The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Current Situation and Evolution of the Literature on Big Data and Sustainability
4.2. Top Cited Articles on BD&S
4.3. Leading Journals in BD&S
4.4. Keywords Analysis
4.5. Reference, Journal and Author Co-citation Analysis
4.6. Bibliographic Coupling of Authors
4.7. Country and University Co-Author Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Garrigos, F.; Lapiedra, R.; Barberá, T. Social networks and Web 3.0: Their impact on the management and marketing of organizations. Manag. Decis. 2012, 50, 1880–1889. [Google Scholar] [CrossRef]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Lengua-Lengua, I. Tourism and Sustainability: A Bibliometric and Visualization Analysis. Sustainability 2018, 10, 1976. [Google Scholar] [CrossRef]
- Broadus, R. Toward a definition of “bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, G.; Shah, S.A.A.; Ahmed, E. A decade of big data literature: Analysis of trends in light of bibliometrics. J. Supercomput. 2018, 76, 3555–3571. [Google Scholar] [CrossRef]
- Gupta, D.; Rani, R. A study of big data evolution and research challenges. J. Inf. Sci. 2019, 45, 322–340. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y. Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization. Scientometrics 2017, 112, 91–109. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Tsai, S.-B.; Gao, J.; Bin, N.; Chen, Q. An Empirical Study on Visualizing the Intellectual Structure and Hotspots of Big Data Research from a Sustainable Perspective. Sustainability 2018, 10, 667. [Google Scholar] [CrossRef]
- Liu, X.; Sun, R.; Wang, S.; Wu, Y.J. The research landscape of big data: A bibliometric analysis. Libr. Hi Tech 2019, 38, 367–384. [Google Scholar] [CrossRef]
- Mazieri, M.; Soares, E. Conceptualization and theorization of the Big Data. Int. J. Innov. 2016, 4, 23–41. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, J.; Fantinato, M.; Chen, J. A study on the author collaboration network in big data. Inf. Syst. Front. 2017, 19, 1329–1342. [Google Scholar] [CrossRef]
- Saheb, T.; Saheb, T. Understanding the development trends of big data technologies: An analysis of patents and the cited scholarly works. J. Big Data 2020, 7, 1–26. [Google Scholar] [CrossRef]
- Aboelmaged, M.; Mouakket, S. Influencing models and determinants in big data analytics research: A bibliometric analysis. Inf. Process. Manag. 2020, 57, 102234. [Google Scholar] [CrossRef]
- Inamdar, Z.; Raut, R.; Narwane, V.S.; Gardas, B.; Narkhede, B.; Sagnak, M. A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. J. Enterp. Inf. Manag. 2020, 34, 101–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Porter, A.L.; Zhang, G.; Lu, J. Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technol. Forecast. Soc. Chang. 2019, 146, 795–807. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Galetsi, P.; Katsaliaki, K. Big data analytics in health: An overview and bibliometric study of research activity. Health Inf. Libr. J. 2020, 37, 5–25. [Google Scholar] [CrossRef]
- Gu, D.; Li, J.; Li, X.; Liang, C. Visualizing the knowledge structure and evolution of big data research in healthcare informatics. Int. J. Med. Inform. 2017, 98, 22–32. [Google Scholar] [CrossRef]
- Hashem, I.A.T.; Anuar, N.B.; Gani, A.; Yaqoob, I.; Xia, F.; Khan, S.U. MapReduce: Review and open challenges. Scientometrics 2016, 109, 389–422. [Google Scholar] [CrossRef]
- Belmonte, J.L.; Segura-Robles, A.; Moreno-Guerrero, A.-J.; Parra-González, M.E. Machine Learning and Big Data in the Impact Literature. A Bibliometric Review with Scientific Mapping in Web of Science. Symmetry 2020, 12, 495. [Google Scholar] [CrossRef]
- Khanra, S.; Dhir, A.; Mäntymäki, M. Big data analytics and enterprises: A bibliometric synthesis of the literature. Enterp. Inf. Syst. 2020, 14, 737–768. [Google Scholar] [CrossRef]
- Aykroyd, R.G.; Leiva, V.; Ruggeri, F. Recent developments of control charts, identification of big data sources and future trends of current research. Technol. Forecast. Soc. Chang. 2019, 144, 221–232. [Google Scholar] [CrossRef]
- Wamba, S.F.; Mishra, D. Big data integration with business processes: A literature review. Bus. Process Manag. J. 2017, 23, 477–492. [Google Scholar] [CrossRef]
- Arunachalam, D.; Kumar, N.; Kawalek, J.P. Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp. Res. Part. E Logist. Transp. Rev. 2018, 114, 416–436. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J. Big Data and supply chain management: A review and bibliometric analysis. Ann. Oper. Res. 2018, 270, 313–336. [Google Scholar] [CrossRef]
- López-Robles, J.; Otegi-Olaso, J.; Gómez, I.P.; Cobo, M.J. 30 years of intelligence models in management and business: A bibliometric review. Int. J. Inf. Manag. 2019, 48, 22–38. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.L.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165. [Google Scholar] [CrossRef]
- Liang, T.-P.; Liu, Y.-H. Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Syst. Appl. 2018, 111, 2–10. [Google Scholar] [CrossRef]
- Batistič, S.; Van Der Laken, P. History, Evolution and Future of Big Data and Analytics: A Bibliometric Analysis of Its Relationship to Performance in Organizations. Br. J. Manag. 2019, 30, 229–251. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Ciappei, C.; Busso, D. Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Manag. Decis. 2019, 57, 2052–2068. [Google Scholar] [CrossRef]
- Vanhala, M.; Lu, C.; Peltonen, J.; Sundqvist, S.; Nummenmaa, J.; Järvelin, K. The usage of large data sets in online consumer behaviour: A bibliometric and computational text-mining–driven analysis of previous research. J. Bus. Res. 2020, 106, 46–59. [Google Scholar] [CrossRef]
- Song, M.; Kim, S.; Zhang, G.; Ding, Y.; Chambers, T. Productivity and influence in bioinformatics: A bibliometric analysis using PubMed central. J. Assoc. Inf. Sci. Technol. 2014, 65, 352–371. [Google Scholar] [CrossRef]
- Firdaus, A.; Ab Razak, M.F.; Feizollah, A.; Hashem, I.A.T.; Hazim, M.; Anuar, N.B. The rise of “blockchain”: Bibliometric analysis of blockchain study. Scientometrics 2019, 120, 1289–1331. [Google Scholar] [CrossRef]
- Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Williams, J.M.; Liu, H.; Khanna, R.; Pisharody, G. Internet of Things: A Scientometric Review. Symmetry 2017, 9, 301. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, W.; Yuan, S. Mapping the scientific research on open data: A bibliometric review. Learn. Publ. 2018, 31, 95–106. [Google Scholar] [CrossRef]
- Ivanov, D.; Tang, C.S.; Dolgui, A.; Battini, D.; Das, A. Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. 2021, 59, 2055–2078. [Google Scholar] [CrossRef]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2019, 58, 1605–1627. [Google Scholar] [CrossRef]
- Nazarov, D.; Klarin, A. Taxonomy of Industry 4.0 research: Mapping scholarship and industry insights. Syst. Res. Behav. Sci. 2020, 37, 535–556. [Google Scholar] [CrossRef]
- Da Costa, M.B.; dos Santos, L.M.A.L.; Schaefer, J.L.; Baierle, I.C.; Nara, E.O.B. Industry 4.0 technologies basic network identification. Scientometrics 2019, 121, 977–994. [Google Scholar] [CrossRef]
- Kulakli, A.; Osmanaj, V. Global Research on Big Data in Relation with Artificial Intelligence (A Bibliometric Study: 2008–2019). Int. J. Online Biomed. Eng. (iJOE) 2020, 16, 31–46. [Google Scholar] [CrossRef]
- Raban, D.R.; Gordon, A. The evolution of data science and big data research: A bibliometric analysis. Scientometrics 2020, 122, 1563–1581. [Google Scholar] [CrossRef]
- Nobre, G.C.; Tavares, E. Scientific literature analysis on big data and internet of things applications on circular economy: A bibliometric study. Scientometrics 2017, 111, 463–492. [Google Scholar] [CrossRef]
- Gobbo, J.A.; Busso, C.M.; Gobbo, S.C.O.; Carreão, H. Making the links among environmental protection, process safety, and industry 4.0. Process Saf. Environ. Prot. 2018, 117, 372–382. [Google Scholar] [CrossRef]
- Felsberger, A.; Reiner, G. Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review. Sustainability 2020, 12, 7982. [Google Scholar] [CrossRef]
- Della Corte, V.; Del Gaudio, G.; Sepe, F.; Sciarelli, F. Sustainable Tourism in the Open Innovation Realm: A Bibliometric Analysis. Sustainability 2019, 11, 6114. [Google Scholar] [CrossRef]
- Sharma, R.; Jabbour, C.J.C.; de Sousa Jabbour, A.B.L. Sustainable manufacturing and industry 4.0: What we know and what we don’t. J. Enterp. Inf. Manag. 2020, 34, 230–266. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, Z.-Y.; Zou, X. Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis. Sustainability 2019, 11, 6648. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. J. Clean. Prod. 2020, 273, 123142. [Google Scholar] [CrossRef]
- Chalmeta, R.; Santos-Deleón, N.J. Sustainable Supply Chain in the Era of Industry 4.0 and Big Data: A Systematic Analysis of Literature and Research. Sustainability 2020, 12, 4108. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Zhang, N. Sustainable supply chain management under big data: A bibliometric analysis. J. Enterp. Inf. Manag. 2020, 34, 427–445. [Google Scholar] [CrossRef]
- Cappa, F.; Oriani, R.; Peruffo, E.; McCarthy, I. Big Data for Creating and Capturing Value in the Digitalized Environment: Unpacking the Effects of Volume, Variety, and Veracity on Firm Performance. J. Prod. Innov. Manag. 2021, 38, 49–67. [Google Scholar] [CrossRef]
- Sanchez-Planelles, J.; Segarra-Oña, M.; Peiro-Signes, A. Building a Theoretical Framework for Corporate Sustainability. Sustainability 2021, 13, 273. [Google Scholar] [CrossRef]
- Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015, 2, 59–64. [Google Scholar] [CrossRef]
- Guo, W. Using Semantic Web technologies for ubiquitous computing. In Proceedings of the 2008 First IEEE International Conference on Ubi-Media Computing, Lanzhou, China, 31 July–1 August 2008; pp. 377–381. [Google Scholar]
- Singh, S.; Puradkar, S.; Lee, Y. Ubiquitous computing: Connecting Pervasive computing through Semantic Web. Inf. Syst. e-Business Manag. 2006, 4, 421–439. [Google Scholar] [CrossRef]
- Alfouzan, H.I. Big Data In Business. Int. J. Sci. Eng. Res. 2015, 6, 1351–1352. [Google Scholar]
- Alsghaier, H.; Akour, M.; Shehabat, I.; Aldiabat, S. The Importance of Big Data Analytics in Business: A Case Study. Am. J. Softw. Eng. Appl. 2017, 6, 111. [Google Scholar] [CrossRef]
- Franco, S. The influence of the external and internal environments of multinational enterprises on the sustainability commitment of their subsidiaries: A cluster analysis. J. Clean. Prod. 2021, 297, 126654. [Google Scholar] [CrossRef]
- Parviainen, P.; Tihinen, M.; Kääriäinen, J.; Teppola, S. Tackling the digitalization challenge: How to benefit from digitalization in practice. Int. J. Inf. Syst. Project Manag. 2017, 5, 63–77. [Google Scholar]
- Galdon-Salvador, J.L.; Garrigos-Simon, F.J.; Gil-Pechuan, I. Improving hotel industry processes through crowdsourcing techniques. In Open Tourism: Open Innovation, Crowdsourcing and Co-Creation Challenging the Tourism Industry; Egger, R., Gula, I., Walcher, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 95–107. [Google Scholar]
- Garrigos-Simon, F.J.; Narangajavana, Y.; Galdón-Salvador, J.L. Crowdsourcing as a competitive advantage for new business models. In Strategies in E-Business; Gil-Pechuán, I., Palacios-Marqués, D., Peris Ortiz, M.P., Eds.; Springer: Boston, MA, USA, 2014; pp. 29–37. [Google Scholar]
- Garrigos-Simon, F.J.; Narangajavana, Y. From Crowdsourcing to the Use of Masscapital. The Common Perspective of the Success of Apple, Facebook, Google, Lego, TripAdvisor, and Zara. In Advances in Crowdsourcing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–13. [Google Scholar]
- Garrigos-Simon, F.J.; Gil-Pechuán, I.; Estelles-Miguel, S. (Eds.) Advances in Crowdsourcing; Springer: Cham, Switzerland, 2015; pp. 1–183. [Google Scholar]
- Garrigos-Simon, F.J.G.; Llorente, R.; Morant, M.; Narangajavana, Y. Pervasive information gathering and data mining for efficient business administration. J. Vacat. Mark. 2016, 22, 295–306. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Y. Big Data Analytics for Improving Financial Performance and Sustainability. J. Syst. Sci. Inf. 2021, 9, 175–191. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Chang. 2019, 144, 534–545. [Google Scholar] [CrossRef]
- Duvnjak, K.; Gregorić, M.; Gorše, M. Sustainable development–an artificial intelligence approach. Manag. Res. Pract. 2020, 12, 18–28. [Google Scholar]
- Visconti, R.M.; Morea, D. Big Data for the Sustainability of Healthcare Project Financing. Sustainability 2019, 11, 3748. [Google Scholar] [CrossRef]
- Runting, R.K.; Phinn, S.; Xie, Z.; Venter, O.; Watson, J.E.M. Opportunities for big data in conservation and sustainability. Nat. Commun. 2020, 11, 2003. [Google Scholar] [CrossRef] [PubMed]
- Merigó, J.M.; Yang, J.B. Accounting Research: A Bibliometric Analysis. Aust. Account. Rev. 2017, 27, 71–100. [Google Scholar] [CrossRef]
- Delgado López-Cózar, E.; Robinson-García, N.; Torres-Salinas, D. The G oogle scholar experiment: How to index false papers and manipulate bibliometric indicators. J. Assoc. Inf. Sci. Technol. 2014, 65, 446–454. [Google Scholar] [CrossRef]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Narangajavana, Y. Quality in Tourism Literature: A Bibliometric Review. Sustainability 2019, 11, 3859. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.R.B.; Merigó, J.M.; Gil Lafuente, A.M. Fuzzy decision making: A bibliometric-based review. J. Intell. Fuzzy Syst. 2017, 32, 2033–2050. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Toole, J.L.; Eagle, N.; Plotkin, J.B. Spatiotemporal correlations in criminal offense records. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–18. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.J.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–68. [Google Scholar] [PubMed]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Wamba, S.F.; Childe, S.J.; Hazen, B.; Akter, S. Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 2017, 70, 308–317. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef]
- Reyes-Gonzalez, L.; Gonzalez-Brambila, C.N.; Veloso, F. Using co-authorship and citation analysis to identify research groups: A new way to assess performance. Scientometrics 2016, 108, 1171–1191. [Google Scholar] [CrossRef]
Nº of Citations | Nº of Articles | Accumulated Nº of Articles | % Articles | % Accumulated Articles |
---|---|---|---|---|
≥250 | 2 | 2 | 0.28 | 0.28 |
≥200 | 1 | 3 | 0.14 | 0.41 |
≥100 | 12 | 15 | 1.65 | 2.07 |
≥50 | 31 | 46 | 4.27 | 6.34 |
≥25 | 61 | 107 | 8.40 | 14.74 |
≥10 | 107 | 214 | 14.74 | 29.48 |
<10 | 512 | 726 | 70.52 | 100.00 |
Total | 726 |
R | Journal | TC | Article | Authors | Year | CY |
---|---|---|---|---|---|---|
1 | IJMT | 346 | Digital twin-driven product design, manufacturing and service with big data | Tao, Fei; Cheng, Jiangfeng; Qi, Qinglin; et ál. | 2018 | 114.33 |
2 | SCS | 266 | Smart sustainable cities of the future: An extensive interdisciplinary literature review | Bibri, Simon Elias; Krogstie, John | 2017 | 65.75 |
3 | JISA | 215 | Applications of big data to smart cities | Al Nuaimi, Eiman; Al Neyadi, Hind; Mohamed, Nader; et ál. | 2015 | 35.83 |
4 | AC | 174 | Enhancing environmental sustainability over building life cycles through green BIM: A review | Wong, Johnny; Kwok Wai; Zhou, Jason | 2015 | 28.50 |
5 | JCP | 155 | The role of Big Data in explaining disaster resilience in supply chains for sustainability | Papadopoulos, Thanos; Gunasekaran, Angappa; Dubey, Rameshwar; et ál. | 2017 | 38.75 |
6 | PSEP | 142 | Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives | Kamble, Sachin S.; Gunasekaran, Angappa; Gawankar, Shradha A. | 2018 | 46.33 |
7 | ISJ | 129 | Big Data Meet Green Challenges: Big Data Toward Green Applications | Wu, Jinsong; Guo, Song; Li, Jie; et ál. | 2016 | 25.80 |
8 | S | 129 | What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability | Mueller, Julian Marius; Kiel, Daniel; Voigt, Kai-Ingo | 2018 | 42.33 |
9 | BDR | 122 | Big Data Analytics for Dynamic Energy Management in Smart Grids | Diamantoulakis, Panagiotis D.; Kapinas, Vasileios M.; Karagiannidis, George K. | 2015 | 20.33 |
10 | AAAJ | 119 | Achieving the United Nations Sustainable Development Goals: An enabling role for accounting research | Bebbington, Jan; Unerman, Jeffrey | 2018 | 39.67 |
11 | JDMM | 119 | Big data analytics for knowledge generation in tourism destinations—A case from Sweden | Fuchs, Matthias; Hoepken, Wolfram; Lexhagen, Maria | 2014 | 17.00 |
12 | AFM | 117 | Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine | Tricoli, Antonio; Nasiri, Noushin; De, Sayan | 2017 | 29.25 |
13 | ITCC | 113 | A Secure Cloud Computing Based Framework for Big Data Information Management of Smart Grid | Baek, Joonsang; Quang, Hieu Vu; Liu, Joseph K.; et ál. | 2015 | 18.83 |
14 | ITSG | 111 | Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges | Wang, Yi; Chen, Qixin; Hong, Tao; et ál. | 2019 | 55.50 |
15 | SCS | 111 | The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability | Bibri, Simon Elias | 2018 | 37.00 |
16 | IJIM | 95 | Big data reduction framework for value creation in sustainable enterprises | Rehman, Muhammad Habib Ur; Chang, Victor; Batool, Aisha; et ál. | 2016 | 19.00 |
17 | CIE | 94 | Big data analytics in supply chain management between 2010 and 2016: Insights to industries | Tiwari, Sunil; Wee, H. M.; Daryanto, Yosef | 2018 | 31.33 |
18 | JCP | 93 | Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties | Wu, Kuo-Jui; Liao, Ching-Jong; Tseng, Ming-Lang; et ál. | 2017 | 23.25 |
19 | ISJ | 91 | Big Data Meet Green Challenges: Greening Big Data | Wu, Jinsong; Guo, Song; Li, Jie; et ál. | 2016 | 18.20 |
20 | SCS | 90 | Can cities become smart without being sustainable? A systematic review of the literature | Yigitcanlar, Tan; Kamruzzaman, Md.; Foth, Marcus; et ál. | 2019 | 45.00 |
R | Journal | APBS | H-BS | TAP | TCBS | ACBS | PCBS | %APBS | IF | ≥200 | ≥100 | ≥50 | ≥20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | S | 111 | 13 | 28,156 | 840 | 680 | 7.57 | 0.39 | 2.58 | 1 | 5 | 9 | |
2 | JCP | 40 | 17 | 20,733 | 885 | 778 | 22.13 | 0.19 | 7.25 | 1 | 3 | 15 | |
3 | SCS | 18 | 7 | 2476 | 600 | 462 | 33.33 | 0.73 | 5.27 | 1 | 2 | 4 | 5 |
4 | IA | 13 | 5 | 43,099 | 135 | 135 | 10.38 | 0.03 | 3.75 | 2 | |||
5 | ASTI | 11 | 1 | 87 | 2 | 2 | 0.18 | 12.64 | - | - | |||
6 | PPC | 11 | 6 | 975 | 87 | 78 | 7.91 | 1.13 | 3.61 | 1 | |||
7 | E | 8 | 6 | 20,164 | 162 | 158 | 10.88 | 0.82 | 2.70 | 2 | 5 | ||
8 | JEIM | 8 | 2 | 360 | 8 | 7 | 1.00 | 2.22 | 2.66 | 0 | |||
9 | CIE | 7 | 5 | 3849 | 279 | 263 | 39.86 | 0.18 | 4.14 | 3 | 4 | ||
10 | IJPE | 7 | 5 | 3192 | 157 | 153 | 22.43 | 0.22 | 5.13 | 1 | 3 | ||
11 | MD | 7 | 3 | 1326 | 40 | 39 | 5.71 | 0.53 | 2.72 | 1 | |||
12 | FGCS | 6 | 3 | 3589 | 106 | 106 | 17.67 | 0.17 | 6.13 | 1 | 2 | ||
13 | ISF | 6 | 2 | 807 | 31 | 30 | 5.17 | 0.74 | 3.63 | - | |||
14 | CI | 5 | 4 | 959 | 128 | 125 | 25.60 | 0.52 | 3.95 | 1 | 2 | ||
15 | IJIM | 5 | 5 | 1065 | 248 | 234 | 49.60 | 0.47 | 8.21 | 2 | 4 | ||
16 | IJLM | 5 | 3 | 398 | 65 | 60 | 13.00 | 1.26 | 3.33 | 2 | |||
17 | IJPR | 5 | 4 | 4655 | 111 | 103 | 22.20 | 0.11 | 4.58 | 3 | |||
18 | SS | 5 | 2 | 656 | 17 | 17 | 3.40 | 0.76 | 5.30 | - | |||
19 | TFSC | 5 | 4 | 2774 | 192 | 166 | 38.40 | 0.18 | 5.85 | 2 | 4 |
R | Keyword | Oc | Co |
---|---|---|---|
1 | Big Data | 407 | 1628 |
2 | Sustainability | 289 | 1338 |
3 | Management | 143 | 733 |
4 | Framework | 110 | 588 |
5 | Challenges | 80 | 458 |
6 | Big Data Analytics | 77 | 411 |
7 | Performance | 73 | 397 |
8 | Future | 70 | 424 |
9 | Model | 62 | 266 |
10 | Internet | 61 | 362 |
11 | Impact | 56 | 272 |
12 | Innovation | 56 | 303 |
13 | Design | 52 | 265 |
14 | Supply Chain Management | 49 | 292 |
15 | Technology | 49 | 251 |
16 | Industry 4.0 | 48 | 318 |
17 | Predictive Analytics | 48 | 301 |
18 | Analytics | 45 | 200 |
19 | Cities | 44 | 206 |
20 | Information | 43 | 197 |
21 | Systems | 40 | 211 |
22 | System | 35 | 151 |
23 | Smart Cities | 32 | 145 |
24 | Internet of Things | 31 | 167 |
25 | Sustainable Development | 31 | 167 |
26 | Data Analytics | 30 | 169 |
27 | Supply Chain | 30 | 174 |
28 | Circular Economy | 29 | 195 |
29 | IoT | 29 | 183 |
30 | Smart City | 9 | 23 |
Analysis | Main Clusters (Main Streams) | Nº of Items |
---|---|---|
Co-occurrence network of “all keywords” | Sustainability | 21 |
Big data | 18 | |
Management | 14 | |
Framework | 14 | |
Industry 4.0 | 6 | |
Reference co-citation analysis | Big Data management | 24 |
Sustainability issues with geographical scopes (cities, urbanism | 14 | |
Sustainable manufacturing in industry 4.0 (technological perspective) | 9 | |
Journal co-citation analysis | Sustainability and Empirical sciences (Sustainability of cities) | 34 |
Management (Information System, decisions and Operations) | 29 | |
Production Management | 16 | |
New technologies in energy | 9 | |
Authors’ co-citation analysis | Big Data (logistics and supply chain management) | 35 |
Smart sustainable cities and smart urbanism | 29 | |
Sustainable manufacturing in industry 4.0 | 25 | |
Mathematical and engineering perspective | 3 | |
Bibliographic coupling of authors | Industry 4.0 | 18 |
Smart sustainable cities | 18 | |
Big Data analytics (logistics and supply chain management) | 6 | |
Technological use of big data (mobile computing) | 5 | |
Management (big data analytics and sustainability in emerging markets) | 3 | |
Country co-author analysis | European countries | 16 |
USA-China-India-Australia | 11 | |
Malaysian and Asian Countries | 9 | |
Brazil-Chile-Japan | 3 | |
Canada-Belgium-Romania | 3 | |
England-Taiwan | 2 | |
University co-author analysis | U.Hong Kong-Chinese A.Sc. | 21 |
Norwegian U.Sc.-French universities | 21 | |
USA Universities (MIT, Stanford) | 18 | |
USA-Australian Universities (Tennessee) | 15 | |
U.Johannesbourg-Hong Kong P.U. | 13 | |
English institutions (U. Cambridge)-N.U. | 10 | |
Singapore | ||
U.Chile-U.Manchester | 9 | |
U.Melbourne | 7 | |
U.Illinois | 6 | |
Hong Kong U.Sc.T. | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrigós-Simón, F.; Sanz-Blas, S.; Narangajavana, Y.; Buzova, D. The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability 2021, 13, 6632. https://doi.org/10.3390/su13126632
Garrigós-Simón F, Sanz-Blas S, Narangajavana Y, Buzova D. The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability. 2021; 13(12):6632. https://doi.org/10.3390/su13126632
Chicago/Turabian StyleGarrigós-Simón, Fernando, Silvia Sanz-Blas, Yeamduan Narangajavana, and Daniela Buzova. 2021. "The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments" Sustainability 13, no. 12: 6632. https://doi.org/10.3390/su13126632
APA StyleGarrigós-Simón, F., Sanz-Blas, S., Narangajavana, Y., & Buzova, D. (2021). The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability, 13(12), 6632. https://doi.org/10.3390/su13126632