Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimentation Site and Methodology Followed
2.2. Field Experimentation Treatments and Crop Management
2.3. Weed Studies
2.4. Weed Chemical Analysis and Nutrient Depletion by the Weeds
2.5. Plant Growth, Yield Attributes, Crop Productivity and Profitability
2.6. Plant Chemical Analysis and Protein Estimation
2.7. Resource-Use Efficiency
2.8. Technology Tranfer Methodologies
2.9. Knowledge Behaviour, Technology Adoption Rate and Impact Assessment
2.10. Statistical Analysis
3. Results and Discussion
3.1. Weed Flora of Wheat in NWH and Herbicidal Options
3.2. Weed Count and Weed Dry Matter Studies
3.3. Weed Control Indices and Herbicide Efficiency Index
3.4. Weed Nutrient Concentrations and Weed Nutrient Depletion
3.5. Growth, Yield Attributes, Wheat Productivity and Quality
3.6. Economic Analysis
3.7. Production-Efficiency, Monetary-Efficiency and Water Productivity
3.8. Knowledge Upgradation and Technology Adoption Rate
3.9. Impact Assessment and Net Income Gains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation Used | Full Form |
a.i. | Active ingredient |
BLW | Broadleaf weeds |
BCR | Benefit: cost ratio |
CDBs | Community-development-blocks |
CCWM | Conventional chemical weed management |
CCMWM | Conventional cultural and manual weed management |
CWM | Chemical weed management |
COC | Cost of cultivation |
Clod | Clodinafop @ 60 g active ingredient (a.i.)/ha |
Clod-fb-D | Clodinafop @ 60 g a.i./ha followed by 2,4-D (Na salt) @ 1.0 kg a.i./ha |
DAS | days after sowing |
EWP | Economic water productivity |
fb | Followed by |
FLDs | Frontline demonstrations |
ha | hectare |
HEI | Herbicide efficiency index |
ICWM | Improved chemical weed management |
INR | Indian national rupee |
IWP | Irrigation water productivity |
Iso | Isoproturon 75 WP @ 1.0 kg a.i./ha |
Iso + D | Isoproturon 75 WP @ 1.0 kg a.i. kg/ha + 2,4-D (Na salt) @ 0.5 kg a.i./ha |
K | Potassium |
N | Nitrogen |
m | Meter |
m ha | Million hectares |
ME | Monetary–efficiency |
mt | Million tonnes |
NIG | Net income gains |
NLW | Narrow leaf weeds |
NWH | North-western Himalayas |
OFE | On-farm experimentation |
P | Phosphorus |
PE | Production–efficiency |
Sulf + Met | Sulfosulfuron 75% WG @ 25 g a.i./ha + Metsulfuron 5% WG @ 2 g a.i./ha |
SOC | Soil organic carbon |
t | Tonnes |
TWDM | Total weed dry matter |
UWC | Un-weeded check |
WFC | Weed-free check |
WCE | Weed control efficiency |
WCI | Weed control index |
WD | Weed density |
WDM | Weed dry matter |
WG | Wettable granules |
WUE | Water-use efficiency |
WP | Wettable powder |
References
- FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 April 2021).
- Choudhary, A.K.; Suri, V.K. ‘On-farm’ participatory technology development on forage cutting and nitrogen management in dual-purpose wheat (Triticum aestivum) in NW Himalayas. Commun. Soil Sci. Plant. Anal. 2014, 45, 741–750. [Google Scholar] [CrossRef]
- Rana, K.S.; Choudhary, A.K.; Sepat, S.; Bana, R.S. Advances in Field Crop Production; Post Graduate School, Indian Agricultural Research Institute: New Delhi, India, 2014; p. 475. [Google Scholar]
- Choudhary, A.K.; Singh, A.; Yadav, D.S. ‘On farm testing’ of wheat cultivars for site-specific assessment under varied bio-physical regimes in mid-hill conditions of Mandi district of Himachal Pradesh. J. Community Mobil. Sust. Dev. 2010, 5, 1–6. [Google Scholar]
- Badiyala, D.; Shekher, J.; Sharma, S.K.; Singh, R.; Choudhary, A.K. Agronomic research in hills with special reference to Himachal Pradesh–An overview. Indian J. Agron. 2012, 57, 168–174. [Google Scholar]
- Angiras, N.N.; Kumar, S.; Rana, S.S.; Sharma, N. Standardization of dose and time of application of clodinafop-propargyl to manage weeds in wheat. Himachal J. Agric. Res. 2008, 34, 15–18. [Google Scholar]
- Chhokar, R.S.; Malik, R.K. Isoproturon resistant Phalaris minor and its response to alternate herbicides. Weed Tech. 2002, 16, 116–123. [Google Scholar] [CrossRef]
- Das, T.K.; Kaur, R.; Singh, R.; Shekhawat, K.; Choudhary, A.K. Weed Management; Division of Agronomy, ICAR-Indian Agricultural Research Institute: New Delhi, India, 2017; p. 44. [Google Scholar]
- Choudhary, A.K. Scaling-up of protected cultivation in Himachal Pradesh, India. Curr. Sci. 2016, 111, 272–277. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Rahi, S. Organic cultivation of high yielding turmeric (Curcuma longa L.) cultivars: A viable alternative to enhance rhizome productivity, profitability, quality and resource-use efficiency in monkey-menace areas of north western Himalayas. Indus. Crops Prod. 2018, 124, 495–504. [Google Scholar] [CrossRef]
- CSKHPAU. Complete Package and Practices for Cultivation of Rabi Season Crops in Himachal Pradesh; Directorate of Extension Education, CSK Himachal Pradesh Agricultural University: Palampur, India, 2008; p. 96. [Google Scholar]
- Singh, R.K.; Verma, S.K.; Prasad, S.K.; Singh, S.B. Effect of metsulfuron-methyl against broadleaf weeds in wheat (Triticum aestivum). J. Crop. Weed 2015, 11, 161–166. [Google Scholar]
- Choudhary, A.K.; Thakur, S.K.; Suri, V.K. Technology transfer model on integrated nutrient management technology for sustainable crop production in high value cash crops and vegetables in north-western Himalayas. Commun. Soil Sci. Plant. Anal. 2013, 44, 1684–1699. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Suri, V.K. Low-cost vermi-composting technology and its application in bio-conversion of obnoxious weed flora of north-western Himalayas into vermi-compost. Commun. Soil Sci. Plant. Anal. 2018, 49, 1429–1441. [Google Scholar] [CrossRef]
- Piper, C.S. Soil and Plant. Analysis; Scientific Publishers Inc.: New York, NY, USA, 1950. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Ltd.: New Delhi, India, 1967; pp. 219–221. [Google Scholar]
- Walkley, A.; Black, C.A. An examination of the Dagtjareff (wet acid) method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available-N in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available-P in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Hanway, J.J.; Heidel, H. Soil Analysis Methods as Used in Iowa State College Soil Testing Laboratory, Bulletin 57; Iowa State College of Agriculture: Iowa, IA, USA, 1952; p. 131. [Google Scholar]
- Krishnamurthy, K.; Raju, B.G.; Raghunath, G.; Jagnath, M.K.; Prasad, T.V.R. Herbicide efficiency index in sorghum. Indian J. Weed Sci. 1975, 7, 75–79. [Google Scholar]
- Rana, K.S.; Choudhary, A.K.; Sepat, S.; Bana, R.S.; Dass, A. Methodological and Analytical Agronomy; Post Graduate School, Indian Agricultural Research Institute: New Delhi, India, 2014; p. 276. [Google Scholar]
- ISA. Indian Society of Agronomy–6th Revised Edition of Agronomic Terminology; Indian Society of Agronomy, IARI: New Delhi, India, 2014; pp. 463–465. [Google Scholar]
- Kumar, A.; Choudhary, A.K.; Suri., V.K. Influence of AM-fungi and applied phosphorus on growth indices, production efficiency, phosphorus-use efficiencyand fruit-succulence in okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system in an acid Alfisol. Indian J. Agric. Sci. 2015, 85, 1030–1037. [Google Scholar]
- Igbadun, H.E.; Mahoo, H.F.; Tarimo, A.K.P.R.; Salim, B.A. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of Great Ruaha river basin Tanzania. Agric. Water Manag. 2006, 85, 141–150. [Google Scholar] [CrossRef]
- Adeboye, O.B.; Schultz, B.; Adekalu, K.O.; Prasad, K. Crop water productivity and economic evaluation of drip-irrigated soybeans. Agric. Food Secur. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley-Inter-Science Publication; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Om, H.; Kumar, S.; Dhiman, S.D. Biology and management of Phalaris minor in rice-wheat system. Crop. Prot. 2004, 23, 1157–1168. [Google Scholar] [CrossRef]
- Kumar, S.; Angiras, N.N.; Rana, S.S.; Sharma, N. Alternative methods of Isoproturon application in wheat. Himachal J. Agric. Res. 2009, 35, 31–33. [Google Scholar]
- Kaur, T.; Bhullar, M.S.; Walia, U.S. Bio-efficacy of ready-mix formulation of clodinafop-propargyl + metsulfuron for control of mixed weed flora in wheat. Indian J. Weed Sci. 2015, 7, 121–124. [Google Scholar]
- Meena, V.; Kaushik, M.K.; Dotaniya, M.L.; Meena, B.P.; Das, H. Bio-efficacy of readi-mix herbicides on weeds and productivity in late-sown wheat. Indian J. Weed Sci. 2019, 51, 344–351. [Google Scholar] [CrossRef]
- Chhokar, R.S.; Sharma, R.K.; Pundhi, A.K.; Singh, R.K. Evaluation of herbicides for control of Rumex dentatus, Convolvulus arvensis and Malva Parviflora. Indian J. Weed Sci. 2007, 39, 214–218. [Google Scholar]
- Kumar, M.; Kishore, R.; Kumar, S.; Bisht, S. Efficacy of different post-emergence herbicides application alone and in combination in wheat. J. Pharmacog. Phytochem. 2018, SP1, 1668–1670. [Google Scholar]
- Chand, L.; Puniya, R. Bio-efficacy of alone and mixture of herbicides against complex weed flora in wheat under sub-tropical conditions. Indian J. Agric. Sci. 2017, 87, 1149–1154. [Google Scholar]
- Barla, S.; Upasani, R.R.; Puran, A.N. Herbicide combinations for control of complex weed flora in wheat. Indian J. Weed Sci. 2017, 49, 36–40. [Google Scholar] [CrossRef]
- Dass, A.; Shekhawat, K.; Choudhary, A.K.; Sepat, S.; Rathore, S.S.; Mahajan, G.; Chauhan, B.S. Weed management in rice using crop-competition–A review. Crop. Prot. 2016, 95, 45–52. [Google Scholar] [CrossRef]
- Rajpoot, S.K.; Rana, D.S.; Choudhary, A.K. Influence of diverse crop management practices on weed suppression, crop and water productivity and nutrient dynamics in Bt-cotton based intercropping systems in a semi-arid Indo-Gangetic plains region. Indian J. Agric. Sci. 2016, 86, 1637–1641. [Google Scholar]
- Rajpoot, S.K.; Rana, D.S.; Choudhary, A.K. Bt-cotton–vegetable-based intercropping systems as influenced by crop establishment method and planting geometry of Bt-cotton in Indo-Gangetic plains region. Curr. Sci. 2018, 115, 516–522. [Google Scholar] [CrossRef]
- Rasmussen, I.A. Effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res. 2004, 44, 12–20. [Google Scholar] [CrossRef]
- Chaudhari, D.D.; Patel, V.J.; Patel, H.K.; Mishra, A.; Patel, B.D.; Patel, R.B. Assessment of pre-mix broad spectrum herbicides for weed management in wheat. Indian J. Weed Sci. 2017, 49, 33–35. [Google Scholar] [CrossRef]
- Mansoor, M.; Ahmad, H.K.; Khan, H.; Yaqoob, M. Development of economical weed management strategies for mungbean. Pak. J. Weed Sci. Res. 2004, 10, 151–156. [Google Scholar]
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombes, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Harish, M.N.; Choudhary, A.K.; Dass, A.; Singh, V.K.; Pooniya, V.; Varatharajan, T. Tillage and phosphorus management in maize (Zea mays L.) under maize–wheat cropping system. Indian J. Agric. Sci. 2021, 91, 117–122. [Google Scholar]
- Tendler, J. Tales of dissemination in small-farm agriculture: Lessons for institution builders. World Dev. 1993, 21, 1567–1582. [Google Scholar] [CrossRef]
- Moneva, L.A.; Cadao, J.B.; Jackson., J. Farmer based extension in the Philippines: The world neighbours-Mag-uugmad foundation experience. In Working with Farmers: The Key to the Adoption of Forage Technologies, ACIAR Proceedings No. 95; Hacker, B., Ed.; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2003; pp. 91–93. [Google Scholar]
- Choudhary, A.K.; Suri, V.K. System of rice intensification in short duration rice hybrids under varying bio-physical regimes: New opportunities to enhance rice productivity and rural livelihoods in north-western Himalayas under a participatory-mode technology transfer program. J. Plant. Nutr. 2018, 41, 2581–2605. [Google Scholar] [CrossRef]
- Biggs, S.D. A multiple source of innovation model of agricultural research and technology promotion. World Dev. 1990, 18, 1481–1499. [Google Scholar] [CrossRef] [Green Version]
- Biggs, S.D.; Smith, G. Beyond methodologies: Coalition-building for participatory technology development. World Dev. 1998, 26, 239–248. [Google Scholar] [CrossRef]
- Cramb, R.A. Processes affecting the successful adoption of new technologies by smallholders. In Working with Farmers: The Key to the Adoption of Forage Technologies, ACIAR Proceedings No. 95; Hacker, B., Ed.; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2003; pp. 11–22. [Google Scholar]
S.No. | Parameter | Status/Value | Methods Employed |
---|---|---|---|
1. | Textural class | Silty-clay loam | International pipette method [15] |
2. | Soil reaction (pH) | 6.6–6.9 | 1:2.5 soil: water suspension [16] |
3. | Organic carbon (g kg−1) | 7.3–9.5 | Rapid titration method [17] |
4. | Available-N (kg ha−1) | 283.5–322.8 | Alkaline permanganate method [18] |
5. | Available-P (kg ha−1) | 16.8–22.3 | 0.5 M NaHCO3, pH = 8.5 [19] |
6. | Available-K (kg ha−1) | 261.5–278.7 | Ammonium acetate [20] |
Treatments | Weed Count at 120 DAS (Number per m2) | Total Weed Dry Matter at 120 DAS (g m−2) | ||||||
---|---|---|---|---|---|---|---|---|
Rabi 2008–2009 | Rabi 2009–2010 | |||||||
NLWs | BLWs | Total | NLWs | BLWs | Total | 2008–2009 | 2008–2009 | |
Clod | 4.0 b (15.2) | 5.1 b (26.0) | 6.5 b (41.2) | 3.8 b (14.3) | 5.5 b (29.7) | 6.7 b (44.0) | 8.3 b (68.5) | 8.5 b (71.2) |
Clod-fb-D | 3.5 c (11.8) | 1.5 d (1.8) | 3.8 d (13.6) | 3.3 c (10.3) | 1.3 d (1.2) | 3.5 d (11.5) | 6.6 c (42.8) | 6.4 c (40.3) |
Iso | 4.0 b (15.3) | 4.1 c (16.0) | 5.6 c (31.3) | 3.8 b (14.1) | 4.6 c (20.3) | 5.9 c (34.4) | 8.1 b (65.8) | 8.3 b (68.8) |
Iso + D | 3.8 b (13.9) | 1.4 d (1.6) | 4.0 d (15.5) | 3.6 bc (12.7) | 1.3 d (1.1) | 3.8 d (13.8) | 6.1 c (36.6) | 5.9 c (34.8) |
Sulf + Met | 3.5 c (11.5) | 1.3 d (1.1) | 3.5 d (12.0) | 3.2 c (10.0) | 1.1 d (0.8) | 3.4 d (10.8) | 5.9 c (34.8) | 5.7 c (31.9) |
WFC | 0.7 d (0.0) | 0.7 e (0.0) | 0.7 e (0.0) | 0.7 d (0.0) | 0.7 e (0.0) | 0.7 e (0.0) | 0.7 d (0.0) | 0.7 d (0.0) |
UWC | 6.2 a (37.4) | 6.3 a (38.6) | 8.7 a (76.0) | 6.7 a (44.3) | 7.1 a (49.7) | 9.7 a (94.0) | 13.0 a (168.6) | 13.6 a (185.2) |
Treatments | Plant Height (cm) | Number of Spikes m−2 | Spike Length (cm) | Number of Grains per Spike | 1000-Grain Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | |
Clod | 93.2 b | 94.2 b | 281.2 b | 284.0 b | 8.72 ns | 8.77 ns | 31.0 d | 31.1 c | 39.0 ns | 39.1 ns |
Clod-fb-D | 95.8 a | 96.4 a | 291.6 a | 291.4 b | 8.81 ns | 8.83 ns | 33.4 bc | 33.6 ab | 40.6 ns | 40.7 ns |
Iso | 94.1 a | 94.9 a | 287.7 a | 289.1 a | 8.82 ns | 8.85 ns | 32.1 cd | 32.6 bc | 39.6 ns | 39.7 ns |
Iso + D | 95.9 a | 96.8 a | 293.1 a | 293.4 a | 9.13 ns | 9.09 ns | 33.7 abc | 34.1 ab | 40.7 ns | 40.8 ns |
Sulf + Met | 96.1 a | 97.1 a | 296.7 a | 297.7 a | 9.18 ns | 9.19 ns | 34.9 ab | 35.0 a | 41.1 ns | 41.1 ns |
WFC | 96.1 a | 97.2 a | 299.3 a | 301.2 a | 9.25 ns | 9.28 ns | 35.6 a | 35.6 a | 42.1 ns | 42.1 ns |
UWC | 87.3 c | 89.8 c | 229.3 c | 232.1 c | 7.14 ns | 7.25 ns | 21.2 e | 21.4 d | 36.9 ns | 37.1 ns |
Treatments | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Biological Yield (t ha−1) | Harvest Index (%) | Protein Content (%) | Protein Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | |
Clod | 3.06 d | 3.13 e | 4.75 d | 4.78 e | 7.81 d | 7.91 d | 39.2 ns | 39.5 ns | 11.18 ns | 11.33 ns | 342.1 f | 354.6 f |
Clod-fb-D | 3.32 c | 3.47 c | 5.10 c | 5.27 c | 8.42 c | 8.74 b | 39.4 ns | 39.7 ns | 11.65 ns | 11.72 ns | 386.8 d | 406.7 d |
Iso | 3.13 d | 3.29 d | 4.85 d | 5.02 d | 7.97 d | 8.31 c | 39.2 ns | 39.6 ns | 11.43 ns | 11.52 ns | 357.8 e | 379.0 e |
Iso + D | 3.47 b | 3.58 bc | 5.31 b | 5.39 bc | 8.77 b | 8.98 ab | 39.5 ns | 39.9 ns | 11.71 ns | 11.85 ns | 406.3 c | 424.2 c |
Sulf + Met | 3.51 ab | 3.62 ab | 5.35 ab | 5.41 b | 8.86 ab | 9.03 ab | 39.6 ns | 40.1 ns | 12.18 ns | 12.30 ns | 427.5 b | 445.3 b |
WFC | 3.60 a | 3.74 a | 5.47 a | 5.56 a | 9.06 a | 9.31 a | 39.7 ns | 40.2 ns | 12.35 ns | 12.58 ns | 444.6 a | 470.5 a |
UWC | 1.83 e | 1.80 f | 3.11 e | 3.06 f | 4.94 e | 4.86 e | 37.0 ns | 36.9 ns | 11.00 ns | 11.03 ns | 201.3 g | 198.5 g |
Treatments | Cost of Cultivation (INR ha−1) | Gross Returns (INR ha−1) | Net Returns (INR ha−1) | B: C Ratio | ||||
---|---|---|---|---|---|---|---|---|
2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | |
Clod | 14,071 | 14,071 | 37,004 d | 37,692 e | 22,933 c | 23,621 d | 2.63 bc | 2.68 bc |
Clod-fb-D | 14,811 | 14,811 | 40,086 c | 41,773 c | 25,275 b | 26,962 bc | 2.71 b | 2.82 abc |
Iso | 13,846 | 13,846 | 37,819 d | 39,670 d | 23,973 c | 25,824 c | 2.73 b | 2.87 ab |
Iso + D | 14,096 | 14,096 | 41,799 b | 43,033 b | 27,703 a | 28,937 a | 2.97 a | 3.05 a |
Sulf + Met | 14,296 | 14,296 | 42,304 ab | 43,425 b | 28,008 a | 29,129 a | 2.96 a | 3.04 a |
WFC | 17,206 | 17,206 | 43,289 a | 44,820 a | 2,6083 b | 27,614 b | 2.52 c | 2.60 c |
UWC | 13,006 | 13,006 | 22,659 e | 22,308 f | 9653 d | 9302 e | 1.74 d | 1.72 d |
Treatments | Total Water Productivity (TWP) (kg ha−1 mm−1) | Irrigation Water Productivity (IWP) (kg ha−1 mm−1) | Economic Water Productivity (EWP) (INR ha−1 mm−1) | Production Efficiency (PE) (kg ha−1 day−1) | Monetary Efficiency (ME) (INR ha−1 day−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | 2008–2009 | 2009–2010 | |
Clod | 7.36 c | 7.28 d | 10.19 b | 10.42 c | 89.08 c | 87.74 d | 16.52 d | 16.81 d | 200.0 c | 202.6 c |
Clod-fb-D | 7.99 b | 8.08 b | 11.07 ab | 11.57 ab | 96.50 b | 97.24 bc | 17.95 bc | 18.66 bc | 216.7 b | 224.6 b |
Iso | 7.52 c | 7.66 c | 10.42 b | 10.97 bc | 91.04 c | 92.34 cd | 16.89 cd | 17.70 cd | 204.4 c | 213.3 c |
Iso + D | 8.34 ab | 8.34 b | 11.55 a | 11.94 ab | 100.62 ab | 100.17 ab | 18.73 ab | 19.26 ab | 225.9 ab | 231.4 ab |
Sulf + Met | 8.45 a | 8.43 ab | 11.71 a | 12.08 a | 101.84 a | 101.08 ab | 18.98 ab | 19.48 ab | 228.7 a | 233.5 ab |
WFC | 8.65 a | 8.72 a | 11.98 a | 12.48 a | 104.21 a | 104.33 a | 19.43 a | 20.13 a | 234.0 a | 241.0 a |
UWC | 4.40 d | 4.19 e | 6.09 c | 10.42 c | 54.55 d | 51.93 e | 9.88 e | 9.67 e | 122.5 d | 119.9 d |
Technology Component | Pre-Training (%) | Post-Training (%) | Technology Adoption Rate after One Year of ‘on-farm’ Experimentation(%) (n =102) * |
---|---|---|---|
A. Chemical weed management practices | |||
Knowledge about various chemical herbicides (controlling narrow leaf, broad-leaf weed and both) and their application | 46 | 98 | 96 |
Knowledge about various chemical herbicides (pre-emergence and post-emergence) and their application | 39 | 100 | 98 |
Methodology, dose and time of application of herbicides | 48 | 99 | 97 |
Use of appropriate herbicide sprayers | 43 | 100 | 88 |
Volume of water to be used for herbicide spray | 41 | 97 | 93 |
Knowledge about micro-herbicides and their application | 29 | 81 | 77 |
Knowledge about herbicide resistance and agronomic measures to reduce it | 7 | 78 | 71 |
Precautions in use of herbicides | 37 | 95 | 92 |
Maintenance of herbicide sprayers | 39 | 98 | 90 |
Reduction in drudgery using herbicides | 25 | 91 | |
Crop yield enhancement through chemical weed management | 38 | 93 | |
Economic benefits of chemical weed management | 35 | 95 | |
Integrated weed management | 41 | 83 | 86 |
B. Conventional cultural and manual weed management practices | |||
Knowledge about weed flora of wheat (narrow leaf, broad-leaf and sedges) and their manual management | 62 | 100 | 82 |
Knowledge about agronomic weed management operations (tillage and earthing-up) | 81 | 97 | 95 |
Knowledge about sowing time and hand-weeding in wheat | 80 | 100 | 94 |
Knowledge about appropriate stages of hand-weeding in wheat | 48 | 100 | 93 |
Crop residue/leaf mulching and its benefits in weed management | 68 | 95 | 88 |
Knowledge about crop rotations and inter-cropping systems | 23 | 91 | 88 |
Summer ploughing and crop residue retention | 28 | 100 | 72 |
Knowledge about cleaning of seed and machinery before use | 32 | 100 | 88 |
Weed Management Options | Number of Farmers * | Net Returns (INR ha−1) | Percent Increase in NIG over CMWM | Percent Increase in NIG over CCWM | |
---|---|---|---|---|---|
Range | Average | ||||
Conventional cultural and manual weed management (CCMWM) | n = 30 | 18,667–21,580 | 20,764 | – | - |
Conventional chemical weed management (CCWM) | n = 102 | 21,530–27,962 | 27,411 | 24.2% | - |
Improved chemical weed management (ICWM) (Sulfosulfuron + Metsulfuron) | n = 102 | 22,365–29,522 | 28,198 | 26.4% | 2.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, A.K.; Yadav, D.S.; Sood, P.; Rahi, S.; Arya, K.; Thakur, S.K.; Lal, R.; Kumar, S.; Sharma, J.; Dass, A.; et al. Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination. Sustainability 2021, 13, 5425. https://doi.org/10.3390/su13105425
Choudhary AK, Yadav DS, Sood P, Rahi S, Arya K, Thakur SK, Lal R, Kumar S, Sharma J, Dass A, et al. Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination. Sustainability. 2021; 13(10):5425. https://doi.org/10.3390/su13105425
Chicago/Turabian StyleChoudhary, Anil K., D.S. Yadav, Pankaj Sood, Shakuntla Rahi, Kalpana Arya, S.K. Thakur, Ramesh Lal, Subhash Kumar, Jagdev Sharma, Anchal Dass, and et al. 2021. "Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination" Sustainability 13, no. 10: 5425. https://doi.org/10.3390/su13105425
APA StyleChoudhary, A. K., Yadav, D. S., Sood, P., Rahi, S., Arya, K., Thakur, S. K., Lal, R., Kumar, S., Sharma, J., Dass, A., Babu, S., Bana, R. S., Rana, D. S., Kumar, A., Rajpoot, S. K., Gupta, G., Kumar, A., M.N., H., Noorzai, A. U., ... Singh, R. (2021). Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination. Sustainability, 13(10), 5425. https://doi.org/10.3390/su13105425