Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geographical Database
2.3. Sustainability Index Factors for the Hydrographic Basins
2.4. Calculation of LUF
2.5. Calculation of PFF
2.6. Calculation of HDF
2.7. Calculation of the ESI
3. Results
3.1. Results for the Factors
3.2. Environmental Sustainability Index (ESI)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Du Pisani, J. Sustainable development–Historical roots of the concept. Environ. Sci. 2006, 3, 83–96. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Report of the World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- United Nations General Assembly. Road Map towards the Implementation of the United Nations Millennium Declaration—Report of the Secretary-General; Fifty-Sixth Session: New York, NY, USA, 2001. [Google Scholar]
- Andrée, B.; Chamorro, A.; Spencer, P.; Koomen, E.; Dogo, H. Revisiting the relation between economic growth and the environment; A global assessment of deforestation, pollution and carbon emission. Renew. Sustain. Energy Rev. 2019, 114, 109221. [Google Scholar] [CrossRef]
- Özdemir, E.; Härdtlein, M.; Jenssen, T.; Zech, D.; Eltrop, L. A confusion of tongues or the art of aggregating indicators—Reflections on four projective methodologies on sustainability measurement. Renew. Sustain. Energy Rev. 2011, 15, 2385–2396. [Google Scholar] [CrossRef]
- Braga, T.; Freitas, A.; Duarte, G.; Carepa-Sousa, J. Índices de sustentabilidade municipal: O desafio de mensurar. Nova Econ. 2004, 14, 11–33. [Google Scholar]
- Turnhout, E.; Hisschemöller, M.; Eijsackers, H. Ecological indicators: Between the two fires of science and policy. Ecol. Indic. 2007, 7, 215–228. [Google Scholar] [CrossRef]
- Todorov, V.; Marinova, D. Modelling sustainability. Math. Comput. Simul. 2011, 81, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Kemerich, P.; Martins, S.; Kobiyama, M.; Buriol, G.; Borba, W.; Ritter, L. Avaliação da sustentabilidade ambiental em bacias hidrográficas mediante a aplicação do modelo P-E-R. Revista Eletrônica em Gestão Educação e Tecnologia Ambiental 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Dizdaroglu, D. The role of indicator-based sustainability assessment in policy and the decision-making process: A review and outlook. Sustainability 2017, 9, 1018. [Google Scholar] [CrossRef] [Green Version]
- Vieira, P.; Studart, T. Proposta metodológica para o desenvolvimento de um índice de sustentabilidade hidro- Ambiental de áreas serranas no semiárido Brasileiro - Estudo de caso: Maciço de Baturité, Ceará. Revista Brasileira de Recursos Hídricos 2009, 14, 125–136. [Google Scholar] [CrossRef]
- Silva, L.; Lima, E. Índice de sustentabilidade da dimensão ambiental da bacia hidrográfica do Rio Banabuiú, CE. Espaço Aberto 2017, 7, 71–85. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Kates, R.; Clark, W.; Corell, R.; Hall, J.; Jaeger, C.; Lowe, I.; McCarthy, J.; Schellnhuber, H.; Bolin, B.; Dickson, N.; et al. Environment and development. Sustainability science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef]
- Böhringer, C. Measuring the immeasurable: A survey of sustainability indices. Ecol. Econ. 2006, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J. The Age of Sustainable Development; Columbia University Press: New York, NY, USA, 2015; p. 544. [Google Scholar]
- Childers, D.; Cadenasso, M.; Grove, J.; Marshall, V.; McGrath, B.; Pickett, S. An ecology for cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 2015, 7, 3774–3791. [Google Scholar] [CrossRef] [Green Version]
- Leigh, M.; Li, X. Industrial ecology, industrial symbiosis and supply chain environmental sustainability: A case study of a large UK distributor. J. Clean. Prod. 2015, 106, 632–643. [Google Scholar] [CrossRef]
- Franzitta, V.; Curto, D.; Rao, D. Energetic sustainability using renewable energies in the Mediterranean Sea. Sustainability 2016, 8, 1164. [Google Scholar] [CrossRef] [Green Version]
- Chaves, H.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2006, 21, 883–895. [Google Scholar] [CrossRef]
- Bui, N.T.; Kawamura, A.; Bui, D.D.; Amaguchi, H.; Bui, D.D.; Truong, N.T.; Du, H.H.T.; Nguyen, C.T. Groundwater sustainability assessment framework: A demonstration of environmental sustainability index for Hanoi, Vietnam. J. Environ. Manag. 2019, 24, 479–487. [Google Scholar] [CrossRef]
- Nyerges, T. Linked Visualizations in Sustainability Modeling: An Approach Using Participatory GIS for Decision Support; Association of American Geographers Illustrated: Los Angeles, CA, USA, 2002; p. 18. [Google Scholar]
- Couto, O. Geração de um Índice de Sustentabilidade Ambiental para Bacias Hidrográficas em áreas Urbanas Através do Emprego de Técnicas Integradas de Geoprocessamento. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2007. [Google Scholar]
- Pellicer-Martínez, F.; Martínez-Paz, J. The Water Footprint as an Indicator of Environmental Sustainability in Water Use at the River Basin Level. Sci. Total Environ. 2016, 571, 561–574. [Google Scholar] [CrossRef]
- Oliveira, V.; Reis, L. Conflitos em áreas de preservação permanente na bacia hidrográfica do rio Pitimbu-RN: Proposta de um indicador institucional sustentável. Guaju 2017, 3, 91. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Albuquerque Filho, J.; Oliveira, R.; Lourenço, R. Metodologia para análise do potencial de degradação dos recursos hídricos em bacias hidrográficas/Methodology for potential degradation analysis of water resources in watershed]. Caderno de Geografia 2017, 27, 455. [Google Scholar] [CrossRef] [Green Version]
- Organisation for Economic Co-operation and Development (OECD). OECD Environmental Indicators: Development, Measurement and Use; OECD: Paris, France, 2003. [Google Scholar]
- Instituto Paranaense de Desenvolvimento Econômico e Social (IPARDES). 2017. Available online: www.ipardes.gov.br (accessed on 19 December 2019).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Tomadon, L.; Dettke, G.; Caxambu, M.; Ferreira, I.; Couto, E. Significance of forest fragments for conservation of endangered vascular plant species in southern Brazil hotspots. Écoscience 2019, 26, 221–235. [Google Scholar] [CrossRef]
- Endlich, A.M. Pensando os Papéis e Significados das Pequenas Cidades do Noroeste do Paraná. Ph.D. Thesis, Universidade Etadual Paulista, Presidente Prudente São Paulo state, São Paulo, Brazil, 2006. [Google Scholar]
- Câmara, G.; Souza, R.; Freitas, U.; Garrido, J. Spring: Integrating remote sensing and GIS by object-oriented data modelling. Comput. Graph. 1996, 20, 395–403. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency (JAXA). Earth Observation Research Center: ALOS User Handbook. 2007. Available online: www.eorc.jaxa.jp/alos/en/doc/handbk.htm (accessed on 19 December 2019).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Demográfico 2010: Resultados do Universo. 2010. Available online: www.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm (accessed on 19 December 2019).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Geociências: Bases Cartográficas Contínuas. 2014. Available online: www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/ (accessed on 19 December 2019).
- Development Team QGIS. QGIS Geographic Information System. Open Source Geospatial Foundation. 2016. Available online: www.qgis.org/pt_BR/site/about/index.html (accessed on 19 December 2019).
- Lidicker, W. Responses of mammals to habitat edges: An overview. Landsc. Ecol. 1999, 14, 333–343. [Google Scholar] [CrossRef]
- López-Barrera, F.; Manson, R.; González-Espinosa, M.; Newton, A. Effects of varying forest edge permeability on seed dispersal in a neotropical montane forest. Landsc. Ecol. 2006, 22, 189–203. [Google Scholar] [CrossRef]
- Umetsu, F.; Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—Evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 2006, 22, 517–530. [Google Scholar] [CrossRef]
- Eycott, A.; Stewart, G.; Buyung-Ali, L.; Bowler, D.; Watts, K.; Pullin, A. A meta-analysis on the impact of different matrix structures on species movement rates. Landsc. Ecol. 2012, 27, 1263–1278. [Google Scholar] [CrossRef]
- Bhering, S.; Santos, H. (Eds.) Mapa de Solos do Estado do Paraná: Legenda Atualizada; Embrapa florestas, Embrapa solos, Instituto Agronômico do Paraná: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Tricart, J.; Kiewietdejonge, C. Ecogeography and Rural Management; Longman Scientific & Technical: Harlow, Essex, UK, 1992; p. 304. [Google Scholar]
- Crepani, E.; Medeiros, J.; Hernandez-Filho, P.; Florenzano, T.; Duarte, V.; Barbosa, C. Sensoriamento Remoto e Geoprocessamento Aplicados ao Zoneamento Ecológico-Econômico e ao Ordenamento Territorial; Instituto Nacional de Pesquisas Espaciais (INPE): São José dos Campos, Brazil, 2001; p. 124. [Google Scholar]
- United Nations (UN). Programa das Nações Unidas Para o Desenvolvimento. Atlas do Desenvolvimento Humano no Brasil 2013: O Índice de Desenvolvimento Humano Municipal Brasileiro. PNUD/IPEA/FJP, Brasília, Brazil, 2017. Available online: www.atlasbrasil.org.br/2013/pt/consulta/ (accessed on 19 December 2019).
- Instituto Paranaense de Desenvolvimento Economico e Social (IPARDES). Leituras Regionais: Mesorregião Geográfica Centro-Ocidental; IPARDES: Curitiba, Brazil, 2004; p. 133.
- Ferreira, I.; Bragion, G.; Ferreira, J.; Benedito, E.; Couto, E. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil. South. For. J. For. Sci. 2019, 81, 175–184. [Google Scholar] [CrossRef]
- Ribeiro, M.; Metzger, J.; Martensen, A.; Ponzoni, F.; Hirota, M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Trevisan, D.; Moschini, L. Dinâmica de uso e cobertura da terra em paisagem no interior do estado de São Paulo: Subsídios para o planejamento. Front. J. Soc. Technol. Environ. Sci. 2015, 4, 16. [Google Scholar] [CrossRef]
- Ferreira, I.; Ferreira, J.; Bueno, P.; Vieira, L.; Bueno, R.; Couto, E. Spatial dimension landscape metrics of Atlantic forest remnants in Paraná state, Brazil. Acta Sci. Technol. 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the impacts of land use on water quality: A case study in the Chaohu Lake Basin. Sci. World J. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechen, S.; Telles, T.; Guimarães, M.; Maria, I. Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo. Bragantia 2015, 74, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Ibrahim, A.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 1–17. [Google Scholar] [CrossRef]
- Adnan, N.; Atkinson, P. Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. Int. J. Climatol. 2011, 31, 815–831. [Google Scholar] [CrossRef]
- Fernandes, L.; Ribeiro, C. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil). J. S. Am. Earth Sci. 2015, 61, 71–90. [Google Scholar] [CrossRef]
- Do Couto, E.V.; Cordeiro dos Santos, L.; Vinicius de Sordi, M.; Bourlés, D.; Braucher, R.; Rodrigues Salgado, A.; Léanni, L.; Ferreira, J.H.D. Changes of the base levels in the Ivaí and Paraná Rivers confluence zone (Southern Brazil): Denudational reflexes in the evolution of the upstream drainage network. Zeitschrift für Geomorphologie 2018, 62, 23–40. [Google Scholar] [CrossRef]
- McMahon, J.M.; Olley, J.M.; Brooks, A.P.; Smart, J.C.R.; Stewart-Koster, B.; Venables, W.N.; Curwen, G.; Kemp, J.; Stewart, M.; Saxton, N.; et al. Vegetation and longitudinal coarse sediment connectivity affect the ability of ecosystem restoration to reduce riverbank erosion and turbidity in drinking water. Sci. Total Environ. 2020, 707, 135904. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Batalhão, A.; Teixeira, D. Indicadores de Sustentabilidade para a Educação: Uma Análise do Tema Conhecimento e Cultura a Partir do Barômetro da Sustentabilidade em Ribeirão Preto (SP). In Políticas Públicas e Desenvolvimento; Espirito-Santo, P., Bandos, M., Eds.; Editora UniFacef: Franca, Brazil, 2013; pp. 1–23. [Google Scholar]
- Moreira-Braga, T. Sustentabilidade e condições de vida em áreas urbanas: Medidas e determinantes em duas regiões metropolitanas brasileiras. EURE 2006, 32. [Google Scholar] [CrossRef] [Green Version]
- Kronemberger, D.; Clevelario-Junior, J.; Nascimento, J.; Collares, J.; Silva, L. Desenvolvimento sustentável no brasil: Uma análise a partir da aplicação do barômetro da sustentabilidade. Sociedade Natureza 2008, 20, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Carr, G.; Blöschl, G.; Loucks, D. Evaluating participation in water resource management: A review. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Augusto, L.; Gurgel, I.; Câmara-Neto, H.; Melo, C.; Costa, A. O contexto global e nacional frente aos desafios do acesso adequado à água para consumo humano. Ciência Saúde Coletiva 2012, 17, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhang, X.; Xu, Q.; Gong, H.; Li, Q.; Liu, B.; Zhang, J. Study on the Coupling Coordination Relationship between Water-Use Efficiency and Economic Development. Sustainability 2020, 12, 1246. [Google Scholar] [CrossRef] [Green Version]
- Burch, C.; Busch, M.; Higgins, E.; Bittner, S.; Perera, N.; Neal, K.; Burkett, L.; Castro, A.J.; Anderson, C. Revisiting a Water Conflict in Southeastern Oklahoma 6 Years Later: A New Valuation of the Willingness to Pay for Ecosystem Services. Sustainability 2020, 12, 819. [Google Scholar] [CrossRef] [Green Version]
- Alves, G.H.Z.; Tófoli, R.M.; Rodrigues-Filho, J.L.; Sacramento, P.A.; Cionek, V.M.; Figueiredo, B.R.S.; do Couto, E.V. Brazil’s vegetation ravage may be encouraged by law. Biodivers. Conserv. 2020, 29, 8–10. [Google Scholar] [CrossRef]
- Brandão, A., Jr.; Rausch, L.; Paz Durán, A.; Costa, C., Jr.; Spawn, S.A.; Gibbs, H.K. Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios. Sustainability 2020, 12, 1277. [Google Scholar] [CrossRef] [Green Version]
- Vieira, L.; Rizzi, J.; do Couto, E.; Souza, D.; Ferreira, P.; Figueira, R.; Froehner, S. Historical pollution of an urban watershed based in geochemical, geoacumulation, and EROD activity in PLHC-1 analyses in sediment cores. Arch. Environ. Contam. Toxicol. 2018, 76, 191–205. [Google Scholar] [CrossRef]
- Vieira, L.; Neto, D.; do Couto, E.; Lima, G.; Peron, A.; Halmeman, M.; Froehner, S. Contamination assessment and prediction of 27 trace elements in sediment core from an urban lake associated with land use. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed]
- Hák, T.; Janoušková, S.; Moldan, B.; Dahl, A. Closing the sustainability gap. Ecol. Indic. 2018, 87, 193–195. [Google Scholar] [CrossRef]
- Dahl, A. Achievements and gaps in indicators for sustainability. Ecol. Indic. 2012, 17, 14–19. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, E.V.d.; Oliveira, P.B.; Vieira, L.M.; Schmitz, M.H.; Ferreira, J.H.D. Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach. Sustainability 2020, 12, 3057. https://doi.org/10.3390/su12073057
Couto EVd, Oliveira PB, Vieira LM, Schmitz MH, Ferreira JHD. Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach. Sustainability. 2020; 12(7):3057. https://doi.org/10.3390/su12073057
Chicago/Turabian StyleCouto, Edivando Vitor do, Pablo B. Oliveira, Luciane Maria Vieira, Marcelo H. Schmitz, and José Hilário D. Ferreira. 2020. "Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach" Sustainability 12, no. 7: 3057. https://doi.org/10.3390/su12073057
APA StyleCouto, E. V. d., Oliveira, P. B., Vieira, L. M., Schmitz, M. H., & Ferreira, J. H. D. (2020). Integrating Environmental, Geographical and Social Data to Assess Sustainability in Hydrographic Basins: The ESI Approach. Sustainability, 12(7), 3057. https://doi.org/10.3390/su12073057