Resource Assessment of Renewable Energy Systems—A Review
Abstract
:1. Introduction
2. Method
2.1. Literture Research and Evaluation
- Complete energy system and aggregated resource assessment
- Complete energy system and detailed resource assessment
- Sub-system and aggregated resource assessment
- Sub-system and detailed resource assessment
2.2. Clustering of Aspects
- Criticality—when supply risk and vulnerability aspects were assessed, following the definition used by Bach et al. [39];
- Demand—when demand forecasts were given without the context of further supply risk or vulnerability aspects;
- Environmental aspects—when any environmental impact was assessed (e.g., climate change impact of material production);
- Economic aspects—when economic impacts were assessed without the context of further supply risk or vulnerability aspects (e.g., energy return on investment);
- Material requirement—when the material requirement was assessed without the context of further supply risk or vulnerability aspects;
- Nexus of material use—when a nexus analysis was applied (a nexus shows among others the impacts of different aspects on one another);
- Political aspects—when political impacts were assessed without the context of further supply risk or vulnerability aspects (e.g., dependance on China);
- Resource depletion—when resource depletion indicators were used (e.g., ADP);
- Resource scarcity—when resource scarcity indicators were used (e.g., Ecoscarcity);
- Social aspects—when any social impact was assessed;
- Supply risk—when supply risk aspects were assessed, following the definition used by Bach et al. [39];
- Thermodynamic aspects—when thermodynamic aspects were assessed (e.g., entropy or exergy).
2.3. Assumptions
3. Results and Discussion
3.1. Technologies Assessed and Level of Detail in Resource Assessment
Group | Publications |
---|---|
Complete Energy system and detailed resource assessment | [4,5,6,7,8,9,10,11,55] |
Complete Energy system and aggregated resource assessment | [62,63,64,65,66] |
Sub-system and detailed resource assessment | [12,13,19,20,50,51,52,53,54,56,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] |
Sub-system aggregated resource assessment | [24,25,26,27,28,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129] |
Author | Resources | Aspects | Technology-Specific Aspects | Indicator Type | Sector Coupling | Summary |
---|---|---|---|---|---|---|
Acatech et al. [11] | Not specified | criticality demand forecast environmental impacts market concentration material requirement policy strategies recycling rate reserves social impacts | none | no indicators | not specified |
|
American Physical Society [10] | Ag, Ce, Co, Dy, Eu, Ga, Gd, Ge, He, In, Ir, La, Li, Lu, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Sc, Se, Sm, Tb, Te, Y | abundance companion metal environmental impacts geological concentration geopolitical risk response times in production and utilization social impacts | none | no indicators | not specified |
|
Moss et al. [5,6] | Ag, Cd, Dy, Ga, Hf, In, Mo, Nb, Nd, Ni, Se, Sn, Te, V | material requirement limitations to expanding supply capacity likelihood of rapid global demand growth country concentration political risk | none | quantitative indicators | not included |
|
Ostertag et al. [7] | Ag, As, Au, B, Ba, Be, Bi, C, Cd, Co, Cr, Cu, Ga, Ge, Hf, Hg, In, Li, Mg, Mn, Mo, Nb, Ni, Pb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Ti, Tl, V, W, Zn, Zr | country concentration demand forecast limitations to expanding supply capacity political risk | none | quantitative indicators | CHP and electrolysis |
|
Purr et al. [4] | Explicitly: Ag, Al, C, Co, concrete, Cr, Cu, Fe, Li, Mg, Ni, Pb, PGMs, Si, Zn Implicitly: further | environmental impacts raw material consumption raw material input total material consumption total material requirement | none | quantitative indicators, except environmental impacts | complete |
|
Tokimatsu et al. [55] | Aggr. Presentation and additional details on: Ag, Al, Cd, Co, concrete, Cu, Fe, Ga, Hf, In, Li, Mn, Mo, Ni, Pb, Se, Si, Te, Zn | metal requirementmetal production nexus of material use and greenhouse gas emissions | none | quantitative indicators | complete |
|
Viebahn et al. [8] | Cd, Dy, Ga, In, K, La, Li, Nd, Ni, Se, Te, V, Y | critical mineral demand | none | quantitative indicators | electrolysis |
|
Wuppertal Institute [9] | Cd, Dy, Ga, In, K, La, Li, Nd, Ni, Se, Tr, V, Y | availability environmental impacts material requirement recycling rate supply risk | recycling rate | no indicators | electrolysis |
|
3.2. Resource Use Aspects Assessed
3.3. Resources Assessed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Available online: https://www.iea.org/data-and-statistics (accessed on 1 April 2021).
- United Nations. United Nations/Framework Conventionon Climate Change. In Adoption of the Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Purr, K.; Günther, J.; Lehmann, H.; Nuss, P. Wege in Eine Ressourcenschonende Treibhausgasneutralität: RESCUE: Langfasung; Umweltbundesamt. 2019. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/rescue_studie_cc_36-2019_wege_in_eine_ressourcenschonende_treibhausgasneutralitaet.pdf (accessed on 1 January 2021).
- Moss, R.L.; Kara, H.; Kooroshy, J.; Willis, P.; Tzimas, E. Critical Metals in Strategic Energy Technologies: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies; Publications Office: Luxembourg, 2011; ISBN 978-92-79-20698-6. [Google Scholar]
- Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy 2013, 55, 556–564. [Google Scholar] [CrossRef]
- Ostertag, K.; Morley, N.; Chapman, A.; Thompson, P.; Arendorf, J.; Tzimas, E.; Tercero, E.L.; Willis, P.; Moss, R.; Lüllmann, A.; et al. Critical Metals in the Path Towards the Decarbonisation of the EU Energy Sector: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies; Publications Office: Luxembourg, 2013; ISBN 978-92-79-30390-6. [Google Scholar]
- Viebahn, P.; Soukup, O.; Samadi, S.; Teubler, J.; Wiesen, K.; Ritthoff, M. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev. 2015, 49, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Wuppertal Institut. KRESSE: Kritische Mineralische Ressourcen und Stoffströme bei der Transformation des Deutschen Energieversorgungssystems. Abschlussbericht an das Bundesministerium für Wirtschaft und Energie (BMWi) 2014. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/5419/file/5419_KRESSE.pdf (accessed on 1 January 2021).
- American Physical Society; The Materials Research Society. Energy Critical Elements: Securing Materials for Emerging Technologies; APS: Washington, DC, USA, 2011. [Google Scholar]
- German National Academy of Sciences Leopoldina; acatech. Raw Materials for the Energy Transition. Securing a Reliable and Sustainable Supply; Acatech, Leopoldina, Union of the German Academies, Eds.; German National Academy of Sciences Leopoldina, acatech—National Academy of Science and Engineering, Union of the German Academies of Sciences and Humanities: Halle (Saale), Germany; Union of the German Academies of Sciences and Humanities: München, Germany, 2018; ISBN 978-3-8047-3664-1. [Google Scholar]
- Helbig, C.; Bradshaw, A.M.; Kolotzek, C.; Thorenz, A.; Tuma, A. Supply risks associated with CdTe and CIGS thin-film photovoltaics. Appl. Energy 2016, 178, 422–433. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Bleischwitz, R. Mineral resources in the age of climate adaptation and resilience. J. Ind. Ecol. 2019, 543, 367. [Google Scholar] [CrossRef]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU: A Foresight Study; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-15336-8. [Google Scholar]
- Bradshaw, A.M.; Reuter, B.; Hamacher, T. The Potential Scarcity of Rare Elements for the Energiewende. Green 2013, 3. [Google Scholar] [CrossRef]
- Church, C.; Crawford, A. Minerals and the Metals for the Energy Transition: Exploring the Conflict Implications for Mineral-Rich, Fragile States. In The Geopolitics of the Global Energy Transition; Hafner, M., Tagliapietra, S., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 279–304. ISBN 978-3-030-39066-2. [Google Scholar]
- Flamos, A.; Lieu, J.; Doukas, H. Understanding Risks and Uncertainties in Energy and Climate Policy: Multidisciplinary Methods and Tools for a Low Carbon Society; Doukas, H., Flamos, A., Lieu, J., Eds.; Springer Open: Cham, Switzerland, 2019; ISBN 978-3-030-03151-0. [Google Scholar]
- Habib, K.; Wenzel, H. Reviewing resource criticality assessment from a dynamic and technology specific perspective—Using the case of direct-drive wind turbines. J. Clean. Prod. 2016, 112, 3852–3863. [Google Scholar] [CrossRef]
- Leisegang, T.; Meutzner, F.; Zschornak, M.; Münchgesang, W.; Schmid, R.; Nestler, T.; Eremin, R.A.; Kabanov, A.A.; Blatov, V.A.; Meyer, D.C. The Aluminum-Ion Battery: A Sustainable and Seminal Concept? Front. Chem. 2019, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Weil, M.; Peters, J.F.; Chibeles-Martins, N.; Moniz, A.B. A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications. Renew. Sustain. Energy Rev. 2019, 107, 516–534. [Google Scholar] [CrossRef]
- Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters a review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Jumare, I.A.; Bhandari, R.; Zerga, A. Environmental Life Cycle Assessment of Grid-Integrated Hybrid Renewable Energy Systems in Northern Nigeria. Sustainability 2019, 11, 5889. [Google Scholar] [CrossRef] [Green Version]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- Acar, C.; Beskese, A.; Temur, G.T. Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. Int. J. Hydro. Energy 2018, 43, 18059–18076. [Google Scholar] [CrossRef]
- Nordelöf, A.; Poulikidou, S.; Chordia, M.; de Oliveira, F.; Tivander, J.; Arvidsson, R. Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries. Batteries 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Parihar, A.K.S.; Sethi, V.; Banerjee, R. Sustainability Assessment of Biomass Gasification Based Distributed Power Generation in India. In Proceedings of the First International Conference on Recent Advances in Bioenergy Research; Kumar, S., Khanal, S.K., Yadav, Y.K., Eds.; Springer India: New Delhi, India, 2016; pp. 213–225, ISBN 978-81-322-2771-7. [Google Scholar]
- Romero, J.C.; Linares, P. Exergy as a global energy sustainability indicator. A review of the state of the art. Renew. Sustain. Energy Rev. 2014, 33, 427–442. [Google Scholar] [CrossRef]
- Quaschning, V. Understanding Renewable Energy Systems, Revised, edition; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2016; ISBN 9781138781948. [Google Scholar]
- Berger, M.; Sonderegger, T.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; et al. Mineral resources in life cycle impact assessment: Part II—Recommendations on application-dependent use of existing methods and on future method development needs. Int. J. Life Cycle Assess. 2020, 25, 798–813. [Google Scholar] [CrossRef] [Green Version]
- Sonderegger, T.; Berger, M.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; et al. Mineral resources in life cycle impact assessment—part I: A critical review of existing methods. Int. J. Life Cycle Assess. 2020, 25, 784–797. [Google Scholar] [CrossRef]
- Guinée, J.B.; Heijungs, R. A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ. Toxicol. Chem. 1995, 14, 917–925. [Google Scholar] [CrossRef]
- van Oers, L.; Guinée, J.B.; Heijungs, R. Abiotic resource depletion potentials (ADPs) for elements revisited—updating ultimate reserve estimates and introducing time series for production data. Int. J. Life Cycle Assess. 2020, 25, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.D.M.; Ponsioen, T.C.; Goedkoop, M.J.; Huijbregts, M.A.J. Surplus Ore Potential as a Scarcity Indicator for Resource Extraction. J. Ind. Ecol. 2017, 21, 381–390. [Google Scholar] [CrossRef]
- Itsubo, N.; Inaba, A. A new LCIA method: LIME has been completed. Int. J. Life Cycle Assess. 2003, 8, 305. [Google Scholar] [CrossRef]
- Dewulf, J.; Bösch, M.E.; de Meester, B.; van der Vorst, G.; van Langenhove, H.; Hellweg, S.; Huijbregts, M.A.J. Cumulative exergy extraction from the natural environment (CEENE): A comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 2007, 41, 8477–8483. [Google Scholar] [CrossRef]
- Bach, V.; Berger, M.; Henßler, M.; Kirchner, M.; Leiser, S.; Mohr, L.; Rother, E.; Ruhland, K.; Schneider, L.; Tikana, L.; et al. Integrated method to assess resource efficiency – ESSENZ. J. Clean. Prod. 2016, 137, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Bach, V.; Berger, M.; Finogenova, N.; Finkbeiner, M. Analyzing Changes in Supply Risks for Abiotic Resources over Time with the ESSENZ Method—A Data Update and Critical Reflection. Resources 2019, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Gemechu, E.D.; Helbig, C.; Sonnemann, G.; Thorenz, A.; Tuma, A. Import-based Indicator for the Geopolitical Supply Risk of Raw Materials in Life Cycle Sustainability Assessments. J. Ind. Ecol. 2016, 20, 154–165. [Google Scholar] [CrossRef]
- Helbig, C.; Gemechu, E.D.; Pillain, B.; Young, S.B.; Thorenz, A.; Tuma, A.; Sonnemann, G. Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers. J. Clean. Prod. 2016, 137, 1170–1178. [Google Scholar] [CrossRef]
- Cimprich, A.; Young, S.B.; Helbig, C.; Gemechu, E.D.; Thorenz, A.; Tuma, A.; Sonnemann, G. Extension of geopolitical supply risk methodology: Characterization model applied to conventional and electric vehicles. J. Clean. Prod. 2017, 162, 754–763. [Google Scholar] [CrossRef] [Green Version]
- Cimprich, A.; Bach, V.; Helbig, C.; Thorenz, A.; Schrijvers, D.; Sonnemann, G.; Young, S.B.; Sonderegger, T.; Berger, M. Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product-level supply risk assessment. J. Ind. Ecol. 2019, 23, 1226–1236. [Google Scholar] [CrossRef]
- Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hagelüken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G. What Do We Know About Metal Recycling Rates? J. Ind. Ecol. 2011, 15, 355–366. [Google Scholar] [CrossRef]
- Dzikuć, M.; Łasiński, K. Technical and Economic Aspects of Biomass Co-Firing in Coal-Fired Boilers. Int. J. Appl. Mech. Eng. 2014, 19, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.A.; Dasha Kumar, K.; Kim, H.-J. Facile preparation of a highly efficient NiZn2O4-NiO nanoflower composite grown on Ni foam as an advanced battery-type electrode material for high-performance electrochemical supercapacitors. Dalton Trans. 2020, 49, 3622–3629. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Sambasivam, S.; Ahmed Hira, S.; Zeb, K.; Uddin, W.; Krishna, T.; Dasha Kumar, K.; Obaidat, I.M.; Kim, H.-J. Boosting the energy density of highly efficient flexible hybrid supercapacitors via selective integration of hierarchical nanostructured energy materials. Electrochim. Acta 2020, 364, 137318. [Google Scholar] [CrossRef]
- Kulurumotlakatla, D.K.; Yedluri, A.K.; Kim, H.-J. Hierarchical NiCo2S4 nanostructure as highly efficient electrode material for high-performance supercapacitor applications. J. Energy Storage 2020, 31, 101619. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Kumar, K.D.; Kim, H.-J. Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim. Acta 2020, 330, 135261. [Google Scholar] [CrossRef]
- Grandell, L.; Lehtilä, A.; Kivinen, M.; Koljonen, T.; Kihlman, S.; Lauri, L.S. Role of critical metals in the future markets of clean energy technologies. Renew. Energy 2016, 95, 53–62. [Google Scholar] [CrossRef]
- Kleijn, R.; van der Voet, E. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration. Renew. Sustain. Energy Rev. 2010, 14, 2784–2795. [Google Scholar] [CrossRef]
- Meylan, F.D.; Moreau, V.; Erkman, S. Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation. Energy Policy 2016, 94, 366–376. [Google Scholar] [CrossRef]
- de Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; van Engelen, G.; Tukker, A. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [Google Scholar] [CrossRef]
- Lieberei, J.; Gheewala, S.H. Resource depletion assessment of renewable electricity generation technologies—comparison of life cycle impact assessment methods with focus on mineral resources. Int. J. Life Cycle Assess. 2017, 22, 185–198. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Wachtmeister, H.; McLellan, B.; Davidsson, S.; Murakami, S.; Höök, M.; Yasuoka, R.; Nishio, M. Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 °C target. Applied Energy 2017, 207, 494–509. [Google Scholar] [CrossRef]
- Sun, X.; Hao, H.; Hartmann, P.; Liu, Z.; Zhao, F. Supply risks of lithium-ion battery materials: An entire supply chain estimation. Mater. Today Energy 2019, 14, 100347. [Google Scholar] [CrossRef]
- Sachverständigenrat für Umweltfragen. Wege zur 100% Erneuerbaren Stromversorgung: Sondergutachten, Januar 2011; Erich Schmidt: Berlin, Germany, 2011; ISBN 978-3-503-13606-3. [Google Scholar]
- Palzer, A.; Henning, H.-M. A Future German Energy System with a Dominating Contribution from Renewable Energies: A Holistic Model Based on Hourly Simulation. Energy Technol. 2014, 2, 13–28. [Google Scholar] [CrossRef]
- Palzer, A.; Henning, H.-M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Solar Energy Systems ISE. Wege zu Einem Klimaneutralen Energsystem: Die Deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2020. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems ISE. Wege zu einem klimaneutralen Energiesystem: Die deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen –Update für ein CO2-Reduktionziel von 65% in 2030 und 100% in 2050; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2020. [Google Scholar]
- Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities. Appl. Energy 2020, 258, 114004. [Google Scholar] [CrossRef]
- Berrill, P.; Arvesen, A.; Scholz, Y.; Gils, H.C.; Hertwich, E.G. Environmental impacts of high penetration renewable energy scenarios for Europe. Environ. Res. Lett. 2016, 11, 14012. [Google Scholar] [CrossRef]
- Petrillo, A.; Felice, F.; de Jannelli, E.; Autorino, C.; Minutillo, M.; Lavadera, A.L. Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renew. Energy 2016, 95, 337–355. [Google Scholar] [CrossRef]
- Quek, T.A.; Alvin Ee, W.L.; Chen, W.; Ng, T.A. Environmental impacts of transitioning to renewable electricity for Singapore and the surrounding region: A life cycle assessment. J. Clean. Prod. 2019, 214, 1–11. [Google Scholar] [CrossRef]
- Xu, L.; Fuss, M.; Poganietz, W.-R.; Jochem, P.; Schreiber, S.; Zoephel, C.; Brown, N. An Environmental Assessment Framework for Energy System Analysis (EAFESA): The method and its application to the European energy system transformation. J. Clean. Prod. 2020, 243, 118614. [Google Scholar] [CrossRef]
- Anctil, A.; Fthenakis, V. Critical metals in strategic photovoltaic technologies: Abundance versus recyclability. Prog. Photovolt Res. Appl. 2013, 21, 1253–1259. [Google Scholar] [CrossRef]
- Arent, D.; Pless, J.; Mai, T.; Wiser, R.; Hand, M.; Baldwin, S.; Heath, G.; Macknick, J.; Bazilian, M.; Schlosser, A.; et al. Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Appl. Energy 2014, 123, 368–377. [Google Scholar] [CrossRef]
- Ballinger, B.; Schmeda-Lopez, D.; Kefford, B.; Parkinson, B.; Stringer, M.; Greig, C.; Smart, S. The vulnerability of electric-vehicle and wind-turbine supply chains to the supply of rare-earth elements in a 2-degree scenario. Sustain. Prod. Consum. 2020, 22, 68–76. [Google Scholar] [CrossRef]
- Beylot, A.; Guyonnet, D.; Muller, S.; Vaxelaire, S.; Villeneuve, J. Mineral raw material requirements and associated climate-change impacts of the French energy transition by 2050. J. Clean. Prod. 2019, 208, 1198–1205. [Google Scholar] [CrossRef]
- Boubault, A.; Maïzi, N. Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100. Resources 2019, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.L.; Gaustad, G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics. Appl. Energy 2014, 123, 397–414. [Google Scholar] [CrossRef]
- Elshkaki, A. Material-energy-water-carbon nexus in China’s electricity generation system up to 2050. Energy 2019, 189, 116355. [Google Scholar] [CrossRef]
- Elshkaki, A.; Shen, L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 2019, 180, 903–917. [Google Scholar] [CrossRef]
- Goe, M.; Gaustad, G. Identifying critical materials for photovoltaics in the US: A multi-metric approach. Appl. Energy 2014, 123, 387–396. [Google Scholar] [CrossRef]
- Graedel, T.E.; Nuss, P. Employing Considerations of Criticality in Product Design. JOM 2014, 66, 2360–2366. [Google Scholar] [CrossRef]
- Grandell, L.; Höök, M. Assessing Rare Metal Availability Challenges for Solar Energy Technologies. Sustainability 2015, 7, 11818–11837. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, J.; Roes, A.L.; Patel, M.K. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 2013, 50, 62–73. [Google Scholar] [CrossRef]
- Jarrett, R.; Dawson, D.; Roelich, K.; Purnell, P. Calculating material criticality of transparent conductive electrodes used for thin film and third generation solar cells. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), Denver, CO, USA, 8–14 June 2014; IEEE: Piscataway, NJ, USA; pp. 1436–1441, ISBN 978-1-4799-4398-2. [Google Scholar]
- Kavlak, G.; McNerney, J.; Jaffe, R.L.; Trancik, J.E. Metal production requirements for rapid photovoltaics deployment. Energy Environ. Sci. 2015, 8, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Guillaume, B.; Chung, J.; Hwang, Y. Critical and precious materials consumption and requirement in wind energy system in the EU 27. Appl. Energy 2015, 139, 327–334. [Google Scholar] [CrossRef]
- Månberger, A.; Johansson, B. The geopolitics of metals and metalloids used for the renewable energy transition. Energy Strategy Rev. 2019, 26, 100394. [Google Scholar] [CrossRef]
- Miyamoto, W.; Kosai, S.; Hashimoto, S. Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan. Minerals 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Mocker, M.; Aigner, J.; Kroop, S.; Lohmeyer, R.; Franke, M. Technologierohstoffe für erneuerbare Energien—Verfügbarkeit und ökologische Aspekte. Chem. Ing. Tech. 2015, 87, 439–448. [Google Scholar] [CrossRef]
- Moreau, V.; Dos Reis, P.; Vuille, F. Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Rabe, W.; Kostka, G.; Smith Stegen, K. China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy 2017, 101, 692–699. [Google Scholar] [CrossRef]
- Roelich, K.; Dawson, D.A.; Purnell, P.; Knoeri, C.; Revell, R.; Busch, J.; Steinberger, J.K. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Appl. Energy 2014, 123, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Shammugam, S.; Gervais, E.; Schlegl, T.; Rathgeber, A. Raw metal needs and supply risks for the development of wind energy in Germany until 2050. J. Clean. Prod. 2019, 221, 738–752. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2010.
- U.S. Department of Energy. Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2011.
- Valero, A.; Valero, A.; Calvo, G.; Ortego, A.; Ascaso, S.; Palacios, J.-L. Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy 2018, 159, 1175–1184. [Google Scholar] [CrossRef]
- Watari, T.; McLellan, B.C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91–103. [Google Scholar] [CrossRef]
- Wentker, M.; Greenwood, M.; Asaba, M.C.; Leker, J. A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. J. Energy Storage 2019, 26, 101022. [Google Scholar] [CrossRef]
- Abu-Rayash, A.; Dincer, I. Sustainability assessment of energy systems: A novel integrated model. J. Clean. Prod. 2019, 212, 1098–1116. [Google Scholar] [CrossRef]
- Arvesen, A.; Hauan, I.B.; Bolsøy, B.M.; Hertwich, E.G. Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway. Appl. Energy 2015, 157, 144–151. [Google Scholar] [CrossRef]
- Arvesen, A.; Nes, R.N.; Huertas-Hernando, D.; Hertwich, E.G. Life cycle assessment of an offshore grid interconnecting wind farms and customers across the North Sea. Int. J. Life Cycle Assess. 2014, 19, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Atilgan, B.; Azapagic, A. Renewable electricity in Turkey: Life cycle environmental impacts. Renew. Energy 2016, 89, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Blanco, H.; Codina, V.; Laurent, A.; Nijs, W.; Maréchal, F.; Faaij, A. Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU. Appl. Energy 2020, 259, 114160. [Google Scholar] [CrossRef]
- Bumby, S.; Druzhinina, E.; Feraldi, R.; Werthmann, D.; Geyer, R.; Sahl, J. Life cycle assessment of overhead and underground primary power distribution. Environ. Sci. Technol. 2010, 44, 5587–5593. [Google Scholar] [CrossRef]
- Fernandez-Marchante, C.M.; Millán, M.; Medina-Santos, J.I.; Lobato, J. Environmental and Preliminary Cost Assessments of Redox Flow Batteries for Renewable Energy Storage. Energy Technol. 2019, 8, 1900914. [Google Scholar] [CrossRef]
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl. Energy 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Grunwald, A.; Rösch, C. Sustainability assessment of energy technologies: Towards an integrative framework. Energ. Sustain. Soc. 2011, 1, 1103. [Google Scholar] [CrossRef] [Green Version]
- Hacatoglu, K.; Dincer, I.; Rosen, M.A. Sustainability assessment of a hybrid energy system with hydrogen-based storage. Int. J. Hydrog. Energy 2015, 40, 1559–1568. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [Green Version]
- Holma, A.; Leskinen, P.; Myllyviita, T.; Manninen, K.; Sokka, L.; Sinkko, T.; Pasanen, K. Environmental impacts and risks of the national renewable energy targets–A review and a qualitative case study from Finland. Renew. Sustain. Energy Rev. 2018, 82, 1433–1441. [Google Scholar] [CrossRef]
- Hrólfsdorttir, H.B.; Kjeld, A.; Pálsson, M.; Hjartarson, I.; Ingólfsdóttir, G.M.; Bjarnadóttir, H.J. Life cycle assessment of the UGC transmission system in Iceland; Cigrè: Paris, France, 2016. [Google Scholar]
- Immendoerfer, A.; Tietze, I.; Hottenroth, H.; Viere, T. Life-cycle impacts of pumped hydropower storage and battery storage. Int. J. Energy Env. Eng. 2017, 8, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.I.; McManus, M.C. Life-cycle assessment of 11kV electrical overhead lines and underground cables. J. Clean. Prod. 2010, 18, 1464–1477. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hertwich, E.G. Environmental evaluation of power transmission in Norway. Appl. Energy 2012, 101, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Jorge, R.S.; Hertwich, E.G. Grid infrastructure for renewable power in Europe: The environmental cost. Energy 2014, 69, 760–768. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hawkins, T.R.; Hertwich, E.G. Life cycle assessment of electricity transmission and distribution—part 1: Power lines and cables. Int. J. Life Cycle Assess. 2011, 17, 9–15. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hawkins, T.R.; Hertwich, E.G. Life cycle assessment of electricity transmission and distribution—part 2: Transformers and substation equipment. Int. J. Life Cycle Assess. 2012, 17, 184–191. [Google Scholar] [CrossRef]
- Kim, B.; Azzaro-Pantel, C.; Pietrzak-David, M.; Maussion, P. Life cycle assessment for a solar energy system based on reuse components for developing countries. J. Clean. Prod. 2019, 208, 1459–1468. [Google Scholar] [CrossRef] [Green Version]
- Koj, J.C.; Stenzel, P.; Schreiber, A.; Hennings, W.; Zapp, P.; Wrede, G.; Hahndorf, I. Life Cycle Assessment of Primary Control Provision by Battery Storage Systems and Fossil Power Plants. Energy Procedia 2015, 73, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Koroneos, C.; Stylos, N. Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system. Int. J. Life Cycle Assess. 2014, 19, 1716–1732. [Google Scholar] [CrossRef]
- Lastoskie, C.M.; Dai, Q. Comparative life cycle assessment of laminated and vacuum vapor-deposited thin film solid-state batteries. J. Clean. Prod. 2015, 91, 158–169. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. Enhanced prioritisation of prospective scenarios for power generation in Spain: How and which one? Energy 2019, 169, 369–379. [Google Scholar] [CrossRef]
- McManus, M.C. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Appl. Energy 2012, 93, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Moslehi, S.; Arababadi, R. Sustainability Assessment of Complex Energy Systems Using Life Cycle Approach-Case Study: Arizona State University Tempe Campus. Procedia Eng. 2016, 145, 1096–1103. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; van Mierlo, J. Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers. Manag. 2015, 101, 326–335. [Google Scholar] [CrossRef]
- Pelay, U.; Azzaro-Pantel, C.; Fan, Y.; Luo, L. Life cycle assessment of thermochemical energy storage integration concepts for a concentrating solar power plant. Environ. Prog. Sustain. Energy 2020, 39. [Google Scholar] [CrossRef]
- Raugei, M.; Kamran, M.; Hutchinson, A. A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid. Energies 2020, 13, 2207. [Google Scholar] [CrossRef]
- Repele, M.; Bazbauers, G. Life Cycle Assessment of Renewable Energy Alternatives for Replacement of Natural Gas in Building Material Industry. Energy Procedia 2015, 72, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Rubio Rodríguez, M.A.; Ruyck, J.; de Díaz, P.R.; Verma, V.K.; Bram, S. An LCA based indicator for evaluation of alternative energy routes. Appl. Energy 2011, 88, 630–635. [Google Scholar] [CrossRef]
- Schnuelle, C.; Thoeming, J.; Wassermann, T.; Thier, P.; von Gleich, A.; Goessling-Reisemann, S. Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Res. Soc. Sci. 2019, 51, 187–197. [Google Scholar] [CrossRef]
- Troy, S.; Schreiber, A.; Reppert, T.; Gehrke, H.-G.; Finsterbusch, M.; Uhlenbruck, S.; Stenzel, P. Life Cycle Assessment and resource analysis of all-solid-state batteries. Appl. Energy 2016, 169, 757–767. [Google Scholar] [CrossRef]
- Turconi, R.; Simonsen, C.G.; Byriel, I.P.; Astrup, T. Life cycle assessment of the Danish electricity distribution network. Int. J. Life Cycle Assess. 2014, 19, 100–108. [Google Scholar] [CrossRef]
- Vandepaer, L.; Cloutier, J.; Amor, B. Environmental impacts of Lithium Metal Polymer and Lithium-ion stationary batteries. Renew. Sustain. Energy Rev. 2017, 78, 46–60. [Google Scholar] [CrossRef]
- Vandepaer, L.; Cloutier, J.; Bauer, C.; Amor, B. Integrating Batteries in the Future Swiss Electricity Supply System: A Consequential Environmental Assessment. J. Ind. Ecol. 2019, 23, 709–725. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I. Exergy as the confluence of energy, environment and sustainable development. Exergy Int. J. 2001, 1, 3–13. [Google Scholar] [CrossRef]
- Cimprich, A.; Karim, K.S.; Young, S.B. Extending the geopolitical supply risk method: Material “substitutability” indicators applied to electric vehicles and dental X-ray equipment. Int. J. Life Cycle Assess. 2018, 23, 2024–2042. [Google Scholar] [CrossRef]
Keywords | “energy system” + “resources”/“minerals”/“raw materials” + “sustainable”/“sustainability”/“supply risk”/“criticality” “energy transition” + “resources” “energy system” + “resource efficiency” |
Database | Web of Science |
Inclusion factors | Scope: covering the assessment of abiotic resources in the context of renewable energy systems or sub-systems Type of research: case study and theoretical framework Source: peer-reviewed literature Time period: published between 2010 and 2020 Language: English |
Exclusion factors | Scope: no energy system or sub-system, no resource assessment, only fossil or nuclear technologies regarded Type of research: reviews without own case study Source: Time period: published before 2010 or after 2020 Language: any other |
Sources | Institutional websites |
Inclusion factors | Scope: covering the assessment of abiotic resources in the context of renewable energy systems or sub-systems Type of research: case study and theoretical framework Source: grey literature from scientific and political institutions of Germany, the European Union, and the USA Time period: published between 2010 and 2020 Language: English and German |
Exclusion factors | Scope: no energy system or sub-system, no resource assessment, only fossil or nuclear technologies regarded Type of research: reviews without own case study Source: grey literature from other regions Time period: published before 2010 or after 2020 Language: any other |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavor, K.M.; Bach, V.; Finkbeiner, M. Resource Assessment of Renewable Energy Systems—A Review. Sustainability 2021, 13, 6107. https://doi.org/10.3390/su13116107
Yavor KM, Bach V, Finkbeiner M. Resource Assessment of Renewable Energy Systems—A Review. Sustainability. 2021; 13(11):6107. https://doi.org/10.3390/su13116107
Chicago/Turabian StyleYavor, Kim Maya, Vanessa Bach, and Matthias Finkbeiner. 2021. "Resource Assessment of Renewable Energy Systems—A Review" Sustainability 13, no. 11: 6107. https://doi.org/10.3390/su13116107
APA StyleYavor, K. M., Bach, V., & Finkbeiner, M. (2021). Resource Assessment of Renewable Energy Systems—A Review. Sustainability, 13(11), 6107. https://doi.org/10.3390/su13116107