Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments
Abstract
1. Introduction
2. Methodology
3. Ecosystems as Models in Urban Planning and Design Practices
4. Understanding Ecosystems and Ecosystems Services Provision
5. Case Studies: Using Ecosystem-Level Biomimicry to Catalyse Urban Regeneration
5.1. The Lavasa Hill Project, Maharashtra, India
- water collection;
- solar gain;
- carbon sequestration;
- water filtration;
- evapotranspiration; and
- nitrogen and phosphorus cycling.
5.2. The Lloyd Crossing Project, Oregon, USA
6. Discussion
7. Conclusions
- (1)
- How are the regeneration and the ecosystem goals of these projects translated into technical solutions? Which strategies can projects implement to work toward human-designed ecosystem services provision and to catalyse socio-ecosystems regeneration and co-evolution?
- (2)
- How do regenerative projects draw on ecosystem functioning? Which ecological information and concepts are useful to urban designers to understand ecosystem functioning better and promote ecosystem regeneration?
- (3)
- How are the outcomes of such projects measured and monitored? Which ecological indicators do projects use to assess the impact of regenerative design on local ecosystems?
- (4)
- How do urban project phasing and stakeholder roles take account of and influence ecosystem properties and the overall ecological performance of a project?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations—Department of Economic and Social Affairs—Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; Volume 12, ISBN 9789211483192. [Google Scholar]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Brown, M.; Haselsteiner, E.; Apró, D.; Kopeva, D.; Lucas, E.; Pulkkinen, K.; Vula Rizvanolli, B. Sustainability, Restorative to Regenerative. COST Action CA16114 RESTORE, Working Group One Report: Restorative Sustainability; Eurac Research: Bolzano, Italy, 2018. [Google Scholar]
- Cole, R.J. Regenerative design and development: Current theory and practice. Build. Res. Inf. 2012, 58, 1–6. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Mimicking ecosystems for bio-inspired intelligent urban built environments. Intell. Build. Int. 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Hayes, S.; Desha, C.; Gibbs, M. Findings of case-study analysis: System-Level biomimicry in built-environment design. Biomimetics 2019, 4, 73. [Google Scholar] [CrossRef]
- ISO. ISO 18458:2015—Biomimetics—Terminology, Concepts and Methodology; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Chayaamor-Heil, N.; Guéna, F.; Hannachi-Belkadi, N. Biomimétisme en architecture. État, méthodes et outils. Les Cah. Rech. Archit. Urbaine Paysag. 2018, 1, 0–33. [Google Scholar] [CrossRef]
- Buck, N.T. The art of imitating life: The potential contribution of biomimicry in shaping the future of our cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 120–140. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry; Routledge: London, UK, 2018; ISBN 978113807. [Google Scholar]
- Uchiyama, Y.; Blanco, E.; Kohsaka, R. Application of biomimetics to architectural and urban design: A review across scales. Sustainability 2020, 12, 9813. [Google Scholar] [CrossRef]
- Baumeister, D.; Pedersen Zari, M.; Hayes, S. Biomimicry: An Opportunity to Relate to Place. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Conolly, P., Southcombe, M., Eds.; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Zhang, X.; Skitmore, M.; De Jong, M.; Huisingh, D.; Gray, M. Regenerative sustainability for the built environment—From vision to reality: An introductory chapter. J. Clean. Prod. 2015, 109, 1–10. [Google Scholar] [CrossRef]
- Hes, D.; Stephan, A.; Moosavi, S. Evaluating the practice and outcomes of applying regenerative development to a large-scale project in Victoria, Australia. Sustainability 2018, 10, 460. [Google Scholar] [CrossRef]
- Gibbons, L.V.; Pearthree, G.; Cloutier, S.A.; Ehlenz, M.M. The development, application, and refinement of a Regenerative Development Evaluation Tool and indicators. Ecol. Indic. 2020, 108, 105698. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An Introduction to its Methodology, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2004; ISBN 0761915443. [Google Scholar]
- Francis, M. A Case Study Method For Landscape Architecture. Landsc. J. 2001, 20, 15–29. [Google Scholar] [CrossRef]
- Groat, L.; Wang, D. Architectural Research Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9780470908556. [Google Scholar]
- Steiner, F.; Young, G.; Zube, E. Ecological Planning: Retrospect and Prospect. In The Ecological Design and Planning Reader; Ndubisi, F.O., Ed.; Island Press/Center for Resource Economics: Washington, DC, USA, 2014; pp. 72–90. ISBN 978-1-61091-491-8. [Google Scholar]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Urban Ecol. Int. Perspect. Interact. Hum. Nat. 2008, 99–122. [Google Scholar] [CrossRef]
- Steiner, F. Frontiers in urban ecological design and planning research. Landsc. Urban Plan. 2014, 125, 304–311. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; John Wiley & Sons: Hoboken, NJ, USA, 1969. [Google Scholar]
- Ndubisi, F. Ecological Planning: A Historical and Comparative Synthesis; Johns Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Harrison, P.A.; Dunford, R.; Barton, D.N.; Kelemen, E.; Martín-López, B.; Norton, L.; Termansen, M.; Saarikoski, H.; Hendriks, K.; Gómez-Baggethun, E.; et al. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosyst. Serv. 2018, 29, 481–498. [Google Scholar] [CrossRef]
- Lyle, J.T. Regenerative Design for Sustainable Development; John Wileys & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Reed, B. Shifting from “sustainability” to regeneration. Build. Res. Inf. 2007, 35, 674–680. [Google Scholar] [CrossRef]
- Odum, E.P. The strategy of ecosystem development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, R.; Görg, C.; Heink, U.; Jax, K.; Schleyer, C. Understanding the role of conceptual frameworks: Reading the ecosystem service cascade. Ecosyst. Serv. 2018, 29, 428–440. [Google Scholar] [CrossRef]
- Czúcz, B.; Arany, I.; Potschin-young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. New Synth. 2010, 1, 110–139. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators: A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Müller, F. Indicating ecosystem and landscape organisation. Ecol. Indic. 2005, 5, 280–294. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Suchocka, M.; Błaszczyk, M.; Juźwiak, A.; Duriasz, J.; Bohdan, A.; Stolarczyk, J. Transit versus Nature. Depreciation of Environmental Values of the Road Alleys. Case Study: Gamerki-Jonkowo, Poland. Sustainability 2019, 11, 1816. [Google Scholar] [CrossRef]
- Datta, A. India’s ecocity? environment, urbanisation, and mobility in the making of Lavasa. Environ. Plan. C Gov. Policy 2012, 30, 982–996. [Google Scholar] [CrossRef]
- Lazarus, M.A.; Crawford, C. Returning Genius to the Place. Archit. Des. 2011, 86, 48–53. [Google Scholar] [CrossRef]
- Hayter, J.A. Lloyd Crossing Sustainable Urban Design Plan and Catalyst Project—Portland, Oregon. Places 2005, 17, 14–17. [Google Scholar]
- Mithūn. Lloyd Crossing—Sustainable Urban Design Plan & Catalyst Project; Mithūn Inc.: Seattle, WA, USA, 2004. [Google Scholar]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism—From sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Elliot, T.; Almenar, J.B.; Niza, S.; Proença, V.; Rugani, B. Pathways to modelling ecosystem services within an urban metabolism framework. Sustainability 2019, 11, 2766. [Google Scholar] [CrossRef]
- Golubiewski, N. Is there a metabolism of an urban ecosystem? An ecological critique. Ambio 2012, 41, 751–764. [Google Scholar] [CrossRef]
- Thérivel, R.; Caratti, P.; Partidärio, M.D.R.; Theodórsdóttir, Á.H.; Tyldesley, D. Writing strategic environmental assessment guidance. Impact Assess. Proj. Apprais. 2004, 22, 259–270. [Google Scholar] [CrossRef]
- Clergeau, P. La biodiversité dans les stratégies d’améNagement Urbain. Available online: https://www.metropolitiques.eu/La-biodiversite-dans-les-strategies-d-amenagement-urbain.html (accessed on 19 August 2020).
Landscape Suitability Analysis | Ecosystem-Level Biomimicry | |
---|---|---|
| Analyse the fitness of a project for a specific area; select urbanisation strategies that reduce negative environmental impacts [23,24]. | Design urban projects that rely on ecological data to deeply connect urban systems with ecological system patterns; reduce negative environmental impacts and catalyse positive ones for both social and ecological systems [10,11]. |
| Macroscopic information, using aerial and remote sensing data [20,23,24]. | Detailed information using ecological indicators [7,11]. |
| Ecosystem information is treated discretely in a cake-layer approach [23,24]. | Ecosystem information is treated holistically with an emphasis on understanding relationships, synergies and trade-offs [7,10,11,13]. |
Lavasa Hill | Lloyd Crossing | |
---|---|---|
Location | Mumbai-Pune region, India | Portland, Oregon, USA |
Motivation for the biomimetic approach | “To prevent this [ecosystem disturbance] from happening, the design team established strict ecological performance standards and specific strategies for maintaining each ecosystem service” [41]. | “The Lloyd Crossing Sustainable Urban Design Plan looks at an urban ecosystem in which individual properties and the neighborhood public realm function together as an environmentally low- impact unit with high economic potential” [43]. |
Ecosystem used as model | Moist deciduous forest [41]. | Mixed-conifer forest [42]. |
Main ecological concepts used in the biomimetic design process | Ecosystems services [41]. | Biophysical structure and ecosystem processes [43]. |
Integration of ecological information on the design process | Identification and assessment of main ecosystem services essential for the area and for the project viability. Replication of these ecosystem services metrics mainly using built and technological strategies [10,40,41]. | Assessment of original ecosystem biophysical structure and ecosystems process. To reach the original metrics, designers proposed technological and educational strategies to reduce pressures on ecosystems, and nature-based solutions to recover ecological structure and integrity [11,42,43]. |
Ecological indicators used | Water collection; Solar gain; Carbon sequestration; Water filtration; Evapotranspiration; Nitrogen and phosphorus cycling [41]. | Tree canopy cover Wildlife species Total precipitation Stormwater runoff Groundwater recharge Transpiration Evaporation Incident solar energy Energy used by photosynthesis Energy reflected/absorbed/radiated Carbon dioxide used Oxygen released Carbon fixed as biomass [43] |
Potential regenerative impact from the biomimetic approach | Efficient rainwater management Mitigation of soil erosion processes [41] | Restore pre-development habitat metrics Water autonomy (only rainwater used) Energy autonomy (only local renewable sources used) Carbon neutrality Increasing urban density with a higher Floor Area Ratio [43] |
# | Pre-Development Metrics | Related Ecological Integrity Criteria |
---|---|---|
1 | Tree cover | Exergy capture/Entropy production |
2 | Wildlife species | Biotic diversity |
3 | Total precipitation | Water flows (abiotic) |
4 | Stormwater runoff | Water flows (abiotic) |
5 | Groundwater recharge | Water flows (abiotic) |
6 | Transpiration | Water flows (biotic) |
7 | Evaporation | Water flows (abiotic) |
8 | Incident solar energy | Exergy capture |
9 | Energy used by photosynthesis | Exergy capture/Entropy production |
10 | Energy reflected/absorbed/radiated | Exergy capture |
11 | CO2 used | Exergy capture/Entropy production/Metabolic efficiency |
12 | Oxygen released | Metabolic efficiency |
13 | Carbon fixed as biomass | Exergy capture/Storage capacity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, E.; Pedersen Zari, M.; Raskin, K.; Clergeau, P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability 2021, 13, 404. https://doi.org/10.3390/su13010404
Blanco E, Pedersen Zari M, Raskin K, Clergeau P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability. 2021; 13(1):404. https://doi.org/10.3390/su13010404
Chicago/Turabian StyleBlanco, Eduardo, Maibritt Pedersen Zari, Kalina Raskin, and Philippe Clergeau. 2021. "Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments" Sustainability 13, no. 1: 404. https://doi.org/10.3390/su13010404
APA StyleBlanco, E., Pedersen Zari, M., Raskin, K., & Clergeau, P. (2021). Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability, 13(1), 404. https://doi.org/10.3390/su13010404