Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Collection
2.2. Method for Carbon Footprint Calculation
2.2.1. Functional Unit and System Boundaries
2.2.2. Emission Calculations for Carbon Footprint Assessment
2.3. Soil Carbon Sequestration
2.3.1. Soil Carbon Sequestration
2.3.2. Soil Carbon Sequestration
2.4. Damage on Biodiversity
2.4.1. Biodiversity Damage Score
2.4.2. Damage to Ecosystem Diversity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Farm Levels
3.2. Carbon Footprint Without Soil Carbon Sequestration
3.3. Carbon Footprint Including Soil Carbon Sequestration
3.4. Effect on Biodiversity with Two Different Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Chapter 10 Emissions from Livestock and Manure Management. 2006. Available online: http://www.ipccggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (accessed on 15 May 2019).
- Boussaada, A.; Arhab, R.; Calabro, S.; Grazioli, R.; Ferrara, M.G.; Musco, N.; Cutrignelli, M.I.; Tlidjane, M. Comparison of the Effect of Olives Leaves Extracts (Olea europaea) on In vitro Methane Production, Fermentation Efficiency and Protozoa Activity. Glob. Vet. 2017, 18, 445–453. [Google Scholar]
- FAO; GDP. Climate Change and the Global Dairy Cattle Sector—The Role of the Dairy Sector in a Low-Carbon Future; The Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Thomassen, M.A.; Van Calker, K.J.; Smits, M.C.J.; Iepema, G.L.; De Boer, I.J.M. Life cycle assessment of conventional and organic milk production in The Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Braghieri, A.; Pacelli, C.; Bragaglio, A.; Sabia, E.; Napolitano, F. The Hidden Costs of Livestock Environmental Sustainability: The Case of Podolian Cattle. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 47–56. [Google Scholar] [CrossRef] [Green Version]
- Bragaglio, A.; Napolitano, F.; Pacelli, C.; Pirlo, G.; Sabia, E.; Serrapica, F.; Serrapica, M.; Braghieri, A. Environmental impacts of Italian beef production: A comparison between different systems. J. Clean. Prod. 2018, 172, 4033–4043. [Google Scholar] [CrossRef]
- Alan Rotz, C.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Sabia, E.; Napolitano, F.; Claps, S.; Braghieri, A.; Piazzolla, N.; Pacelli, C. Feeding. Nutrition and Sustainability in Dairy Enterprises: The Case of Mediterranean Buffaloes. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 57–64. [Google Scholar] [CrossRef] [Green Version]
- Sabia, E.; Napolitano, F.; Claps, S.; De Rosa, G.; Barile, V.L.; Braghieri, A.; Pacelli, C. Environmental impact of dairy buffalo heifers kept on pasture or in confinement. Agric. Syst. 2018, 159, 42–49. [Google Scholar] [CrossRef]
- Sabia, E.; Napolitano, F.; Claps, S.; De Rosa, G.; Braghieri, A.; Pacelli, C. Dairy buffalo life cycle assessment as affected by heifer rearing system. J. Clean. Prod. 2018, 192, 647–655. [Google Scholar] [CrossRef]
- Pardo, G.; Martin-Garcia, I.; Arco, A.; Yañez-Ruiz, D.R.; Moral, R.; del Prado, A. Greenhouse-gas mitigation potential of agro-industrial by-products in the diet of dairy goats in Spain: A life-cycle perspective. Anim. Prod. Sci. 2016, 56, 646–654. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; Mena, Y.; Batalla, I.; Mancilla-Leytón, J.M. Carbon footprint of dairy goat production systems: A comparison of three contrasting grazing levels in the Sierra de Grazalema Natural Park (Southern Spain). J. Environ. Manag. 2019, 232, 993–998. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Rumin. Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- ISTAT, Agricultural Census at a Glance. Available online: http://censimentoagricoltura.istat.it/inbreve/?QueryId=&lang=en&graph=&subtheme=&cube (accessed on 25 June 2019).
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental Sustainability of Alpine Livestock Farms. Ital. J. Anim. Sci. 2014, 13, 431–443. [Google Scholar] [CrossRef]
- Van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of Dairy Cows in Europe—An In-Depth Analysis Based on the Perception of Grassland Experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Cocca, G.; Sturaro, E.; Gallo, L.; Ramanzin, M. Is the abandonment of traditional livestock farming systems the main driver of mountain landscape change in Alpine areas? Land Use Policy 2012, 29, 878–886. [Google Scholar] [CrossRef]
- Giupponi, C.; Ramanzin, M.; Sturaro, E.; Fuser, S. Climate and land use changes, biodiversity and agri-environmental measures in the Belluno province, Italy. Environ. Sci. Policy 2006, 9, 163–173. [Google Scholar] [CrossRef]
- Marini, L.; Klimek, S.; Battisti, A. Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: A case study in the European Alps. Environ. Sci. Policy 2011, 14, 258–267. [Google Scholar] [CrossRef]
- Scotti, A.; Füreder, L.; Marsoner, T.; Tappeiner, U.; Stawinoga, A.E.; Bottarin, R. Effects of land cover type on community structure and functional traits of alpine stream benthic macroinvertebrates. Freshw. Biol. 2019, 65, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasùs, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D.; Picuno, P. Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management. Sustainability 2020, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Kühl, S.; Flach, L.; Gauly, M. Economic assessment of small-scale mountain dairy farms in South Tyrol depending on feed intake and breed. Ital. J. Anim. Sci. 2020, 19, 41–50. [Google Scholar] [CrossRef]
- Batalla, I.; Knudsen, M.T.; Mogensen, L.; del Hierro, Ó.; Pinto, M.; Hermansen, J.E. Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J. Clean. Prod. 2015, 104, 121–129. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Romanzin, A.; Bovolenta, S. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration. J. Env. Manag. 2017, 196, 644–650. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Janssens, I.A.; Freibauer, A.; Schlamadinger, B.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Heimann, M.; Nabuurs, G.-J.; Smith, P.; Valentini, R.; et al. The carbon budget of terrestrial ecosystems at country-scale a European case study. Biogeosciences 2005, 2, 15–26. [Google Scholar] [CrossRef] [Green Version]
- FAO. Principles for the Assessment of Livestock Impacts on Biodiversity. In Livestock Environmental Assessment and Performance (LEAP) Partnership; FAO: Rome, Italy, 2016. [Google Scholar]
- De Schryver, A.M.; Goedkoop, M.J.; Leuven, R.S.E.W.; Huijbregts, M.A.J. Uncertainties in the application of the species area relationship for characterization factors of land occupation in life cycle assessment. Int. J. LCA 2010, 15, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe A LifeCycle Impact Assessment Method which Comprises Harmonised Category indicators at the Midpoint and the Endpoint Level; Leiden University: Leiden, The Netherlands, 2008. [Google Scholar]
- FAO. Environmental Performance of Large Ruminant Supply Chains: Guidelines for Assessment. In Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2016. [Google Scholar]
- Guerci, M.; Knudsen, M.T.; Bava, L.; Zucali, M.; Scheonbach, P.; Kristensen, T. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy. J. Clean. Prod. 2013, 54, 133–141. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Tabaglio, V.; Amaducci, S. Environmental impacts of different dairy farming systems in the Po Valley. J. Clean. Prod. 2016, 112, 91–102. [Google Scholar] [CrossRef]
- Sabia, E.; Gauly, M.; Napolitano, F.; Serrapica, F.; Cifuni, G.F.; Claps, S. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin. Res. 2020, 185, 106085. [Google Scholar] [CrossRef]
- SuperMix Farm Computer Systems, Cremona—Italy. Available online: http://www.fcs.it/supermix_inst.php (accessed on 10 May 2019).
- FAO, STAT. 2017. Available online: http://www.fao.org/faostat/en/#home (accessed on 25 November 2019).
- Guinée, J.B.; Gorree, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; Van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. In An Operational Guide to the ISO Standards; Kluwar Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- IDF. A common carbon footprint approach for the dairy sector: The IDF guide to standard life cycle assessment methodology; Bulletin International Dairy Federation: Brussels, Belgium, 2010. [Google Scholar]
- ISPRA Agricoltura. Inventario nazionale delle emissioni e disaggregazione provinciale. In Rapporto Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); ISPRA: Rome, Italy, 2008. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 6th ed.; National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- IPCC. Chapter 11 N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf (accessed on 15 May 2019).
- Còndor, R.D. Agricoltura: Emissioni nazionali in atmosfera dal 1990 al Rapporto ISPRA 140/Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); ISPRA: Rome, Italy, 2011. [Google Scholar]
- Ecoinvent Centre. Ecoinvent Data v. 2.2 e Final Reports Ecoinvent 2000 No. 1-Swiss Centre for Life Cycle Inventories. 2007. Available online: https://www.ecoinvent.org/database/older-versions/ecoinvent-version-2/reports-on-ecoinvent-2/reports-on-ecoinvent-2.html (accessed on 15 May 2019).
- Soussana, J.F.; Tallet, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems though carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Petersen, B.M.; Knudsen, M.T.; Hermansen, J.E.; Halberg, N. An approach to include soil carbon changes in life cycle assessments. J. Clean. Prod. 2013, 52, 217–224. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses. Agric. Syst. 2012, 108, 42–49. [Google Scholar] [CrossRef]
- Sturaro, E.; Marchiori, E.; Cocca, G.; Penasa, M.; Ramanzin, M.; Bittante, G. Dairy systems in mountainous areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 2013, 158, 157–168. [Google Scholar] [CrossRef]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef]
- Lawrence, D.C.; O’Donovan, M.; Boland, T.M.; Lewis, E.; Kennedy, E. The effect of concentrate feeding amount and feeding strategy on milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows. J. Dairy Sci. 2015, 98, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Schnabel, K.; von Soosten, D.; Meyer, U.; Spiekers, H.; Rehage, J.; Danicke, S. The effects of energy concentration in roughage and allowance of concentrates on performance, health and energy efficiency of pluriparous dairy cows during early lactation. Arch. Anim. Nutr. 2018, 72, 100–120. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.R.; Menzel, F.; Bahrs, E. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms. J. Environ. Manag. 2015, 152, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Penati, C.A.; Tamburini, A.; Bava, L.; Zucali, M.; Sandrucci, A. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment. Ital. J. Anim. Sci. 2013, 12, 584–592. [Google Scholar]
- Schader, C.; Jud, K.; Meir, M.S.; Kuhn, T.; Oehen, B.; Gattinger, A. Quantification of the effectiveness of greenhouse gas mitigation measures in Swiss organic milk production using a life cycle assessment approach. J. Clean. Prod. 2014, 73, 227–235. [Google Scholar] [CrossRef]
- Pirlo, G.; Lolli, S. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). J. Clean. Prod. 2019, 211, 962–971. [Google Scholar] [CrossRef]
- Van Wyngaard, J.D.W.; Meeske, R.; Erasmus, L.J. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Anim. Feed Sci. Technol. 2018, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Atzori, A.S.; D’Andrea, M.; Iovane, G.; Trabalza-Marinucci, M.; Rinaldi, L. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin. Res. 2016, 135, 50–59. [Google Scholar] [CrossRef]
- Calabrò, S.; Infascielli, F.; Tudisco, R.; Musco, N.; Grossi, M.; Monastra, G.; Cutrignelli, M.I. Estimation of In vitro Methane Production in Buffalo and Cow. Buff. Bull. 2013, 32, 924–927. [Google Scholar]
- Ramírez-Restrepo, C.A.; Tan, C.; O’Neill, C.J.; Lòpez-Villalobos, N.; Padmanabha, J.; Wang, J.; McSweeney, C.S. Methane production, fermentation characteristics, andmicrobial profiles in the rumen of tropical cattle fed tea seedsaponin supplementation. Anim. Feed Sci. Technol. 2016, 216, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Junior, P.F.; Cassiano, E.C.O.; Martins, M.F.; Romero, L.A.; Zapata, D.C.V.; Pinedo, L.A.; Marino, C.T.; Rodrigues, P.H.M. Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livest. Sci. 2017, 203, 21–29. [Google Scholar] [CrossRef]
- Ugbogu, E.A.; Elghandour, M.M.M.Y.; Ikpeazu, V.O.; Buendìa, G.R.; Molina, O.M.; Arunsi, U.O.; Emmanuel, O.; Salem, A.Z.M. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J. Clean. Prod. 2019, 213, 915–925. [Google Scholar] [CrossRef]
- Sabia, E.; Claps, S.; Napolitano, F.; Annicchiarico, G.; Bruno, A.; Francaviglia, R.; Sepe, L.; Aleandri, R. In vivo digestibility of two different forage species inoculated with arbuscular mycorrhiza in Mediterranean red goats. Small Rumin. Res. 2015, 123, 83–87. [Google Scholar] [CrossRef]
- Sabia, E.; Claps, S.; Morone, G.; Bruno, A.; Sepe, L.; Aleandri, R. Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: Preliminary study on quantitative and qualitative aspects. Ital. J. Agron. 2015, 10, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Caputo, A.; Morone, G.; Di Napoli, M.A.; Rufrano, D.; Sabia, E.; Paladino, F.; Sepe, L.; Claps, S. Effect of destoned olive cake on the aromatic profile of cows’ milk and dairy products: Comparison of two techniques for the headspace aroma profile analysis. Ital. J. Agron. 2015, 10, 15–20. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Environmental assessment of small-scale dairy farms with multifunctionality in mountain areas. J. Clean. Prod. 2016, 124, 94–102. [Google Scholar] [CrossRef]
- Pirlo, G.; Terzano, G.M.; Pacelli, C.; Abeni, F.; Carè, S. Carbon footprint of milk produced at Italian buffalo farms. Livest. Sci. 2014, 161, 176–184. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Bakker, E.J.; van Eekeren, N.; Tittonell, P.A.; Groot, J.C.J.; van Ittersum, M.K.; Lantinga, E.A. Do Grazing Systems and Species Composition Affect Root Biomass and Soil Organic Matter Dynamics in Temperate Grassland Swards? Sustainability 2020, 12, 1260. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.; Capper, J.L.; Garnsworthy, P.C.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- Assandri, G.; Bogliani, G.; Pedrini, P.; Brambilla, M. Species-specific responses to habitat and livestock management call for carefully targeted conservation strategies for declining meadow birds. J. Nat. Conserv. 2019, 52, 125757. [Google Scholar] [CrossRef]
- Kaenchan, P.; Guinée, J.; Gheewala, S.H. Assessment of ecosystem productivity damage due to land use. Sci. Total Environ. 2018, 621, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Riedener, E.; Rusterholz, H.P.; Baur, B. Effects of different irrigation systems on the biodiversity of species-rich hay meadows. Agric. Ecosyst. Environ. 2013, 164, 62–69. [Google Scholar] [CrossRef]
- Du, C.; Dias, L.C.; Freire, F. Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. J. Clean. Prod. 2019, 218, 708–717. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Giljum, S.; Wernet, G.; Huijbregts, M.A.J. Resource Footprints are Good Proxies of Environmental Damage. Environ. Sci. Technol. 2017, 51, 6360–6366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wu, D. Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environ. Res. 2018, 164, 85–92. [Google Scholar] [CrossRef]
- Crenna, E.; Sinkko, T.; Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 2019, 227, 378–391. [Google Scholar] [CrossRef]
AGLC (n 11) | AGHC (n 11) | BSLC (n 11) | BSHC (n 11) | S.E.M. | |
---|---|---|---|---|---|
Lactating cows, n° | 12.3 | 12.8 | 11.5 | 11.9 | 1.2 |
Cattle, n° | 5.5 | 4.2 | 5.6 | 4.5 | 1.1 |
Calves, n° | 5.2 a | 4.5 a | 2.6 b | 2.0 b | 0.9 |
Milk yield, kg FPCM/cow/y | 4206 Aa | 6031 Bc | 5029 b | 7356 Bd | 231 |
Concentrate, kg/cow/day | 3.0 A | 6.3 B | 3.7 A | 7.6 a | 0.3 |
Meadow hay, ha | 8.9 | 8.5 | 9.5 | 7.4 | 1.0 |
Permanent pasture, ha | 3.4 a | 2.5 | 2.2 | 0.7 b | 0.8 |
Pasture duration, day/y | 93 a | 51 | 77 | 34 b | 16 |
Altitude of farms, m.s.l. | 1147 | 1286 | 1262 | 1206 | 88 |
Electricity, kWh/y | 8260 | 7272 | 5622 | 8317 | 1873 |
Fuel, liter/y | 977 | 948 | 1138 | 1335 | 224 |
Ingredient (% of DM) | AGLC (n = 11) | AGHC (n = 11) | BSLC (n = 11) | BSHC (n = 11) |
---|---|---|---|---|
Maize flour | 29 ± 3 | 29 ± 3 | 28 ± 1 | 29 ± 3 |
Wheat bran | 23 ± 9 | 26 ± 13 | 20 ± 11 | 26 ± 11 |
Soy bean meal | 8 ± 3 | 11 ± 4 | 11 ± 5 | 13 ± 4 |
Rapeseed meal | 9 ± 4 | 8 ± 4 | 8 ± 5 | 8 ± 5 |
Alfalfa, artificially dried | 7 ± 15 | 7 ± 15 | 5 ± 9 | 2 ± 6 |
Sugar beet pulp | 7 ± 6 | 4 ± 7 | 7 ± 6 | 2 ± 6 |
Sunflower meal | 7 ± 3 | 3 ± 4 | 5 ± 4 | 3 ± 4 |
By-products of distillation | 7 ± 3 | 3 ± 4 | 5 ± 4 | 3 ± 4 |
Sugar cane | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 |
Barley flour | 1 ± 2 | 4 ± 7 | 1 ± 5 | 5 ± 8 |
Chemical composition (% of DM) | ||||
Crude protein | 16.8 ± 1.9 | 16.5 ± 2.1 | 18.0 ± 1.2 | 17.9 ± 1.9 |
Crude fiber | 8.2 ± 3.7 | 9.1 ± 3.5 | 7.6 ± 2.8 | 7.0 ± 1.8 |
Ether extract | 3.4 ± 0.4 | 3.4 ± 0.6 | 3.4 ± 0.3 | 3.8 ± 0.5 |
Crude ash | 5.8 ± 0.5 | 5.8 ± 0.5 | 6.0 ± 0.4 | 6.2 ± 0.6 |
Net Energy Lactation (MJ) | 7.0 ± 0.4 | 7.1 ± 0.4 | 7.0 ± 0.3 | 7.1 ± 0.2 |
Land Use Type | Median | 95% Confidence Level |
---|---|---|
Organic fertile grassland | −0.01 | −0.18–0.15 |
Organic tall grassland | 0.04 | −0.12–0.18 |
Less intensive arable land | 0.44 | 0.31–0.54 |
Intensive arable land | 0.79 | 0.73–0.83 |
Baseline: semi-natural woodland | 0.00 | n.a. |
AGLC (n = 11) | AGHC (n = 11) | BSLC (n = 11) | BSHC (n = 11) | S.E.M. | |
---|---|---|---|---|---|
CF (kg CO2-eq/kg FPCM), without soil carbon sequestration | 1.55 Aa | 1.22 b | 1.43 a | 1.14 Bb | 0.06 |
CF (kg CO2-eq/kg FPCM), including soil carbon sequestration [44] | 1.33 Aa | 1.06 b | 1.23 a | 1.00 Bb | 0.06 |
Reduction of environmental impact (kg CO2-eq/kg FPCM) [44] | 0.23 Aa | 0.16 b | 0.21 a | 0.13 Bb | 0.01 |
% ON-Farms [44] | 79.7 | 69.3 | 81.7 | 57.6 | 9.1 |
CF (kg CO2-eq/kg FPCM), including soil carbon sequestration [45] | 1.22 Aa | 1.00 b | 1.17 a | 0.98 Bb | 0.05 |
Reduction of environmental impact (kg CO2-eq/kg FPCM) [45] | 0.34 Aa | 0.23 b | 0.26 a | 0.17 Bb | 0.02 |
% ON-Farms [45] | 84.0 | 86.1 | 83.9 | 60.9 | 8.2 |
Process | AGLC (n = 11) | AGHC (n = 11) | BSLC (n = 11) | BSHC (n = 11) | S.E.M. |
---|---|---|---|---|---|
Enteric fermentation | 65.2 a | 56.6 b | 68.2 a | 56.2 b | 1.8 |
Concentrated feed | 12.2 A | 22.1 Ba | 11.9 A | 27.5 Bb | 1.8 |
Meadow hay | 8.8 Aa | 6.2 b | 8.0 | 4.9 B | 1.0 |
General consumptions | 8.0 | 10.0 | 8.1 | 8.0 | 1.8 |
Pollutant | AGLC (n = 11) | AGHC (n = 11) | BSLC (n = 11) | BSHC (n = 11) | S.E.M. |
---|---|---|---|---|---|
CH4 biogenic | 75.0 Aa | 65.9 b | 70.2 ab | 57.8 B | 1.8 |
CO2 fossil | 11.5 a | 14.3 a | 17.2 b | 19.9 b | 1.8 |
N2O | 11.6 Aa | 14.7 b | 10.5 Aa | 16.8 B | 1.0 |
AGLC (n = 11) | AGHC (n = 11) | BSLC (n = 11) | BSHC (n = 11) | S.E.M. | |
---|---|---|---|---|---|
Biodiversity, DS/kg FPCM [30] | 0.41 A | 0.46 A | 0.44 A | 0.56 B | 0.03 |
Damage to Ecosystem Diversity (Species*y)1/kg FPCM [31] | 1.78 E-07 a | 2.09 E-07 ABab | 1.60 E-07 A | 2.49 E-07 Bb | 1.75 E-08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabia, E.; Kühl, S.; Flach, L.; Lambertz, C.; Gauly, M. Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. Sustainability 2020, 12, 2128. https://doi.org/10.3390/su12052128
Sabia E, Kühl S, Flach L, Lambertz C, Gauly M. Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. Sustainability. 2020; 12(5):2128. https://doi.org/10.3390/su12052128
Chicago/Turabian StyleSabia, Emilio, Sarah Kühl, Laura Flach, Christian Lambertz, and Matthias Gauly. 2020. "Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity" Sustainability 12, no. 5: 2128. https://doi.org/10.3390/su12052128
APA StyleSabia, E., Kühl, S., Flach, L., Lambertz, C., & Gauly, M. (2020). Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. Sustainability, 12(5), 2128. https://doi.org/10.3390/su12052128