Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrology
2.3. Chemical Analysis
2.4. Microbial Analysis
2.5. WQI Computing
2.5.1. Assigning Weight
2.5.2. Relative Weight (Wi)
2.5.3. Quality Rating Scale (qi)
2.6. Hydrochemical Characteristics
2.7. Geochemical Modeling: The Saturation Index (SI)
2.8. Statistical Analyses
3. Results and Discussion
3.1. Groundwater Evaluation for Drinking
3.2. Groundwater Evaluation for Irrigation
3.3. Hydrochemical Aspects
3.4. Geochemical Modeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Omran, A.M.; Aly, A.A.; Al-Wabel, M.I.; Sallam, A.S.; Al-Shayaa, M.S. Hydrochemical Characterization of Groundwater under Agricultural Land in Arid Environment: A Case Study of Al-Kharj, Saudi Arabia. Arab. J. Geosci. 2016, 9, 68–85. [Google Scholar] [CrossRef]
- Fallatah, O.A. Groundwater Quality Patterns and Spatiotemporal Change in Depletion in the Regions of the Arabian Shield and Arabian Shelf. Arab. J. Sci. Eng. 2020, 45, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Saud, A.G.; Abdullah, S.A. Water Resources and Reuse in Al-Madinah. In Proceedings of the International Conference on Water Conservation in Arid Regions (ICWCAR’09), Water Research Center-King Abdulaziz University, Jeddah, Saudi Arabia, 12–14 October 2009; pp. 12–14. [Google Scholar]
- Sharaf, M.A.M. Major elements hydrochemistry and groundwater quality of Wadi Fatimah, West Central Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2013, 6, 2633–2653. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Aly, A.A.; Sallam, A.S. A Holistic Ecosystem Approach for the Sustainable Development of Fragile Agro-Ecosystems: A Case Study of the Al-Kharj Ecosystem, Saudi Arabia. National Science, Technology and Innovation Plan, Kingdom of Saudi Arabia. Available online: http://rp.ksu.edu.sa/sites/rp.ksu.edu.sa/files/res-files/Detailed%20Report%20(12%20month%20Kharj)5.pdf (accessed on 20 May 2019).
- Ledesma-Ruiz, R.; Pastén-Zapata, E.; Parra, R.; Harter, T.; Mahlknecht, J. Investigation of the geochemical evolution of groundwater under agricultural land: A case study in northeastern Mexico. J. Hydrol. 2015, 521, 410–423. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, M.H.; Abo El-Fadl, M.M.; Shawky, H.A. Impact of hydrochemical Processes on Groundwater Quality, Wadi Feiran, South Sinai, Egypt. Aust. J. Basic App. Sci. 2012, 6, 638–654. [Google Scholar]
- Matthess, G. The Properties of Groundwater; Wiley: New York, NY, USA, 1982; p. 498. [Google Scholar]
- Kumar, M.; Ramanathan, A.L.; Rao, M.S.; Kumar, B. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J. Environ. Geol. 2006, 50, 1025–1039. [Google Scholar] [CrossRef]
- Aly, A.A.; Gaber, H.M.; Kishk, F.M.; Al-Omran, A.M. Long-term detection and hydrochemistry of groundwater resources in Siwa Oasis, Egypt. J. Saudi Soc. Agric. Sci. 2016, 15, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Lateef, K.H. Evaluation of Groundwater Quality for Drinking Purpose for Tikrit and Samarra Cities using Water Quality Index. Eur. J. Sci. Res. 2011, 58, 472–481. [Google Scholar]
- Stambuck-Giljanovic, N. Water quality evaluation by index in Dalmatia. Water Res. 1999, 33, 3426–3440. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Ribeiro, L.; Carvalho Dill, A.M. Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies–Two Portuguese case studies. J. Hydrol. 2006, 327, 578–591. [Google Scholar] [CrossRef]
- Saeedi, M.; Abessi, O.; Sharifi, F.; Meraji, H. Development of groundwater quality index. Environ. Monit. Assess. 2010, 163, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An index number system for rating water quality. J. Water Poll. Cont. Fed. 1965, 37, 300–305. [Google Scholar]
- Miller, W.W.; Joung, H.M.; Mahannah, C.N.; Garrett, J.R. Identification of water quality differences in Nevada through index application. J. Environ. Qual. 1986, 15, 265–272. [Google Scholar] [CrossRef]
- Bordalo, A.A.; Nilsumranchit, W.; Chalermwat, K. Water quality and uses of the Bangpakonk River (Eastern Thailand). Water Res. 2001, 35, 3635–3642. [Google Scholar] [CrossRef]
- Yidana, S.M.; Yidana, A. Assessing water quality index and multivariate analysis. Environ. Earth Sci. 2010, 59, 1461–1473. [Google Scholar] [CrossRef]
- Aly, A. Hydrochemical characteristics of Egypt western desert oases groundwater. Arab. J. Geosci. 2015, 8, 51–7564. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandrasekar, N. Evaluation of spatial variations in groundwater quality by WQI and GIS technique: A case study of Virudunagar District, Tamil Nadu, India. Arab. J. Geosci. 2013, 6, 1883–1898. [Google Scholar] [CrossRef]
- Magesh, N.S.; Krishnakumar, S.; Chandrasekar, N.; John, P.S. Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab. J. Geosci. 2013, 6, 4179–4189. [Google Scholar] [CrossRef]
- Backman, B.; Bodis, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- Ketata-Rokbani, M.; Gueddari, M.; Bouhlila, R. Use of Geographical Information System and Water Quality Index to Assess Groundwater Quality in El Khairat Deep aquifer (Enfidha, Tunisian Sahel). Iran. J. Energy Environ. 2011, 2, 133–144. [Google Scholar]
- Khashogji, M.S.; El Maghraby, M.M. Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arab. J. Geosci. 2013, 6, 3929–3942. [Google Scholar] [CrossRef]
- El Maghraby, M.M. Hydrogeochemical characterization of groundwater aquifer in Al-Madinah Al-Munawarah City, Saudi Arabia. Arab. J. Geosci. 2015, 8, 4191–4206. [Google Scholar] [CrossRef]
- Kingdom of Saudi Arabia. Population and Housing Census 1431 H (2010); Riyadh Ministry of Economics and Planning: Riyadh, Saudi Arabia, 2012.
- Matiti, S.K. Handbook of Methods in Environmental Studies: Water and Wastewater Analysis; ABD Publishers: Jaipur, India, 2004. [Google Scholar]
- Tabatabai, M.A. Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; SSSA Book Ser. 5; ASA/SSSA: Madison, WI, USA, 1996; pp. 921–960. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Bingham, F.T. Boron, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Agronomy Monograph; SSSA: Madison, WI, USA, 1982; pp. 431–447. [Google Scholar]
- Critelli, T.; Vespasiano, G.; Apollaro, C.; Muto, F.; Marini, L.; De Rosa, R. Hydrogeochemical study of an ophiolitic aquifer: A case study of Lago (Southern Italy, Calabria). Environ. Earth Sci. 2015, 74, 533–543. [Google Scholar] [CrossRef]
- Edberg, S.C.; Allen, M.J.; Smith, D.B. Defined substrate technology method for rapid and specific simultaneous enumeration of total coliforms and Escherichia coli from water: Collaborative study. J. Assoc. Off. Anal. Chem. 1991, 74, 526–529. [Google Scholar]
- Fricker, E.J.; Illingworth, K.S.; Fricker, C.R. Use of two formulations of colilert and quantitray(™) for assessment of the bacteriological quality of water. Water Res. 1997, 31, 2495–2499. [Google Scholar] [CrossRef]
- Eckner, K.F. Comparison of membrane filtration and multiple-tube fermentation by the Colilert and Enterolert methods for detection of waterborne coliform bacteria, Escherchia coli, and enterococci used in drinking and bating water quality monitoring in Southern Sweden. Appl. Environ. Microbiol. 1998, 64, 3079–3083. [Google Scholar] [CrossRef] [Green Version]
- Maheux, A.F.; Huppé, V.; Boissinot, M.; Picard, F.J.; Bissonnette, L.; Bernier, J.L.; Bergeron, M.G. Analytical limits of four beta-glucuronidase and beta-galactosidase-based commercial culture methods used to detect Escherichia coli and total coliforms. J. Microbiol. Methods 2008, 75, 506–514. [Google Scholar] [CrossRef]
- Aly, A.A.; Al-Omran, A.M.; Alharby, M.M. The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab. J. Geosci. 2015, 8, 4177–4190. [Google Scholar] [CrossRef]
- Ramakrishnalah, C.R.; Sadashivalah, C.; Ranganna, G. Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka state, India. E-J. Chemistry. 2009, 6, 523–530. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analysis. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Schoeller, H. Géochimie des Eaux Souterraines. Aplication aux Eaux des Gisements de Pétrole; Inst. Français duPétrole: Paris, France, 1955. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Geol. Surv. Water-Res. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Alexakis, D. Assessment of water quality in the Messolonghi-Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environ. Monit. Assess. 2011, 182, 397–413. [Google Scholar] [CrossRef]
- Al-Makishah, N.H. Microbial Screening of Groundwater and Surface Water in Agricultural Region Surrounding Al-Madina Al-Monawara. J. King Abdulaziz Univ. Meteorol. Environ. Arid Land Agric. Sci. 2018, 27, 125–137. [Google Scholar] [CrossRef]
- WHO. Calcium and Magnesium in Drinking-Water Public Health Significance; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Deshpande, S.M.; Aher, K.R. Evaluation of Groundwater Quality and its Suitability for Drinking and Agriculture use in Parts of Vaijapur, District Aurangabad, MS, India. Res. J. Chem. Sci. 2012, 2, 25–31. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29 (rev.1); FAO: Rome, Italy, 1985. [Google Scholar]
- Nagaraju, A.; Sunil Kumar, K.; Thejaswi, A. Assessment of groundwater quality for irrigation: A case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Appl. Water Sci. 2014, 4, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005; p. 656. [Google Scholar]
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline and Alkali Soils; USDA Hand Book. No. 60; US Govt. Press: Washington, DC, USA, 1954; p. 160.
- Kelly, W.P. In Proceedings of the A.S.C.F. 1940, p. 607. Available online: https://www.cabdirect.org/cabdirect/abstract/19411900188 (accessed on 15 June 2019).
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–133. [Google Scholar] [CrossRef]
- Szabolcs, I.; Darab, C. The influence of irrigation water of high sodium carbonate content of soils. Proc. Int. Congr. Trans. 1964, 2, 803–812. [Google Scholar]
- Tiwari, A.K.; Singh, A.K. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh. J. Geol. Soc. India 2014, 83, 329–343. [Google Scholar] [CrossRef]
- Nasher, G.; Al-Sayyaghi, A.; Al-Matary, A. Identification and evaluation of the hydrogeochemical processes of the lower part of Wadi Siham catchment area, Tihama plain, Yemen. Arab. J. Geosci. 2013, 6, 2131–2146. [Google Scholar] [CrossRef]
- Apollaro, C.; Fuoco, I.; Brozzo, G.; De Rosa, R. Release and fate of Cr (VI) in the ophiolitic aquifers of Italy: The role of Fe (III) as a potential oxidant of Cr (III) supported by reaction path modelling. Sci. Total Environ. 2019, 660, 1459–1471. [Google Scholar] [CrossRef]
- Vespasiano, G.; Apollaro, C.; De Rosa, R.; Muto, F.; Larosa, S.; Fiebig, J.; Mulch, A.; Marini, L. The Small Spring Method (SSM) for the definition of stable isotope-elevation relationships in Northern Calabria (Southern Italy). Appl. Geochem. 2015, 63, 333–346. [Google Scholar] [CrossRef]
- Aly, A.A.; Abbas, A.A.; Benaabidate, L. Hydrochemistry and Quality of Groundwater Resources in Egypt: Case Study of the Egyptian Southern Oases. In Water Security in the Mediterranean Region; Springer: Dordrecht, The Netherlands, 2011; pp. 239–254. [Google Scholar]
- Al-Barakah, F.N.; Gassas, A.M.; Aly, A.A. Water Quality Assessment and Hydrochemical Characterization of Zamzam Groundwater, Saudi Arabia. Appl. Water Sci. 2017, 7, 3985–3996. [Google Scholar] [CrossRef] [Green Version]
Chemical Parameters | Weights (wi) | Relative Weight (wi) | WHO Standard |
---|---|---|---|
pH | 3 | 0.073 | 8.5 |
TDS | 4 | 0.098 | 600 |
Calcium | 2 | 0.049 | 75 |
Magnesium | 2 | 0.049 | 50 |
Sodium | 2 | 0.049 | 200 |
Potassium | 2 | 0.049 | 12 |
Bicarbonate | 2 | 0.049 | 120 |
Chloride | 3 | 0.073 | 250 |
Sulfate | 3 | 0.073 | 250 |
Nitrate | 5 | 0.122 | 10 |
Boron | 3 | 0.073 | 0.5 |
As | 5 | 0.122 | 0.01 |
Cd | 5 | 0.122 | 0.003 |
Total coliform | Unsuitable | ||
Total | 41 | 1.000 |
WQI Range | Class | Type of Water |
---|---|---|
<50 | I | Excellent water |
50–100.1 | II | Good water |
100–200.1 | III | Poor water |
200–300.1 | IV | Very poor water |
>300 | V | Water unsuitable for drinking |
Sample No | Total Coliform | Fecal Coliform | E. coli | Staphylococcus sp. | Salmonella sp. | Shigilla sp. |
---|---|---|---|---|---|---|
X10 | 106 | cfu/mL | ||||
1 | 10 | 4 | 2 | Nil | 1 | 16 × 105 |
2 | 20 | 13 | 12 | Nil | Nil | 18 × 105 |
3 | 2 | Nil | Nil | Nil | Nil | 48 × 109 |
4 | 32 | 8 | Nil | 1 | Nil | Nil |
5 | 50 | 6 | 2 | 1 | Nil | Nil |
6–9 | Nil | Nil | Nil | Nil | Nil | Nil |
10 | 10 | Nil | Nil | Nil | Nil | 32 × 105 |
11–12 | Nil | Nil | Nil | Nil | Nil | Nil |
13 | 51 | Nil | Nil | Nil | Nil | Nil |
14 | Nil | Nil | Nil | Nil | Nil | Nil |
15 | 8 | 4 | 1 | Nil | Nil | 7 × 109 |
16–18 | Nil | Nil | Nil | Nil | Nil | Nil |
19 | 19 | 11 | 3 | Nil | Nil | 64 × 105 |
20–24 | Nil | Nil | Nil | Nil | Nil | Nil |
25 | 13 | Nil | Nil | Nil | Nil | 21 × 109 |
26 | 21 | 9 | 2 | 66 | Nil | 40 × 109 |
27–30 | Nil | Nil | Nil | Nil | Nil | Nil |
31 | 40 | 32 | 30 | 20 | Nil | 32 × 109 |
32 | 13 | 7 | Nil | 114 | Nil | 48 × 109 |
33 | 12 | 9 | 8 | 113 | Nil | 13 × 108 |
34 | 41 | Nil | Nil | Nil | Nil | 20 × 109 |
35 | 3 | Nil | Nil | Nil | Nil | 79 × 109 |
36 | 88 | 52 | 4 | Nil | Nil | 57 × 109 |
37 | 37 | Nil | Nil | Nil | Nil | 112 × 109 |
38 | Nil | Nil | Nil | Nil | Nil | Nil |
39 | 39 | Nil | Nil | 3 | Nil | 68 × 109 |
40 | 40 | Nil | Nil | 104 | Nil | 28 × 109 |
41 | Nil | Nil | Nil | Nil | Nil | Nil |
42–43 | 42 | Nil | Nil | Nil | Nil | 44 × 109 |
44 | Nil | Nil | Nil | Nil | Nil | Nil |
45 | 450 | 3 | Nil | Nil | Nil | 24 × 109 |
46–50 | Nil | Nil | Nil | Nil | Nil | Nil |
51 | 510 | 16 | 14 | Nil | Nil | 88 × 109 |
52–54 | Nil | Nil | Nil | Nil | Nil | Nil |
No | pH | EC | Cations (meq L−1) | Anions (meq L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(dS·m−1) | Ca2+ | Mg2+ | Na+ | K+ | CO32− | HCO3− | Cl− | SO42− | ||
Maximum | 8.4 | 8.3 | 38.2 | 19.5 | 39.8 | 0.7 | 2.8 | 8.8 | 51.3 | 30.1 |
Minimum | 6.5 | 0.5 | 1.0 | 0.6 | 0.7 | 0.0 | 0.0 | 0.1 | 0.7 | 2.1 |
Mean | 7.1 | 4.4 | 16.1 | 7.3 | 18.2 | 0.1 | 0.1 | 3.8 | 23.2 | 15.2 |
St. deviation | 0.4 | 1.7 | 9.9 | 3.6 | 7.5 | 0.1 | 0.4 | 1.9 | 10.4 | 7.6 |
Median | 7.1 | 4.8 | 14.5 | 6.8 | 17.1 | 0.1 | 0.0 | 3.8 | 22.1 | 15.0 |
Skew | 1.1 | -0.3 | 0.5 | 0.7 | 0.4 | 2.9 | 7.3 | 0.7 | 0.1 | 0.1 |
No. | NO3− | B | SAR | MH | RSC | KR | TH (CaCO3 mg/L) | Indication |
---|---|---|---|---|---|---|---|---|
mg L−1 | ||||||||
Maximum | 304.2 | 4.7 | 10.2 | 0.7 | −0.2 | 1.8 | 2447.0 | Very hard water |
Minimum | 1.8 | 0.0 | 0.6 | 0.1 | −46.9 | 0.3 | 116.0 | Hard water |
Mean | 117.9 | 1.5 | 5.5 | 0.4 | −19.5 | 0.9 | 1162.3 | Very hard water |
St. deviation | 67.3 | 0.8 | 2.0 | 0.2 | 12.3 | 0.4 | 581.2 | |
Median | 101.5 | 1.4 | 5.2 | 0.3 | −18.2 | 0.9 | 1133.0 | |
Skew | 0.5 | 1.3 | 0.3 | 0.6 | −0.3 | 0.2 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.G.; Aly, A.A.; Aldhumri, S.A.; Al-Barakaha, F.N. Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia. Sustainability 2020, 12, 3106. https://doi.org/10.3390/su12083106
Alghamdi AG, Aly AA, Aldhumri SA, Al-Barakaha FN. Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia. Sustainability. 2020; 12(8):3106. https://doi.org/10.3390/su12083106
Chicago/Turabian StyleAlghamdi, Abdulaziz G., Anwar A. Aly, Sami Ali Aldhumri, and Fahad N. Al-Barakaha. 2020. "Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia" Sustainability 12, no. 8: 3106. https://doi.org/10.3390/su12083106
APA StyleAlghamdi, A. G., Aly, A. A., Aldhumri, S. A., & Al-Barakaha, F. N. (2020). Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia. Sustainability, 12(8), 3106. https://doi.org/10.3390/su12083106