Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers
Abstract
:1. Introduction
2. Solar-Assisted Dryers for Agricultural and Marine Products
2.1. Open Sun Drying
2.2. Passive Solar Dryers
2.3. Active Solar Dryers
2.4. Hybrid Solar Dryers
3. Solar-Assisted Greenhouse Dryers (SGHDs)
3.1. Passive Solar Greenhouse Dryers
3.2. Performance Enhancement Techniques Employed in Solar Greenhouse Dryers
3.2.1. GHDs Integrated with PV Modules
3.2.2. GHDs Integrated with PVT Modules
3.2.3. GHDs Integrated with Solar Thermal Collectors
3.2.4. GHDs Integrated with Solar-Assisted Heat Pumps
3.2.5. SGHDs Integrated with Thermal Energy Storage (TES)
3.3. Hybrid Solar Greenhouse Dryers
4. Economic Analysis
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations DESA. World Population Prospects 2019; United Nations: San Francisco, CA, USA, 2019. [Google Scholar]
- Gorjian, S.; Ebadi, H. Introduction. In Photovolt. Sol. Energy Convers; Shukla, S.G.A.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Trommsdorff, M.; Sharon, H.; Demant, M.; Schindele, S. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. J. Clean Prod. 2021, 292, 126030. [Google Scholar] [CrossRef]
- Technical Platform on the Measurement and Reduction of Food Loss and Waste|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/platform-food-loss-waste/en/ (accessed on 8 January 2021).
- Melikoglu, M. Reutilisation of food wastes for generating fuels and value added products: A global review. Environ. Technol. Innov. 2020, 19, 101040. [Google Scholar] [CrossRef]
- Chegere, M.J. Post-harvest losses reduction by small-scale maize farmers: The role of handling practices. Food Policy 2018, 77, 103–115. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z. Changes in global trends in food waste composting: Research challenges and opportunities. Bioresour. Technol. 2020, 299, 122555. [Google Scholar] [CrossRef] [PubMed]
- Lingayat, A.B.; Chandramohan, V.P.; Raju, V.R.K.; Meda, V. A review on indirect type solar dryers for agricultural crops—Dryer setup, its performance, energy storage and important highlights. Appl. Energy 2020, 258, 114005. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Llavata, B.; García-Pérez, J.V.; Simal, S.; Cárcel, J.A. Innovative pre-treatments to enhance food drying: A current review. Curr. Opin. Food Sci. 2020, 35, 20–26. [Google Scholar] [CrossRef]
- Kagande, L. Design and performance evaluation of solar tunnel dryer for tomato fruit drying in Zimbabwe. IOSR J. Eng. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Gorjian, S.; Singh, R.; Shukla, A.; Mazhar, A.R. On-farm applications of solar PV systems. In Photovoltaic Solar Energy Conversion; Gorjian, S., Shukla, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–190. [Google Scholar] [CrossRef]
- Walsh, M.J.; Gerber Van Doren, L.; Shete, N.; Prakash, A.; Salim, U. Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions. Appl. Energy 2018, 210, 591–603. [Google Scholar] [CrossRef]
- Fayose, F.; Huan, Z. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa. Int. J. Food Sci. 2016, 2016, 9673029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, R.E.H. “Energy-Smart” Food for People and Climate; FAO: Rome, Italy, 2011. [Google Scholar]
- Monforti-Ferrario, F.; Dallemand, J.-F.; Pascua, I.P.; Motola, V.; Banja, M.; Scarlat, N.; Bertoldi, P.; Pennington, D. Energy Use in the EU Food Sector: State of Play and Opportunities for Improvement; Publications Office of the EU: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Singh, P.L. Silk cocoon drying in forced convection type solar dryer. Appl. Energy 2011, 88, 1720–1726. [Google Scholar] [CrossRef]
- Azaizia, Z.; Kooli, S.; Hamdi, I.; Elkhal, W.; Guizani, A.A. Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew. Energy 2020, 145, 1972–1984. [Google Scholar] [CrossRef]
- Sharma, A.; Chen, C.R.; Vu Lan, N. Solar-energy drying systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 1185–1210. [Google Scholar] [CrossRef]
- Kemp, I.C. Fundamentals of Energy Analysis of Dryers. Mod. Dry Technol. 2012, 4, 1–45. [Google Scholar] [CrossRef]
- Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2020, 20, 586–602. [Google Scholar] [CrossRef]
- Tigampo, S.; Sambou, V.; Dieye, Y.; Toure, P.M.; Bodian, S. Study of air movement and temperature distribution in a greenhouse used as a dryer. MATEC Web Conf. 2020, 307, 01051. [Google Scholar] [CrossRef] [Green Version]
- El Hage, H.; Herez, A.; Ramadan, M.; Bazzi, H.; Khaled, M. An investigation on solar drying: A review with economic and environmental assessment. Energy 2018, 157, 815–829. [Google Scholar] [CrossRef]
- Yildizhan, H.; Taki, M.; Özilgen, M.; Gorjian, S. Renewable energy utilization in apple production process: A thermodynamic approach. Sustain. Energy Technol. Assess. 2021, 43, 100956. [Google Scholar] [CrossRef]
- Gorjian, S.; Minaei, S.; MalehMirchegini, L.; Trommsdorff, M.; Shamshiri, R.R. Applications of solar PV systems in agricultural automation and robotics. In Photovoltaic Solar Energy Conversion; Gorjian, S., Shukla, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 191–235. [Google Scholar] [CrossRef]
- Janjai, S.; Khamvongsa, V.; Bala, B.K. Development, design, and performance of a PV-Ventilated greenhouse dryer. Int. Energy J. 2007, 8, 249–258. [Google Scholar]
- Azaizia, Z.; Kooli, S.; Elkhadraoui, A.; Hamdi, I.; Guizani, A. Investigation of a new solar greenhouse drying system for peppers. Int. J. Hydrogen Energy 2017, 42, 8818–8826. [Google Scholar] [CrossRef]
- Hamdi, I.; Kooli, S.; Elkhadraoui, A.; Azaizia, Z.; Abdelhamid, F.; Guizani, A. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renew. Energy 2018, 127, 936–946. [Google Scholar] [CrossRef]
- Iskandar, A.N.; Ya’acob, M.E.; Anuar, M.S. Tropical field performance of dual-pass PV tray dryer. AIP Conf. Proc. 2017, 020016. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Azam, M.M.; Alghannam, A.O. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). J. Clean Prod. 2018, 181, 352–364. [Google Scholar] [CrossRef]
- Amer, B.M.A.; Gottschalk, K.; Hossain, M.A. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renew. Energy 2018, 121, 539–547. [Google Scholar] [CrossRef]
- Prakash, O.; Laguri, V.; Pandey, A.; Kumar, A.; Kumar, A. Review on various modelling techniques for the solar dryers. Renew. Sustain. Energy Rev. 2016, 62, 396–417. [Google Scholar] [CrossRef]
- Djebli, A.; Hanini, S.; Badaoui, O.; Haddad, B.; Benhamou, A. Modeling and comparative analysis of solar drying behavior of potatoes. Renew. Energy 2020, 145, 1494–1506. [Google Scholar] [CrossRef]
- Pinna-Hernández, M.G.; Fernández, F.G.A.; Segura, J.G.L.; López, J.L.C. Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions. Agronomy 2020, 10, 2001. [Google Scholar] [CrossRef]
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of solar drying technologies. Renew. Sustain. Energy Rev. 2012, 16, 2652–2670. [Google Scholar] [CrossRef]
- Assoa, Y.B.; Sauzedde, F.; Boillot, B.; Boddaert, S. Development of a building integrated solar photovoltaic/thermal hybrid drying system. Energy 2017, 128, 755–767. [Google Scholar] [CrossRef]
- Patil, R.; Gawande, R. A review on solar tunnel greenhouse drying system. Renew. Sustain. Energy Rev. 2016, 56, 196–214. [Google Scholar] [CrossRef]
- Saini, V.; Tiwari, S.; Tiwari, G.N. Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. J. Clean Prod. 2017, 156, 30–40. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Ruslan, M.H.; Alghoul, M.A.; Sulaiman, M.Y. Review of solar dryers for agricultural and marine products. Renew. Sustain. Energy Rev. 2010, 14, 1–30. [Google Scholar] [CrossRef]
- Udomkun, P.; Romuli, S.; Schock, S.; Mahayothee, B.; Sartas, M.; Wossen, T.; Njukwe, E.; Vanlauwe, B.; Müller, J. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manag. 2020, 268, 110730. [Google Scholar] [CrossRef] [PubMed]
- Banout, J. Solar Drying Systems. Solar Drying Technology, Green Energy and Technology; Springer: Singapore, 2017; pp. 39–67. [Google Scholar] [CrossRef]
- Tiwari, S.; Tiwari, G.N.; Al-Helal, I.M. Development and recent trends in greenhouse dryer: A review. Renew. Sustain. Energy Rev. 2016, 65, 1048–1064. [Google Scholar] [CrossRef]
- Mustayen, A.G.M.B.; Mekhilef, S.; Saidur, R. Performance study of different solar dryers: A review. Renew. Sustain. Energy Rev. 2014, 34, 463–470. [Google Scholar] [CrossRef]
- Kumar, M.; Sansaniwal, S.K.; Khatak, P. Progress in solar dryers for drying various commodities. Renew. Sustain. Energy Rev. 2016. [Google Scholar] [CrossRef]
- Seveda, M.S.; Jhajharia, D. Design and performance evaluation of solar dryer for drying of large cardamom (Amomum subulatum). J. Renew. Sustain. Energy 2012. [Google Scholar] [CrossRef]
- Jain, D.; Tiwari, G.N. Effect of greenhouse on crop drying under natural and forced convection II. Thermal modeling and experimental validation. Energy Convers. Manag. 2004. [Google Scholar] [CrossRef]
- Tomar, V.; Tiwari, G.N.; Norton, B. Solar dryers for tropical food preservation: Thermophysics of crops, systems and components. Sol. Energy 2017. [Google Scholar] [CrossRef] [Green Version]
- Tsotsas, E.; Mujumdar, A.S. Modern Drying Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Tsotsas, E.; Mujumdar, A.S. Modern Drying Technology Vol. 1 Computational Tools at Different Scales. Dry Technol. 2008. [Google Scholar] [CrossRef]
- Tiwari, S.; Tiwari, G.N.; Al-Helal, I.M. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol. Energy 2016, 133, 421–428. [Google Scholar] [CrossRef]
- Tiwari, S.; Tiwari, G.N. Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 2016, 114, 155–164. [Google Scholar] [CrossRef]
- Tiwari, S.; Tiwari, G.N. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Energy 2017, 128, 183–195. [Google Scholar] [CrossRef]
- Tiwari, A. A Review on Solar Drying of Agricultural Produce. J. Food Process. Technol. 2016. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Shalaby, S.M. Solar drying of agricultural products: A review. Renew. Sustain. Energy Rev. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- Mujumdar, A. Principles, Classification, and Selection of Dryers. In Handbook of Industrial Drying, 3th ed.; CRC: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A. Historical Review and Recent Trends in Solar Drying Systems. Int. J. Green Energy 2013, 10, 690–738. [Google Scholar] [CrossRef]
- Ghatrehsamani, S.H.; Dadashzadeh, M.; Zomorodian, A. Kinetics of apricot thin layer drying in a mixed and indirect mode solar dryer. Int. J. Agric. Sci. 2012, 4, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Bala, B.K.; Woods, J.L. Simulation of the indirect natural convection solar drying of rough rice. Sol. Energy 1994. [Google Scholar] [CrossRef]
- Simate, I.N. Optimization of mixed-mode and indirect-mode natural convection solar dryers. Renew. Energy 2003. [Google Scholar] [CrossRef]
- Simate, I.N. Simulation of the mixed-mode natural-convection solar drying of maize. Dry Technol. 2001. [Google Scholar] [CrossRef]
- Lamrani, B.; Draoui, A. Modelling and simulation of a hybrid solar-electrical dryer of wood integrated with latent heat thermal energy storage system. Therm. Sci. Eng. Prog. 2020. [Google Scholar] [CrossRef]
- Mohammed, S.; Fatumah, N.; Shadia, N. Drying performance and economic analysis of novel hybrid passive-mode and active-mode solar dryers for drying fruits in East Africa. J. Stored Prod. Res. 2020. [Google Scholar] [CrossRef]
- Reyes, A.; Mahn, A.; Cubillos, F.; Huenulaf, P. Mushroom dehydration in a hybrid-solar dryer. Energy Convers. Manag. 2013. [Google Scholar] [CrossRef]
- Gudiño-Ayala, D.; Calderón-Topete, Á. Pineapple drying using a new solar hybrid dryer. Energy Procedia 2014. [Google Scholar] [CrossRef] [Green Version]
- Dhanushkodi, S.; Wilson, V.H.; Sudhakar, K. Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer. Resour. Technol. 2017. [Google Scholar] [CrossRef]
- Gorjian, S.; Calise, F.; Kant, K.; Ahamed, M.S.; Copertaro, B.; Najafi, X.; Zhang, G.; Aghaei, M.; Shamshiri, R.R. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J. Clean Prod. 2021, 124807. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Najafi, G.; Singh Chandel, S.; Yildizhan, H. Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems. Sustain. Energy Technol. Assess. 2021, 43, 100940. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A. Solar greenhouse drying: A review. Renew. Sustain. Energy Rev. 2014, 29, 905–910. [Google Scholar] [CrossRef]
- Ekechukwu, O.; Norton, B. Review of solar-energy drying systems II: An overview of solar drying technology. Energy Convers. Manag. 1999, 40, 615–655. [Google Scholar] [CrossRef]
- Janjai, S.; Lamlert, N.; Intawee, P.; Mahayothee, B.; Bala, B.K.; Nagle, M.; Müller, J. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Sol. Energy 2009, 83, 1550–1565. [Google Scholar] [CrossRef]
- Nayak, S.; Tiwari, G.N. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy Build. 2008, 40, 2015–2021. [Google Scholar] [CrossRef]
- Ganguly, A.; Misra, D.; Ghosh, S. Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse. Energy Build. 2010, 42, 2036–2043. [Google Scholar] [CrossRef]
- Kaewkiew, J.; Nabnean, S.; Janjai, S. Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Eng. 2012. [Google Scholar] [CrossRef] [Green Version]
- Barnwal, P.; Tiwari, A. Design, construction and testing of hybrid photovoltaic integrated greenhouse dryer. Int. J. Agric. Res. 2008, 3, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Sevda, M.S.; Rathore, N.S. Performance evaluation of the semicylindrical solar tunnel dryer for drying handmade paper. J. Renew. Sustain. Energy 2010. [Google Scholar] [CrossRef]
- Rathore, N.S.; Panwar, N.L. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl. Energy 2010. [Google Scholar] [CrossRef]
- Hegde, V.N.; Hosur, V.S.; Rathod, S.K.; Harsoor, P.A.; Narayana, K.B. Design, fabrication and performance evaluation of solar dryer for banana. Energy Sustain. Soc. 2015. [Google Scholar] [CrossRef] [Green Version]
- Prakash, O.; Kumar, A. Performance evaluation of greenhouse dryer with opaque north wall. Heat Mass Transf. Stoffuebertragung 2014. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode. Energy Rep. 2016, 2, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Kant, K.; Shukla, A.; Sharma, A.; Kumar, A.; Jain, A. Thermal energy storage based solar drying systems: A review. Innov. Food Sci. Emerg. Technol. 2016, 34, 86–99. [Google Scholar] [CrossRef]
- Ayyappan, S.; Mayilsamy, K.; Sreenarayanan, V.V. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf. 2016, 52, 459–467. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A.; Laguri, V. Performance of modified greenhouse dryer with thermal energy storage. Energy Rep. 2016, 2, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Belloulid, M.O.; Hamdi, H.; Mandi, L.; Ouazzani, N. Solar Greenhouse Drying of Wastewater Sludges Under Arid Climate. Waste Biomass Valoriz. 2017. [Google Scholar] [CrossRef]
- Chan, Y.; Dyah, N.; Abdullah, K. Performance of a recirculation type integrated collector drying chamber (ICDC) solar dryer. Energy Procedia 2015. [Google Scholar] [CrossRef] [Green Version]
- Jitjack, K.; Thepa, S.; Sudaprasert, K.; Namprakai, P. Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels. Energy Build. 2016. [Google Scholar] [CrossRef]
- Tanwanichkul, B.; Thepa, S.; Rordprapat, W. Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets. Energy Convers. Manag. 2013, 74, 511–523. [Google Scholar] [CrossRef]
- Boonyasri, M.; Lertsatitthanakorn, C.; Wiset, L.; Poomsa, N. Performance analysis and economic evaluation of a greenhouse dryer for pork drying. KKU Eng. J. 2011, 38, 433–443. [Google Scholar]
- Pochont, N.R.; Mohammad, M.N.; Pradeep, B.T.; Vijaya Kumar, P. A comparative study of drying kinetics and quality of Indian red chilli in solar hybrid greenhouse drying and open sun drying. Mater. Today Proc. 2020, 21, 286–290. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O. Performance Evaluation of a Solar Greenhouse Dryer at Different Bed Conditions Under Passive Mode. J. Sol. Energy Eng. 2020, 142, 1–10. [Google Scholar] [CrossRef]
- Bouraoui, C.; Ben Nejma, F. Numerical study of the greenhouse solar drying of olive mill wastewater under different conditions. Adv. Mech. Eng. 2020, 12, 168781401988974. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Vivekanandan, M.; Natarajan, A.; Chandrasekar, S. Experimental conditions to identify the ideal shape of dryer investigation of six shapes of solar greenhouse dryer in no load. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Azam, M.M.; Eltawil, M.A.; Amer, B.M.A. Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy 2020, 212, 118764. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A.; Nuntadusit, C. Heat transfer analysis of PV integrated modified greenhouse dryer. Renew. Energy 2018, 121, 53–65. [Google Scholar] [CrossRef]
- Margarita, C.T.; Beatriz, C.T.; Viviana, M.M.E.; Carlos, O.S.J. Technical and Experimental Study of the Solar Dehydration of the Moringa Leaf and Its Potential Integration to the Sustainable Agricultural Industry. Eur. J. Sustain. Dev. 2018, 7, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Nimnuan, P.; Nabnean, S. Experimental and simulated investigations of the performance of the solar greenhouse dryer for drying cassumunar ginger (Zingiber cassumunar Roxb.). Case Stud. Therm. Eng. 2020, 22, 100745. [Google Scholar] [CrossRef]
- Vengsungnle, P.; Jongpluempiti, J.; Srichat, A.; Wiriyasart, S.; Naphon, P. Thermal performance of the photovoltaic–ventilated mixed mode greenhouse solar dryer with automatic closed loop control for Ganoderma drying. Case Stud. Therm. Eng. 2020, 21, 100659. [Google Scholar] [CrossRef]
- Serçinoğlu, O.; Özbek, P. HLA Proteinlerinin GNM Metodu ile Dinamik Karakterizasyonu Dynamic Characterization of HLA Molecules by GNM. Dokuz Eylul Univ. Eng. J. Sci. Eng. 2018, 20, 201–211. [Google Scholar] [CrossRef]
- Nayak, S.; Kumar, A.; Mishra, J.; Tiwari, G.N. Drying and testing of mint (Mentha piperita) by a hybrid photovoltaic-thermal (PVT)-based greenhouse dryer. Dry Technol. 2011, 29, 1002–1009. [Google Scholar] [CrossRef]
- Shakouri, M.; Ebadi, H.; Gorjian, S. Solar photovoltaic thermal (PVT) module technologies. In Photovoltaic Solar Energy Convers, 1st ed.; Gorjian, S., Shukla, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–116. [Google Scholar] [CrossRef]
- Tiwari, S.; Agrawal, S.; Tiwari, G.N. PVT air collector integrated greenhouse dryers. Renew. Sustain. Energy Rev. 2018, 90, 142–159. [Google Scholar] [CrossRef]
- Shyam Al-Helal, I.M.; Singh, A.K.; Tiwari, G.N. Performance evaluation of photovoltaic thermal greenhouse dryer and development of characteristic curve. J. Renew. Sustain. Energy 2015, 7, 33109. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A. Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode. Energy 2017, 118, 1264–1274. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A.; Nuntadusit, C. Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Sol. Energy 2018, 162, 205–216. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Sözen, A.; Khanlari, A.; Amini, A.; Şirin, C. Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Sol. Energy 2020, 203, 304–316. [Google Scholar] [CrossRef]
- El-Bashir, S.M.; Al-Jaghwani, A.A. Perylene-doped polycarbonate coatings for acrylic active greenhouse luminescent solar concentrator dryers. Results Phys. 2020, 16, 102920. [Google Scholar] [CrossRef]
- El Khadraoui, A.; Hamdi, I.; Kooli, S.; Guizani, A. Drying of red pepper slices in a solar greenhouse dryer and under open sun: Experimental and mathematical investigations. Innov. Food Sci. Emerg. Technol. 2019, 52, 262–270. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Kumar, A.; Nuntadusit, C.; Mishra, S.S. Drying Kinetics, Quality Assessment, and Economic Analysis of Bitter Gourd Flakes Drying Inside Forced Convection Greenhouse Dryer. J. Sol. Energy Eng. 2018, 140, 1–10. [Google Scholar] [CrossRef]
- Khanlari, A.; Sözen, A.; Şirin, C.; Tuncer, A.D.; Gungor, A. Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater. J. Clean Prod. 2020, 251, 119672. [Google Scholar] [CrossRef]
- Koçak, S.; Dog, H. Mushroom Drying with Solar Assisted Heat Pump System. In Energy Conversion and Management; Elsevier: Amsterdam, The Netherlands, 2013; Volume 72, pp. 171–178. [Google Scholar] [CrossRef]
- Akta, M.; Ceylan, İ.; Yilmaz, S. Determination of drying characteristics of apples in a heat pump and solar dryer. In Desalination; Elsevier: Amsterdam, The Netherlands, 2009; Volume 239, pp. 266–275. [Google Scholar] [CrossRef]
- Gan, S.H.; Ng, M.X.; Tham, T.C.; Chua, L.S.; Aziz, R.; Baba, M.R.; Chuah Abdullah, L.; Ong, S.P.; Law, C.L. Drying characteristics of Orthosiphon stamineus Benth by solar-assisted heat pump drying. Dry Technol. 2017, 35, 1755–1764. [Google Scholar] [CrossRef]
- Naemsai, T.; Jareanjit, J.; Thongkaew, K. Experimental investigation of solar-assisted heat pump dryer with heat recovery for the drying of chili peppers. J. Food Process. Eng. 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Slim, R.; Zoughaib, A.; Clodic, D. Modeling of a solar and heat pump sludge drying system. Int. J. Refrig. 2008, 31, 1156–1168. [Google Scholar] [CrossRef]
- Tham, T.C.; Ng, M.X.; Gan, S.H.; Chua, L.S.; Aziz, R.; Chuah, L.A.; Hii, C.L.; Ong, S.P.; Chin, N.L.; Law, C.L. Effect of ambient conditions on drying of herbs in solar greenhouse dryer with integrated heat pump. Dry Technol. 2017, 35, 1721–1732. [Google Scholar] [CrossRef]
- Deep, A.K.; Harsh, K. Thermal Energy Storage in Solar Dryer. Green Energy Technol. 2017, 15, 603–617. [Google Scholar] [CrossRef]
- Kant, K.; Biwole, P.H.; Shukla, A.; Sharma, A.; Gorjian, S. Heat transfer and energy storage performances of phase change materials encapsulated in honeycomb cells. J. Energy Storage 2021, 38, 102507. [Google Scholar] [CrossRef]
- Shukla, A.; Sharma, A.; Kant, K. Solar Greenhouse with Thermal Energy Storage: A Review. Curr. Sustain. Energy Rep. 2016, 3, 58–66. [Google Scholar] [CrossRef]
- Pankaew, P.; Aumporn, O.; Janjai, S.; Pattarapanitchai, S.; Sangsan, M.; Bala, B.K. Performance of a large-scale greenhouse solar dryer integrated with phase change material thermal storage system for drying of chili. Int. J. Green Energy 2020, 17, 632–643. [Google Scholar] [CrossRef]
- Joshua, D.R.; Zachariah, R.; Anumod, D.M. Performance improvement in mixed-mode solar dryer with addition of paraffin-based thermal energy storage. J. Green Eng. 2020, 10, 1403–1418. [Google Scholar]
- Deeto, S.; Thepa, S.; Monyakul, V.; Songprakorp, R. The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification. Renew. Energy 2018, 115, 954–968. [Google Scholar] [CrossRef]
- Nayar, C.V.; Lawrance, W.B.; Phillips, S.J. Solar/wind/diesel hybrid energy systems for remote areas. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference (IEEE), New York, NY, USA, 6 August 1989; pp. 2029–2034. [Google Scholar] [CrossRef]
- Markvart, T. Sizing of hybrid photovoltaic-wind energy systems. Sol. Energy 1996, 57, 277–281. [Google Scholar] [CrossRef]
- Abd Allah, W.E.; Tawfik, M.A.; Sagade, A.A.; Gorjian, S.; Metwally, K.A.; El-Shal, H. Methane production enhancement of a family-scale biogas digester using cattle manure and corn stover under cold climates. Sustain. Energy Technol. Assess. 2021, 45, 101163. [Google Scholar] [CrossRef]
- Sethi, V.P.; Dhiman, M. Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network. Sol. Energy 2020, 206, 120–135. [Google Scholar] [CrossRef]
- Kiburi, F.G.; Kanali, C.L.; Kituu, G.M.; Ajwang, P.O.; Ronoh, E.K. Performance evaluation and economic feasibility of a solar-biomass hybrid greenhouse dryer for drying Banana slices. Renew. Energy Focus 2020, 34, 60–68. [Google Scholar] [CrossRef]
- Ndirangu, S.N.; Ronoh, E.K.; Kanali, C.L.; Mutwiwa, U.N.; Kituu, G.M. Design and performance evaluation of a solar-biomass greenhouse dryer for drying of selected crops in western Kenya. Agric. Eng. Int. CIGR J. 2020, 22, 219–229. [Google Scholar]
- Rupnar, A.K.; Jain, S.; Panwar, N.L.; Jain, S.K. Design and Development of Solar-biogas Hybrid Dryer for Onion Drying. Int. J. Environ. Clim. Chang. 2020, 65–73. [Google Scholar] [CrossRef]
- Wzorek, M. Solar drying of granulated waste blends for dry biofuel production. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Ngamket, K.; Wangyao, K.; Patumsawad, S.; Chaiwiwatworakul, P.; Towprayoon, S. Quality improvement of mixed MSW drying using a pilot-scale solar greenhouse biodrying system. J. Mater. Cycles Waste Manag. 2021, 23, 436–448. [Google Scholar] [CrossRef]
- Mani, P.; Thirumalai Natesan, V. Experimental investigation of drying characteristics of lima beans with passive and active mode greenhouse solar dryers. J. Food Process. Eng. 2021, 44. [Google Scholar] [CrossRef]
- Gupta, A.; Das, B.; Biswas, A. Performance analysis of stand-alone solar photovoltaic thermal dryer for drying of green chili in hot-humid weather conditions of North-East India. J. Food Process. Eng. 2021, 44. [Google Scholar] [CrossRef]
- Mbacho, S.A.; Thoruwa, T.; Lang’at, N.K.; Ako, E. Performance of an Integrated Solar-Greenhouse Photovoltaic Ventilated Dryer with Clay-CaCl2 Energy Storage Desiccants for Tomato Drying. Am. J. Energy Eng. 2021, 9, 19. [Google Scholar] [CrossRef]
- Rakshamuthu, S.; Jegan, S.; Joel Benyameen, J.; Selvakumar, V.; Anandeeswaran, K.; Iyahraja, S. Experimental analysis of small size solar dryer with phase change materials for food preservation. J. Energy Storage 2021, 33, 102095. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Onyenwigwe, D.; Abam, F.I.; Eke, A.B.; Dirioha, C. Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy 2020, 154, 553–568. [Google Scholar] [CrossRef]
- Dhanushkodi, S.; Wilson, V.H.; Sudhakar, K. Life cycle cost of solar biomass hybrid dryer systems for cashew drying of nuts in India. Environ. Clim. Technol. 2015, 15, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Adeaga, O.A.; Dare, A.A.; Odunfa, K.M.; Ohunakin, O.S. Modeling of Solar Drying Economics Using Life Cycle Savings (L.C.S) Method. J. Power Energy Eng. 2015, 03, 55–70. [Google Scholar] [CrossRef] [Green Version]
- El Khadraoui, A.; Kooli, S.; Hamdi, I.; Farhat, A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew. Energy 2015, 77, 1–8. [Google Scholar] [CrossRef]
- Singh, G.; Jain, V.K.; Singh, A. Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system. Energy Environ. 2018, 29, 1073–1097. [Google Scholar] [CrossRef]
- Fudholi, A.; Mat, S.; Basri, D.F.; Ruslan, M.H.; Sopian, K. Performances analysis of greenhouse solar dryer with heat exchanger. Contemp. Eng. Sci. 2016, 9, 135–144. [Google Scholar] [CrossRef]
- De, R.K.; Ganguly, A. Thermal model development and performance analysis of a solar photovoltaic supported greenhouse dryer. Int. J. Renew. Energy Technol. 2016, 7, 361–382. [Google Scholar] [CrossRef]
Location | Dried Product | Type of GHD | Main Findings | Refs. | |
---|---|---|---|---|---|
- | Sludge | Passive Solar Greenhouse Dryers | Passive SGHD |
| [128] |
- | Municipal solid waste | Passive solar greenhouse bio dryer (SGB) |
| [129] | |
Campeche, México | Moringa leaves | Solar Greenhouse Dryers + PV/PVT Modules | GHD + PV modules |
| [94] |
Sa Kaeo province, Thailand | Cassumunar ginger | GHD + PV modules |
| [95] | |
- | Ganoderma | GHD + PV modules |
| [96] | |
- | - | GHD + PV modules |
| [130] | |
- | - | GHD + PV modules + Solar collector |
| [38] | |
Tomato | GHD + PV modules + Flat-plate solar air collector |
| [92] | ||
- | - | GHD + PVT modules |
| [100] | |
- | Green Chili | GHD + PVT modules |
| [131] | |
Tunisia | Red pepper | Solar Greenhouse Dryers + Solar Thermal Collectors | GHD + Flat-plate solar air collector |
| [108] |
- | Red pepper, Kiwi fruit | GHD + Quadruple-pass solar air collector (QPSAC) |
| [104] | |
- | Bitter gourd flakes | GHD + Solar thermal collector |
| [107] | |
- | Grape (Sultana) | GHD + Solar air collector |
| [28] | |
- | Apricot | GHD + low-cost tube-type solar air heater |
| [108] | |
Riyadh city | Banana, Mango, Lemon, Fig, Tomato | GHD + LSC |
| [105] | |
- | Coffee beans | Solar Greenhouse Dryers + Thermal Energy Storage | SGHD + Hot water storage |
| [120] |
- | Tomato | SGHD + Clay-CaCl2 |
| [132] | |
Thailand | Chili | SGHD + PCM |
| [118] | |
- | Red pepper | SGHD + PCM (Paraffin Wax) |
| [18] | |
- | Gooseberry | SGHD + PCM |
| [133] | |
- | Raw banana, Pineapple slices | SGHD + PCM |
| [119] | |
Pre-treated potato slices | SGHD + Glycerol |
| [134] | ||
- | - | Hybrid Greenhouse Dryers | GHD + Solar heat pump |
| [112] |
Arrow roots, Cassava, Sweet Potatoes, Kales, Bananas, Spider plant | Solar–biomass hybrid GHD |
| [126] | ||
- | Banana slices | Solar–biomass hybrid GHD |
| [125] | |
Ludhiana, India | - | Solar-cum-biomass Hybrid GHD + Flue gas heat transfer pipe network |
| [124] | |
- | Onion | Solar-biogas hybrid GHD |
| [127] |
Description of System | Dried Product | Life Span (Year) | Amount of Product | Payback Period (Year) | Cost of Dryer ($) | Drying Time | Thermal Efficiency (%) | Refs. |
---|---|---|---|---|---|---|---|---|
GHD + FPC | Red pepper, Sultana grape | 20 | 80 kg (pepper) 130 kg (grape) | 1.6 | 1250 | 2 days (pepper) 6 days (grape) | - | [137] |
SGHD + inclined north wall reflection | Bitter gourd flakes | 35 | - | 1.68 (natural) 2.35 (forced) | 209 | - | - | [103] |
Modified GHD + PV module | Potato, Capsicum, Tomato | 35 | 3.5 kg | 1.89 (active) 1.11 (passive) | 198 | - | 29–86% | [82] |
GHD + Solar thermal collector | Bitter ground flakes | 35 | 485 kg | 1.5 | 209 | - | 15–20% | [107] |
Solar–biomass hybrid GHD | Banana | 4 | 240 kg | 0.35 | 5844 | - | 46–85.36% | [125] |
GHD + PV module | Green peas | 25 | 7 kg/day | 9.4–16.5 | 3051 | 5–6 h | - | [140] |
SGHD + Heat pump | Chili peppers (Capsicum annuum) | 5 | 2400 kg | 1.9 | 568.75 | 24 h | 33.2% | [112] |
GHD + Evacuated Tube Collector (ETC) | Salted catfish | 10 | 200 kg | 1 | 7441 | 18 h | 29–82% | [139] |
Solar-cum-biomass hybrid GHD | Fenugreek | - | 38.5 kg/day | 5 | 6785 | 4 h | - | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorjian, S.; Hosseingholilou, B.; Jathar, L.D.; Samadi, H.; Samanta, S.; Sagade, A.A.; Kant, K.; Sathyamurthy, R. Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers. Sustainability 2021, 13, 7025. https://doi.org/10.3390/su13137025
Gorjian S, Hosseingholilou B, Jathar LD, Samadi H, Samanta S, Sagade AA, Kant K, Sathyamurthy R. Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers. Sustainability. 2021; 13(13):7025. https://doi.org/10.3390/su13137025
Chicago/Turabian StyleGorjian, Shiva, Behnam Hosseingholilou, Laxmikant D. Jathar, Haniyeh Samadi, Samiran Samanta, Atul A. Sagade, Karunesh Kant, and Ravishankar Sathyamurthy. 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers" Sustainability 13, no. 13: 7025. https://doi.org/10.3390/su13137025
APA StyleGorjian, S., Hosseingholilou, B., Jathar, L. D., Samadi, H., Samanta, S., Sagade, A. A., Kant, K., & Sathyamurthy, R. (2021). Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers. Sustainability, 13(13), 7025. https://doi.org/10.3390/su13137025