A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids
Abstract
:1. Introduction
2. Overhead Line Electro-Thermal and Reliability Assessment Models
2.1. Grid Lines: Model and Thermal Behavior Study
2.2. Overhead Lines Reliability Assessment
3. Hybrid Grids Planning Tool
3.1. Planning Tool Overview
3.2. Congestion Detection Control
- Congestion Detection;
- Active Power Flexibility Evaluation;
- Sensitivities Analysis;
- Active Power Redispatching;
- Line Reliability R(t) Evaluation
- a list is defined for each grid busbar with the connected assets;
- a priority list is defined for the active power redispatching based on the optimal solution;
- the reliability assessment is carried for each grid line after the control action.
4. Case Study and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehnavi, E.; Abdi, H. Determining Optimal Buses for Implementing Demand Response as an Effective Congestion Management Method. IEEE Trans. Power Syst. 2016, 32, 1. [Google Scholar] [CrossRef]
- Yuan, C.; Hu, C.; Li, T. Review of Congestion Management Methods for Power Systems. IOP Conf. Ser. Earth Environ. Sci. 2019, 233, 032025. [Google Scholar] [CrossRef]
- Pillay, A.; Prabhakar Karthikeyan, S.; Kothari, D.P. Congestion management in power systems—A review. Int. J. Electr. Power Energy Syst. 2015, 70, 83–90. [Google Scholar] [CrossRef]
- Jin, M.; Song, Y.H.; Qiang, L.; Shengwei, M. Dynamic Congestion Management in Open Electricity Markets. Autom. Electr. Power Syst. 2004, 10, 23–28. [Google Scholar]
- Ciavarella, R.; Di Somma, M.; Graditi, G.; Valenti, M. Congestion Management in distribution grid networks through active power control of flexible distributed energy resources. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Shariatkhah, M.H.; Haghifam, M.R. Using feeder reconfiguration for congestion management of smart distribution network with high DG penetration. In Proceedings of the CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 29–30 May 2012; pp. 1–4. [Google Scholar]
- Graditi, G.; Ciavarella, R.; Di Somma, M.; Valenti, M. A control strategy for participation of DSO flexible resources in TSO ancillary services provision. In Proceedings of the ICCEP 2019: 7th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, Otranto, Italy, 2–4 July 2019; pp. 586–592. [Google Scholar]
- Dolan, M.J.; Davidson, E.M.; Kockar, I.; Ault, G.W.; McArthur, S.D.J. Reducing Distributed Generator Curtailment Through Active Power Flow Management. IEEE Trans. Smart Grid 2014, 5, 149–157. [Google Scholar] [CrossRef]
- Hirth, L.; Ueckerdt, F.; Edenhofer, O. Integration costs revisited—An economic framework for wind and solar variability. Renew. Energy 2015, 74, 925–939. [Google Scholar] [CrossRef]
- NI, L.; WEN, F.; LIU, W.; MENG, J.; LIN, G.; DANG, S. Congestion management with demand response considering uncertainties of distributed generation outputs and market prices. J. Mod. Power Syst. Clean Energy 2017, 5, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Hazra, J.; Das, K.; Seetharam, D.P. Smart grid congestion management through demand response. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 109–114. [Google Scholar]
- Sagwal, R.; Kumar, A. Congestion Management Solution for Hybrid System Considering Voltage Stability Margin. Procedia Technol. 2016, 25, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Asija, D.; Choudekar, P. Congestion management using multi-objective hybrid DE-PSO optimization with solar-ess based distributed generation in deregulated power Market. Renew. Energy Focus 2021, 36, 32–42. [Google Scholar] [CrossRef]
- Billinton, R.; Allen, R.N. Reliability Assessment of Large Electric Power Systems; Kluwer Academic Publishers: Norwell, MA, USA, 1988. [Google Scholar]
- Adinolfi, G.; Ciavarella, R.; Merola, A. Analisi e Valutazione Preliminare Delle Problematiche di Affidabilità Delle reti di Distribuzione Ibride AC/DC; Deliverable RdS/PTR2019/159, PROJECT 2.7 Contract Agreement “Accordo di Programma 2019–2021—PTR_19_21_ENEA_PRG_10”; ENEA and the Ministry of Economic Development: Roma, Italy, 2019. [Google Scholar]
- Adinolfi, G.; Atrigna, M.; Ricca, A.; Valenti, M. Studio Degli Standard e Analisi dei Modelli di Riferimento per la Stima Dell’affidabilità di Componenti e Apparati Delle reti Ibride AC/DC; Deliverable RdS/PTR2019/160, PROJECT 2.7 Contract Agreement “Accordo di Programma 2019–2021—PTR_19_21_ENEA_PRG_10”; ENEA and the Ministry of Economic Development: Roma, Italy, 2019. [Google Scholar]
- Passarelli, G. Modelli Affidabilistico-Diagnostici per i Componenti Delle reti Elettriche; Alma Mater Studiorum—Università di Bologna: Bologna, Italy, 2008. [Google Scholar]
- Allan, R.N.; Billinton, R.; Breipohl, A.M.; Grigg, C.H. Bibliography on the application of probability methods in power system reliability evaluation. IEEE Trans. Power Syst. 1999, 14, 51–57. [Google Scholar] [CrossRef]
- Allan, R.N.; Bhuiyan, M.R. Effects of failure and repair process distribution on composite system adequacy indices in sequential Monte Carlo simulation. In Proceedings of the Joint International IEEE Power Conference, Power Tech, Los Alamitos, CA, USA, 5–8 September 1993; pp. 622–628. [Google Scholar]
- Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F. Fault Tree Handbook; Office of Nuclear Regulatory Research: Washington, DC, USA, 1981. [Google Scholar]
- Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 1992, 41, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.D.; Rao, V.V.S.S.; Verma, A.K.; Srividya, A. Dynamic Fault Tree Analysis: Simulation Approach BT—Simulation Methods for Reliability and Availability of Complex Systems; Faulin, J., Juan, A.A., Martorell, S., Ramírez-Márquez, J.-E., Eds.; Springer: London, UK, 2010; pp. 41–64. ISBN 978-1-84882-213-9. [Google Scholar]
- Stamatis, D.H. Failure Mode and Effect Analysis: FMEA from Theory to Execution; ASQ Quality Press: Milwaukee, WI, USA, 2003. [Google Scholar]
- Ibe, O. Continuous-Time Markov Chains. In Markov Processes for Stochastic Modeling, 2nd ed.; Elsevier: Oxford, UK, 2013; pp. 85–102. [Google Scholar]
- Enescu, D.; Colella, P.; Russo, A. Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview. Energies 2020, 13, 5319. [Google Scholar] [CrossRef]
- Graditi, G.; Di Somma, M.; Ciavarella, R.; Valenti, M.; Cigolotti, V.; Kadam, S.; Brunner, H.; Sosnina, M.; Khavari, A.; Calin, M.; et al. “Project Handbook (DoW)” Deliverable D1.5 INTERPLAN Project; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Defense Standardization Program Office (DSPO). Reliability Prediction of Electronic Equipment (Military Handbook); Department of Defense: Washington, DC, USA, 1991; p. 205. [Google Scholar]
- Graditi, G.; Adinolfi, G. Temperature influence on photovoltaic power optimizer components reliability. In Proceedings of the International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 19 June–22 July 2012; pp. 1113–1118. [Google Scholar]
- Scognamiglio, A.; Adinolfi, G.; Graditi, G.; Saretta, E. Photovoltaics in Net Zero Energy Buildings and Clusters: Enabling the Smart City Operation. Energy Procedia 2014, 61, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Catelani, M.; Ciani, L.; Graditi, G.; Adinolfi, G. Measurement and Comparison of Reliability Performance of Photovoltaic Power Optimizers for Energy Production. Metrol. Meas. Syst. 2015, 22, 139–152. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adinolfi, G.; Ciavarella, R.; Graditi, G.; Ricca, A.; Valenti, M. A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids. Sustainability 2021, 13, 6099. https://doi.org/10.3390/su13116099
Adinolfi G, Ciavarella R, Graditi G, Ricca A, Valenti M. A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids. Sustainability. 2021; 13(11):6099. https://doi.org/10.3390/su13116099
Chicago/Turabian StyleAdinolfi, Giovanna, Roberto Ciavarella, Giorgio Graditi, Antonio Ricca, and Maria Valenti. 2021. "A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids" Sustainability 13, no. 11: 6099. https://doi.org/10.3390/su13116099
APA StyleAdinolfi, G., Ciavarella, R., Graditi, G., Ricca, A., & Valenti, M. (2021). A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids. Sustainability, 13(11), 6099. https://doi.org/10.3390/su13116099