man’s meat… 2050? Ruminations on future meat demand in the context of global warming. J. Agric. Econ. 2015, 66, 573–614. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Röös, E.; Bajželj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Rose, D. Environmental nudges to reduce meat demand. Lancet Planet. Health 2018, 2, e374–e375. [Google Scholar] [CrossRef]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Schepelmann, P.; Vercalsteren, A.; Acosta-Fernandez, J.; Saurat, M.; Boonen, K.; Christis, M.; Marin, G.; Zoboli, R.; Maguire, C. Driving Forces of Changing Environmental Pressures from Consumption in the European Food System. Sustainability 2020, 12, 8265. [Google Scholar] [CrossRef]
- Schroeder, T.; Tonsor, G.; Mintert, J. Beef Demand: Recent Determinants and Future Drivers. Available online: https://agmanager.info/beef-demand-recent-determinants-and-future-drivers-cattle-industry-summer-conference-general-session (accessed on 15 March 2021).
- Simo-Kengne, B.; Dikgang, J.; Ofstad, S.P. Causal Relationship between Meat Consumption and Economic Growth in SEAFO Countries: Evidence from Panel Granger Causality Test. 2015. Available online: 2015.essa.org.za/fullpaper/essa_3072.pdf (accessed on 15 March 2021).
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat alternatives: Life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Springer, N.P.; Duchin, F. Feeding nine billion people sustainably: Conserving land and water through shifting diets and changes in technologies. Environ. Sci. Technol. 2014, 48, 4444–4451. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [Green Version]
- Stadler, K. Pymrio-a Python module for automating input output calculations and generating reports. In Proceedings of the Adjunct Proceedings of the 29th EnviroInfo and 3rd ICT4S Conference 2015, Copenhagen, Denmark, 7–9 September 2015; p. 235. [Google Scholar]
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3, Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. J. Ind. Ecol. 2018, 22, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, R.; Scott, S.; Duarte, C. Responding to food, environment and health challenges by changing meat consumption behaviours in consumers. Nutr. Bull. 2018, 43, 125–134. [Google Scholar] [CrossRef]
- Taljaard, P.R.; Jooste, A.; Asfaha, T. Towards a broader understanding of South African consumer spending on meat. Agrekon 2006, 45, 214–224. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- Valin, H. Future Food Demand Drivers and Pathways towards Sustainability Background Note. In Proceedings of the United Nations Expert Group Meeting on Population, Food Security, Nutrition and Sustainable Development for Sustainable Development, New York, NY, USA, 16–17 September 2019. [Google Scholar]
- Vranken, L.; Avermaete, T.; Petalios, D.; Mathijs, E. Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environ. Sci. Policy 2014, 39, 95–106. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Chang. 2014, 26, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; De Koning, A.; Kuenen, J.; Schütz, H.; Acosta-Fernández, J.; Usubiaga, A.; et al. Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Worku, I.H.; Dereje, M.; Minten BHirvonen, K. Diet transformation in Africa: The case of Ethiopia. Agric. Econ. 2017, 48, 73–86. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Bank Data. 2019. Available online: https://data.worldbank.org/ (accessed on 15 March 2021).
- World Economic Forum. Meat: The Future Series—Alternative Proteins World Econ. Forum. 2019. Available online: https://www.weforum.org/whitepapers/meat-the-future-series-alternative-proteins/ (accessed on 15 March 2021).
- WWF. Appetite for Destruction. 2017. Available online: https://www.wwf.org.uk/sites/default/files/2017-10/WWF_AppetiteForDestruction_Summary_Report_SignOff.pdf (accessed on 15 March 2021).
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falchetta, G.; Golinucci, N.; Rocco, M.V. Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa. Sustainability 2021, 13, 7075. https://doi.org/10.3390/su13137075
Falchetta G, Golinucci N, Rocco MV. Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa. Sustainability. 2021; 13(13):7075. https://doi.org/10.3390/su13137075
Chicago/Turabian StyleFalchetta, Giacomo, Nicolò Golinucci, and Matteo Vincenzo Rocco. 2021. "Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa" Sustainability 13, no. 13: 7075. https://doi.org/10.3390/su13137075
APA StyleFalchetta, G., Golinucci, N., & Rocco, M. V. (2021). Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa. Sustainability, 13(13), 7075. https://doi.org/10.3390/su13137075