Effects of γ-C2S on the Properties of Ground Granulated Blast-Furnace Slag Mortar in Natural and Accelerated Carbonation Curing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of γ-Dicalcium Silicate (γ-C2S)
2.1.2. Mixture Proportions for the Preparation of Samples
2.1.3. Sample Preparation
2.1.4. Accelerated Carbonation and Curing
2.2. Sample Characterization
2.2.1. Compressive Strength
2.2.2. Chemical Analysis of Binders
2.2.3. X-ray Diffraction (XRD)
2.2.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.5. Scanning Electron Microscope (SEM)
2.2.6. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Chemical Composition of Binders by XRF
3.2. XRD of Binders
3.3. Compressive Strength of Mortar
3.4. SEM of Paste after Carbonation
3.5. XRD of Paste after Carbonation
3.6. FT-IR of Paste After Carbonation
3.7. TGA of Paste After Carbonation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X.; Liu, S.; Feng, C.; Qiu, M. The hardening behavior of γ-C2S binder using accelerated carbonation. Constr. Build. Mater. 2016, 114, 204–207. [Google Scholar] [CrossRef]
- Liu, S.; Guan, X.; Zhang, H.; Wang, Y.; Gou, M. Revealing the Microstructure Evolution and Carbonation Hardening Mechanism of β-C2S Pastes by Backscattered Electron Images. Materials 2019, 12, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, Y.; Han, S.H.; Shin, T.Y.; Kim, J.H. Effects of CO2 Curing on Alkali-Activated Slag Paste Cured in Different Curing Conditions. Materials 2019, 12, 3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, J.G.J.; Schure, K.M.; Peters, J.A.H.W. Trends in global CO2 and total greenhouse gas emissions. 2017. Available online: https://www.pbl.nl/sites/default/files/downloads/pbl-2017-trends-in-global-co2-and-total-greenhouse-gas-emissons-2017-report_2674_0.pdf (accessed on 4 November 2020).
- Zhang, D.; Ghouleh, Z.; Shao, Y. Review on carbonation curing of cement-based materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Johannesson, B.; Utgenannt, P. Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 2001, 31, 925–931. [Google Scholar] [CrossRef]
- Borges, P.H.; Costa, J.O.; Milestone, N.B.; Lynsdale, C.J.; Streatfield, R.E. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS. Cem. Concr. Res. 2010, 40, 284–292. [Google Scholar] [CrossRef]
- Li, Z.; He, Z.; Chen, X. The Performance of Carbonation-Cured Concrete. Materials 2019, 12, 3729. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Liu, Z.; Wang, F.; Huang, X. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material. Constr. Build. Mater. 2018, 177, 322–331. [Google Scholar] [CrossRef]
- Wesselsky, A.; Jensen, O.M. Synthesis of pure Portland cement phases. Cem. Concr. Res. 2009, 39, 973–980. [Google Scholar] [CrossRef]
- Goto, S. Harding of Calcium Silicate Compounds by Carbonation. J. Soc. Inorg. Mater. JPN 1998, 5, 22–27. [Google Scholar]
- Chang, J.; Fang, Y.; Shang, X. The role of β-C2S and γ-C2S in carbon capture and strength development. Mater. Struct. 2016, 49, 4417–4424. [Google Scholar] [CrossRef]
- Higuchi, T.; Morioka, M.; Yoshioka, I.; Yokozeki, K. Development of a new ecological concrete with CO2 emissions below zero. Constr. Build. Mater. 2014, 67, 338–343. [Google Scholar] [CrossRef]
- Salman, M.; Cizer, Ö.; Pontikes, Y.; Santos, R.M.; Snellings, R.; Vandewalle, L.; Blanpain, B.; Van Balen, K. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem. Eng. J. 2014, 246, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Choi, J.-S.; Yuan, T.-F.; Yoon, Y.-S.; Mitchell, D. Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag. Materials 2019, 12, 1371. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-M.; Kwon, S.-J.; Myung, N.V.; Singh, J.K.; Lee, H.-S.; Mandal, S. Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy. Materials 2020, 13, 442. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Cai, R.; Tian, Z. Natural carbonation-induced phase and molecular evolution of alkali-activated slag: Effect of activator composition and curing temperature. Constr. Build. Mater. 2020, 248, 118726. [Google Scholar] [CrossRef]
- Chen, Z.; Lee, Y.; Cho, H.; Lee, H.; Lim, S. Improvement in Carbonation Resistance of Portland Cement Mortar Incorporating γ-Dicalcium Silicate. Adv. Mater. Sci. Eng. 2019, 30, 04018217. [Google Scholar] [CrossRef] [Green Version]
- Ghouleh, Z.; Celikin, M.; Guthrie, R.I.; Shao, Y. Microstructure of Carbonation-Activated Steel Slag Binder. J. Mater. Civ. Eng. 2018, 30, 04018217. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, Y.; Wei, H. Carbonation-cementation of recycled hardened cement paste powder. Constr. Build. Mater. 2018, 192, 224–232. [Google Scholar] [CrossRef]
- Atiş, C.D. Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 2003, 17, 147–152. [Google Scholar] [CrossRef]
- Mabudo, G.M.; Lee, S.; Kang, S.; Song, M. Physical properties and carbon dioxide capture of synthetic gamma-C2S cement composites in the early days of curing. Mag. Concr. Res. 2016, 68, 1079–1084. [Google Scholar] [CrossRef]
- Morioka, M.; Yamamoto, K.; Torichigai, T.; Yokozeki, K. Manufacturing of c-C2S used by industrial raw material and its evaluation of CO2 emission. Cem. Sci. Concr. Technol. 2010, 64, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Na, S.; Kang, S.; Lee, S.; Song, M. Gamma-C2S synthesis from fly ash of fluidize-bed boiler for CO2 capture. In Proceedings of the 4th International Congress APMAS, Fethiye, Turkey, 24–27 April 2014; pp. 1282–1285. [Google Scholar]
- Lee, H.J.; Kim, D.G.; Lee, J.H.; Cho, M.S. A study for carbonation degree on Concrete using a phenolphthalein indicator and fourier-transform infrared spectroscopy. Int. J. Civ. Environ. Eng. 2012, 34, 184–190. [Google Scholar]
- International, A. C305–14, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. In Annual Book of ASTM Standards; ASTM international: West Conshohocken, PA, USA, 2014. [Google Scholar]
- De Ceukelaire, L.; Van Nieuwenburg, D. Accelerated carbonation of a blast-furnace cement concrete. Cem. Concr. Res. 1993, 23, 442–452. [Google Scholar] [CrossRef]
- Bertos, M.F.; Simons, S.; Hills, C.; Carey, P. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar]
- KS F 2584-2010: Standard Test Method for Accelerated Carbonation of Concrete; Korean Standards & Certification Information Center: Seoul, Korea, 2010.
- International, A. C109–20a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). In Annual Book of ASTM Standards; ASTM international: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Zhao, S.; Liu, Z.; Wang, F. Carbonation reactivity enhancement of γ-C2S through biomineralization. J. CO2 Util. 2020, 39, 101183. [Google Scholar] [CrossRef]
- Yoon, S.; Park, H.; Yum, W.S.; Suh, J.-I.; Oh, J.E. Influence of Calcium Sulfate Type on Evolution of Reaction Products and Strength in NaOH-and CaO-Activated Ground Granulated Blast-Furnace Slag. Appl. Sci. 2018, 8, 2500. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Kim, K.; Song, M.-S.; Lee, S.-H.; Kim, K.; Song, M.-S. Physical and Chemical Properties of Cement Mortar with Gamma-C2S. J. Korean Ceram. Soc. 2016, 53, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Yokozeki, K.; Ashizawa, R.; Sakata, N.; Morioka, M.; Sakai, E.; Daimon, M. High durability cementitious material with mineral admixtures and carbonation curing. Waste Manag. 2006, 26, 752–757. [Google Scholar] [CrossRef]
- Powers, T.C. Structure and physical properties of hardened Portland cement paste. J. Am. Ceram. Soc. 1958, 41, 1–6. [Google Scholar] [CrossRef]
- Bentz, D.P. A review of early-age properties of cement-based materials. Cem. Concr. Res. 2008, 38, 196–204. [Google Scholar] [CrossRef]
- Saito, T.; Sakai, E.; Morioka, M.; Otsuki, N. Carbonation of γ-Ca2SiO4 and the Mechanism of Vaterite Formation. J. Adv. Concr. Technol. 2010, 8, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Bukowski, J.; Berger, R.L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates. Cem. Concr. Res. 1979, 9, 57–68. [Google Scholar] [CrossRef]
- Goto, S.; Suenaga, K.; Kado, T.; Fukuhara, M. Calcium silicate carbonation products. J. Am. Ceram. Soc. 1995, 78, 2867–2872. [Google Scholar] [CrossRef]
- Zhou, X.; Mu, Y.; Liu, Z.; Wang, F. Fabrication and characterization of a novel carbonated 0–3 piezoelectric γ-C2S composite. Ceram. Int. 2018, 44, 13426–13429. [Google Scholar] [CrossRef]
- Shi, C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002, 32, 459–462. [Google Scholar] [CrossRef]
- Shi, C.; Hu, S. Cementitious properties of ladle slag fines under autoclave curing conditions. Cem. Concr. Res. 2003, 33, 1851–1856. [Google Scholar] [CrossRef]
- Spanos, N.; Koutsoukos, P.G. The transformation of vaterite to calcite: Effect of the conditions of the solutions in contact with the mineral phase. J. Cryst. Growth 1998, 191, 783–790. [Google Scholar] [CrossRef]
- Hidalgo, A.; Domingo, C.; Garcia, C.; Petit, S.; Andrade, C.; Alonso, C. Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation. J. Mater. Sci. 2008, 43, 3101–3111. [Google Scholar] [CrossRef]
- Gadsden, J.A. Infrared Spectra of Minerals and Related Inorganic C Ompounds; Butterworths: New York, NY, USA, 1975. [Google Scholar]
- Lodeiro, I.G.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Lodeiro, I.G.; Fernández-Jiménez, A.; Palomo, A.; Macphee, D.E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 2010, 40, 27–32. [Google Scholar] [CrossRef]
- Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
Sample ID | W/B | Mixture Composition (kg/m3) | ||||
---|---|---|---|---|---|---|
OPC | γ-C2S | GGBFS | Water | Sand | ||
G0 | 0.55 | 178 | 0 | 267 | 245 | 1350 |
G5 | 178 | 22.25 | 244.75 | 245 | 1350 | |
G10 | 178 | 44.5 | 222.5 | 245 | 1350 |
Sample ID | W/B | Mixture Composition (kg/m3) | |||
---|---|---|---|---|---|
OPC | γ-C2S | GGBFS | Water | ||
G0 | 0.55 | 234 | 0 | 351 | 322 |
G5 | 234 | 29.25 | 321.75 | 322 | |
G10 | 234 | 58.5 | 292.50 | 322 |
Type | Samples | NC | AC | Characterizations |
---|---|---|---|---|
Mortar | G0 | 14 and 28 days (air curing) | 14 and 28 days (5% CO2 chamber) | Compressive strength |
G5 | ||||
G10 | ||||
Paste | G0 | 28 days (air curing) | 28 days (5%CO2 chamber) | TGA, XRD, FT-IR, and SEM |
G5 | ||||
G10 |
Sample ID | CaO | SiO2 | Al2O3 | MgO | SO3 | Fe2O3 | LOI |
---|---|---|---|---|---|---|---|
γ-C2S | 68.92 | 25.81 | 3.00 | 0.84 | 0.02 | 1.30 | 0.11 |
GGBFS | 51.47 | 28.71 | 13.32 | 3.45 | 2.34 | 0.61 | 0.10 |
OPC | 65.14 | 18.02 | 3.04 | 2.95 | 4.24 | 3.08 | 3.53 |
Curing Condition | Sample ID | Volume Fraction (%) of Phases | |||
---|---|---|---|---|---|
C-S-H | CaCO3 | Vaterite | γ-C2S | ||
NC | G0 | 72.39 | 12.89 | 14.72 | 0 |
G5 | 25.33 | 34.58 | 23.84 | 16.25 | |
G10 | 23.23 | 12.33 | 25.89 | 38.55 | |
AC | G0 | 58.91 | 18.21 | 22.88 | 0 |
G5 | 30.93 | 50.75 | 18.32 | 0 | |
G10 | 30.36 | 34.91 | 27.64 | 7.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.T.; Lee, Y.; Lee, H.S.; Yang, H.-M.; Singh, J.K. Effects of γ-C2S on the Properties of Ground Granulated Blast-Furnace Slag Mortar in Natural and Accelerated Carbonation Curing. Sustainability 2021, 13, 357. https://doi.org/10.3390/su13010357
Tran DT, Lee Y, Lee HS, Yang H-M, Singh JK. Effects of γ-C2S on the Properties of Ground Granulated Blast-Furnace Slag Mortar in Natural and Accelerated Carbonation Curing. Sustainability. 2021; 13(1):357. https://doi.org/10.3390/su13010357
Chicago/Turabian StyleTran, Duc Thanh, Yunsu Lee, Han Seung Lee, Hyun-Min Yang, and Jitendra Kumar Singh. 2021. "Effects of γ-C2S on the Properties of Ground Granulated Blast-Furnace Slag Mortar in Natural and Accelerated Carbonation Curing" Sustainability 13, no. 1: 357. https://doi.org/10.3390/su13010357