Next Article in Journal
Community and Impact Based Early Warning System for Flood Risk Preparedness: The Experience of the Sirba River in Niger
Previous Article in Journal
A Combined Approach to Address Road Traffic Crashes beyond Cities: Hot Zone Identification and Countermeasures in Indonesia
Article

Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters

1
Institute for Environmental Management and Land Use Planning (IGEAT), ULB (Université libre de Bruxelles), 1050 Brussels, Belgium
2
IRL, ICHEC Brussels Management school, 1150 Brussels, Belgium
3
4MAT Department, ULB (Université libre de Bruxelles), 1050 Brussels, Belgium
4
Haute Ecole Libre de Bruxelles (HELB), 1070 Brussels, Belgium
5
Chaire Hoover, CRIDIS & Louvain School of Management (LSM), UCLouvain (Université Catholique de Louvain), 1348 Louvain-la-Neuve, Belgium
*
Authors to whom correspondence should be addressed.
Sustainability 2020, 12(5), 1803; https://doi.org/10.3390/su12051803
Received: 5 February 2020 / Revised: 22 February 2020 / Accepted: 25 February 2020 / Published: 28 February 2020
(This article belongs to the Section Sustainable Transportation)
This study applies a life cycle assessment (LCA) to the shared dockless standing e-scooter system that is established in Brussels. The results are given for four impact categories: global warming potential (GWP), particulate matter formation, mineral resource, and fossil resource scarcity. Regarding GWP, the use of the shared e-scooters in the current system causes 131 g of CO2-eq. per passenger-kilometer while the mode of transportation displaced has an impact of 110 g of CO2-eq. Thus, at present, the use of e-scooters shows a higher impact than the transportation modes they replace. The high results for the shared e-scooter, in terms of GWP, are mainly caused by the short lifespan of the shared e-scooter. Nevertheless, as the market further matures, the lifespan of e-scooters could increase and the impact per kilometer travelled could decrease accordingly. Regarding the use of the personal e-scooter, the LCA results show an impact of around 67 g of CO2-eq. This study quantifies the LC impacts of the current situation based on local, ‘real-life’ data. However, potential changes on soft mobility patterns induced by the use-oriented product-service system (PSS), such as a shared e-scooter system, could not be quantified. View Full-Text
Keywords: e-scooter; life cycle assessment; product-service system; environmental assessment; mobility e-scooter; life cycle assessment; product-service system; environmental assessment; mobility
Show Figures

Figure 1

MDPI and ACS Style

Moreau, H.; de Jamblinne de Meux, L.; Zeller, V.; D’Ans, P.; Ruwet, C.; Achten, W.M.J. Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters. Sustainability 2020, 12, 1803. https://doi.org/10.3390/su12051803

AMA Style

Moreau H, de Jamblinne de Meux L, Zeller V, D’Ans P, Ruwet C, Achten WMJ. Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters. Sustainability. 2020; 12(5):1803. https://doi.org/10.3390/su12051803

Chicago/Turabian Style

Moreau, Hélie, Loïc de Jamblinne de Meux, Vanessa Zeller, Pierre D’Ans, Coline Ruwet, and Wouter M.J. Achten 2020. "Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters" Sustainability 12, no. 5: 1803. https://doi.org/10.3390/su12051803

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop